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Abstract: The effects of plasma treatment of polyimide substrates on the texture and grain size
distribution of aluminum thin films were studied. Oxygen-argon plasma treatment increased the
average grain size and enhanced the (111) film texture. For short oxygen-argon plasma treatment
times, the deposited Al films showed a (111) texture with a bimodal grain structure and even a
{111}<112> type in-plane texture. The preferential nucleation and grain growth of (111) grains are
discussed in terms of the interface energy anisotropy.
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1. Introduction

Microstructure strongly influences the mechanical, electrical, and metallurgical prop-
erties of polycrystalline metal thin films. This correlation has received much attention in
pure Al and Al alloys because of the importance of the reliability of these materials in
microelectronics, where they are used as electrical conductors [1–10].

The microstructure of a thin film is influenced by the crystal structure of the substrate.
When a crystalline film grows on a crystalline substrate and the lattices of the two match,
the total periodic potential energy function is minimized so that the film grows epitaxially.
For instance, Al can grow epitaxially on Si and rock salts [11], as well as on Ti {0001}
surfaces [12,13]. For non-crystalline substrates, such periodic interaction hardly occurs.
Instead, minimization of the film surface energy becomes a primary factor. The (111)
texture of Al on thermally grown amorphous SiO2 has been discussed with respect to
surface energy minimization [14–16]. Minimization of the film-substrate interface energy is
assumed to have the same effect as surface energy minimization, even though the interface
energy could differ significantly from the surface energy. Most studies on grain growth in
thin films on amorphous substrates have assumed that the interface energy is identical to
the surface energy.

The interface energy is expected to influence the film texture as well as the film surface
energy. It is well-known that contamination of the substrate reduces the grain size [17] and
that gaseous impurities such as oxygen [15,18,19], nitrogen [18], and water vapor [18,19]
reduce the grain size and change the texture. Thus, the chemical conditions of the substrate
surface affect the grain growth during deposition and hence the microstructure.

The aim of the present study is to elucidate the influence of the surface chemical
conditions of polyimide on the microstructure of Al films. The surface conditions were
controlled by plasma pretreatment prior to Al deposition. Texture and grain growth are
discussed in terms of the surface/interface energy minimization.

2. Experimental

PMDA-ODA (pyromellitic dianhydride oxydianiline, see Figure 1) polyimide type
2540 (DuPont™, Wilmington, DE, USA) was spun onto Si(100) wafers having a 100-Å-thick
thermally grown oxide layer, baked in air at 250 ◦C for 30 min, and then cured in nitrogen at
400 ◦C for 60 min. The thickness of the polyimide films after the curing was about 200 nm.
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Full conversion of the precursor to PMDA-ODA was confirmed by Fourier-transform
infrared spectroscopy (Nicolet, Madison, WI, USA). An ultrahigh-vacuum direct-current
magnetron sputtering apparatus (Angstrom Scientific, Ramsey, NJ, USA) with a base
pressure of less than 2 × 10−6 Pa was used to deposit Al films. Prior to metallization, the
substrate was dried in an oven at 150 ◦C for 30 min and then introduced immediately
into the deposition chamber. For some experiments, 20-µm-thick PMDA-ODA polyimide
(Kapton®) sheets were employed.
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Figure 1. Structure of PMDA-ODA polyimide and Al (111) unit cell.

The metallization process involved an in situ cold plasma pre-treatment followed
by Al deposition (see Figure 2). The in situ plasma pre-treatment was conducted using
a radio-frequency plasma at a power density of about 0.3 W/cm3 with a reactive ion
etching arrangement, which forces a negative self-bias (ca. 850 V) upon the substrate and
thus permits charged ion species to bombard the surface. The gas used was a mixture of
O2/Ar = 1/15 or pure (99.9999%) Ar. The plasma treatment times were 40 or 180 s. The gas
flow rate was controlled by mass flow controllers. The total pressure was kept at 10 Pa.
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Figure 2. Experimental apparatus. Arrangement for plasma treatment (a) and for film deposition (b).

After evacuating the chamber down to the base pressure, an 1-µm-thick Al film was
deposited from a pure (99.999%) Al target in an Ar atmosphere at a pressure of about
0.7 Pa. The substrate pedestal was water-cooled during deposition. The microstructure of
as-deposited Al films was characterized by transmission electron microscopy (TEM) and
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the pole figure technique. For TEM observations and electron diffraction analyses, samples
were cut into discs 3 mm in diameter, dimpled from the backside, and thinned by Ar
ion-milling. The microscope (JEOL 2000FX, Tokyo, Japan) was operated at an acceleration
voltage of 200 kV. The area of each individual grain, S, was measured, and the diameter
of the equivalent circle was taken as the grain size, D, i.e., D = (4S/π)1/2. To characterize
the texture, a (111) pole figure was recorded in reflection geometry so as to obtain data at
tilting angles between χ = 20◦ (sample normal direction) and χ = 85◦. Texture scans were
performed using a 4-circle Siemens D5000 texture goniometer (Munich, Germany) with Cu
Kα radiation.

3. Results and Discussion

Figure 3a–d show TEM micrographs of Al films for different pretreatment conditions.
The specimen pretreated by O2 + Ar plasma (hereafter, O2 plasma) for 40 s (Figure 3b)
exhibited grains that had grown to many times the size of the average grain. Selected-area
diffraction (SAD) analysis revealed that most of these abnormal grains had (111) planes,
while some grains had near {111} planes that tilted by as much as about 15◦ away from the
film normal.

Coatings 2022, 12, x FOR PEER REVIEW 3 of 10 
 

 

Pa. The substrate pedestal was water-cooled during deposition. The microstructure of as-
deposited Al films was characterized by transmission electron microscopy (TEM) and the 
pole figure technique. For TEM observations and electron diffraction analyses, samples 
were cut into discs 3 mm in diameter, dimpled from the backside, and thinned by Ar ion-
milling. The microscope (JEOL 2000FX, Tokyo, Japan) was operated at an acceleration 
voltage of 200 kV. The area of each individual grain, S, was measured, and the diameter 
of the equivalent circle was taken as the grain size, D, i.e., D = (4S/π)1/2. To characterize the 
texture, a (111) pole figure was recorded in reflection geometry so as to obtain data at 
tilting angles between χ = 20° (sample normal direction) and χ = 85°. Texture scans were 
performed using a 4-circle Siemens D5000 texture goniometer (Munich, Germany) with 
Cu Kα radiation. 

3. Results and Discussion 
Figure 3a–d show TEM micrographs of Al films for different pretreatment conditions. 

The specimen pretreated by O2 + Ar plasma (hereafter, O2 plasma) for 40 s (Figure 3b) 
exhibited grains that had grown to many times the size of the average grain. Selected-area 
diffraction (SAD) analysis revealed that most of these abnormal grains had (111) planes, 
while some grains had near {111} planes that tilted by as much as about 15° away from 
the film normal. 

  
(a) (b) 

  
(c) (d) 

Figure 3. TEM micrographs of Al on polyimide. (a) Pristine; (b) O2 plasma, 40 s; (c) O2 plasma, 180 
s; (d) Ar plasma, 180 s. 

Figure 4 summarizes the intensities of the diffraction spots in the selected area dif-
fraction (SAD) patterns. All the original diffraction patterns used in the analyses had ring 
patterns. Diffraction intensities are normalized against the 111 peak intensity. The concur-
rent appearance of intense 220 and 422 peaks indicates the presence of a (111) component 
parallel to the substrate. This can be seen in the large-selected-area (diameter: 100 μm) 

Figure 3. TEM micrographs of Al on polyimide. (a) Pristine; (b) O2 plasma, 40 s; (c) O2 plasma, 180 s;
(d) Ar plasma, 180 s.

Figure 4 summarizes the intensities of the diffraction spots in the selected area diffrac-
tion (SAD) patterns. All the original diffraction patterns used in the analyses had ring
patterns. Diffraction intensities are normalized against the 111 peak intensity. The concur-
rent appearance of intense 220 and 422 peaks indicates the presence of a (111) component
parallel to the substrate. This can be seen in the large-selected-area (diameter: 100 µm)
diffraction pattern for a Al film deposited on O2-plasma-treated polyimide (Figure 3b). The
diffraction pattern from the normal grains of the bimodal structure (Figure 4) resembles that
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from the random grains, except for slight strengthening of the 222 reflection. Subtraction of
the spectrum of the normal grains from that of the total provides an intuitive understanding
of the orientation of abnormal grains: the fact that only the 220 and 422 reflections remain
significant suggests (111) texturing. The weakening of the 200 and 400 intensities can be
seen for all the plasma-treated samples. This indicates the absence of a (100) component
parallel to the substrate.
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Figure 5 shows (111) polar plots for the Al films. Plasma-treated samples show the
most intense peaks at the center, which indicates the presence of a (111) fiber texture. The
slight reduction in intensity at about 50◦ suggests the absence of a (100) component N,
in accordance with the SAD patterns. The results of texture analyses by SAD and the
polar figure technique are summarized in Table 1. The measured grain sizes are plotted
on a log-normal probability chart (Figure 6). The probability function for the log-normal
distribution, ϕ(D), is given by

ϕ(D) =
1

σD
√

2π
exp

[
− (ln D− µ)

2σ2

]
, (1)

where µ is the log-normal median and σ is the standard deviation. The Al film deposited
after O2 plasma treatment (40 s) had a clear bimodal distribution: two lines shifted away in
parallel, showing an overlap of two different populations. Table 2 summarizes the grain
size statistics. The O2-plasma-treated specimens had large mean grain sizes compared to
the pristine or Ar-plasma-treated specimen. The bimodal distribution was deconvoluted
into two log-normal components. Although the bimodal grains had a larger σ value of
0.24, the deconvoluted σ values did not differ significantly from the σ values for the other
populations (normal grains).
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Figure 5. (111) polar plots obtained from Al films deposited on pristine (a), O2/Ar plasma pre-
treated (b), and Ar plasma-treated polyimide (c).

Table 1. Summary of texture analyses.

Pretreatment Texture

None (pristine) - Unclear
O2/Ar 40 s Abnormal grains (111) dominant

- Normal grains Random + (111)w − (100)w
Ar 180 s - Random + (111)w − (100)w

Table 2. Grain size statistics.

Pretreatment Mean (nm) Median (nm) Standard Deviation (nm)

None (pretreatment) 66 62 0.16
O2/Ar 40 s Total 168 140 0.24
Normal grains - 121 0.18

Abnormal grains - 494 0.11
O2/Ar 180 s 93 83 0.16

Ar 180 s 68 64 0.15

Summarizing the experimental results described so far, the main effects of plasma
pretreatment were (111) texturing and a change in the grain size distribution. Before
discussing the origins of the film microstructure, let us give an overview of the chemical
aspects of plasma pretreatment of the polyimide surface.
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The reaction processes induced by plasma treatment of polyimide are understood
as a sequence of polymer radical formation and the addition of simple radicals. Chain
scission is a typical reaction that occurs on polyimide, forming polymer radicals [20–24].
Functional groups are then introduced by the addition of simple radicals to the polymer
radicals. Oxygen plasma treatment of polyimide is known to significantly increase oxygen-
containing functional groups such as carboxyl (COO) [23,25], carbonyl (=CO) [23], ethel
(>CO) [23], and hydroxyl (OH) groups [25]. Plasma treatment or ion bombardment using
inert gases (e.g., He, Ar) also forms functional groups on polyimide [21,23]. X-ray photo-
electron spectroscopy (XPS) [26–30] and high-resolution electron energy loss spectroscopy
(HREELS) [31] have shown that evaporated Al reacts preferentially with the CO groups on
the pristine polyimide surface and forms C–O–Al complexes. Other functional groups act as
preferential adsorption sites for Al because of their high reactivity. Thus, the surface energy
of polyimide increases with increasing concentration of added functional groups [22,32].

Next, we discuss the possible origins of the (111) texture and the grain size distribu-
tion, in particular the bimodal distribution, in view of the preferential nucleation of (111)
grains and the grain growth during deposition. According to basic nucleation theory, the
nucleation rate during Volmer–Weber type growth is expressed as [33]:

.
N = N0 exp

(
−∆Gdiff + ∆G∗

kT

)
, (2)

where
.

N is the nucleation rate, N0 is a pre-exponential factor, k is the Boltzmann constant,
T is the absolute temperature, ∆Gdiff is the activation energy for surface diffusion of metal
atoms, and

.
∆G∗ is the barrier energy for nucleation. Assuming isotropic surface energy

and equilibrium conditions, the nuclei form a spherical cap whose contact angle is given by
Young’s balance:

γS = γSC + γC cos θ, (3)

where γC is the surface energy of the nucleus, γS is the surface energy of the substrate, γSC
is the nucleus-substrate interface energy, and θ is the contact angle. A smaller contact angle
gives a lower ∆G∗ and thus a higher

.
N. That is, a larger γS or smaller γSC or γC results in a

higher nucleation rate. By taking into account the chemical bond energy per unit area of
the interface, we reduce

∆γSC = γSC
∗ − γSC, (4)
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The appearance of particular Al planes on plasma-treated surfaces suggests energetic
anisotropy in ∆γSC, and thus ∆γSC can be described as a function of the orientation of a
nucleus. Either γSC

∗ or γSC can be anisotropic.
One reason for the anisotropy in ∆γSC is epitaxy. Epitaxial growth would take place

if the polyimide is crystalline or at least has a certain long-range arrangement of polymer
chains. Aromatic units of polyimide have been reported to be stable against plasma
treatment and not to be decomposed by a low ion dose [22,34]. Instead, as discussed above,
plasma treatment introduces functional groups at particular sites in the aromatic rings.
Thus, the functional groups would have three-fold symmetry. The three-fold symmetry of
the Al (111) plane permits nuclei to grow in an epitaxial manner. One possible experimental
evidence of epitaxial growth of Al on polyimide is shown in Figure 7. These (111) polar plots
were obtained from 2-µm-thick Al films deposited on commercially available PMDA-ODA
polyimide (Kapton®) sheets (20 µm) after O2 plasma pretreatment for 40 s. The most striking
feature is the three-fold symmetric peaks of (111) planes at around χ = 70◦, accompanying
faint (220) signals. The geometry of the (111) symmetry suggests the {111}<112> in-plane
alignment of (111) fiber grains. This type of in-plane texturing is commonly observed in
epitaxially grown thin films on crystalline inorganic substrates but has not been reported
for polymer substrates, to the best of the author’s knowledge. The in-plane texturing was
enhanced by post-deposition annealing. These results suggest the presence of a certain
periodical ordering of the polyimide molecules. Unfortunately, there is very little consensus
on the presence of long-range crystalline structure in polyimide [35,36]. Note that the
in-plane stress in polyimide could be the cause of the anisotropy of the in-plane polymer
arrangement. Longer plasma treatment (180 s) did not produce the in-plane texture and
decreased the (111) peak intensity. This behavior can be correlated with the decrease in the
(111) peak intensity observed for Al films spun on polyimide substrates.
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If the reactivity of chemical species at the Al surface is dependent on the crystal-
lographic plane of Al, this can be another mechanism for the anisotropy of ∆γSC. The
reactivity of oxygen on Al surfaces decreases in the order (111) > (110) > (100) [37]. (111)
planes are most likely to react with the oxygen-containing groups at treated polyimide rings,
resulting in preferential nucleation of (111) planes. This model seems more advantageous
than the epitaxy model discussed above, since it does not require the presence of a periodic
structure in polyimide. However, it cannot explain the in-plane texturing simply.

The Al film deposited after 40 s of O2 plasma pretreatment had a larger average
grain size and contained abnormal grains. The presence of abnormal grains indicates that
grain growth occurred during film thickening [16]. When the orientations of two adjacent
grains are different, the difference in surface energy produces an additional driving force
that overcomes grain boundary pinning [38]. A difference in surface energy of only a
few percent is large enough to mobilize grain boundaries. Thus, in the case of Al, most
abnormal grains have lower energy planes like (111) and the film has a (111) texture.
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It is noteworthy that grains with a weak (111) texture did not contain abnormal grains,
as seen in the case of Ar plasma pretreatment (Figure 4). This suggests that abnormal grain
growth does not start unless the amount of preferential grains is above a certain threshold.
Similarly, the primary grains (normal grains) of a bimodal structure (O2, 40 s) are weakly
(111) textured. This implies that not all low-energy grains grow abnormally. A simulation
study by Frost, Thompson, and Walton [39] has shown that abnormal grain growth does
not occur in a matrix that consists of randomly orientated grains, even if sufficient surface
energy anisotropy is present. “Seeding” of a significant fraction of low-energy grains was
needed to initiate abnormal grain growth; only some of the seeded grains grew abnormally.
It has also been shown that the fraction of seeded grains is dependent on the level of
additional driving forces for grain boundary migration. These simulation results support
our experimental data: the “seeding” induced by the preferential nucleation of (111) planes
leads to (111) texturing and a bimodal distribution. Although the critical fraction of seeded
grains has not been established quantitatively, our rough estimate on the basis of SAD
analyses is a few percent.

4. Conclusions

Plasma pretreatment of the polyimide surface introduces O-containing functional
groups and increases the number of sites where Al atoms can be adsorbed. The interaction
between the functional groups and Al plays a primary role in the nucleation of Al grains.
The (111) texture of Al films deposited on plasma-pretreated substrates stems from the
anisotropy of the Al-polyimide interface energy. Epitaxial growth would occur if the
polyimide structure has a long-range order and if the adsorption sites have high symmetry.
The crystallographic plane dependence of the chemical reactivity of the Al surface is
discussed as another possibility. The former type of anisotropy is attributable to polyimide
itself, while the latter is due to Al. Judging from the three-fold (111)<115> in-plane texture
of the Al films, we concluded that the epitaxial growth argument is more plausible. The
(111) texture develops through grain growth during deposition, driven by the preferential
nucleation of (111) planes. Selective area diffraction analysis suggests that the fraction of
(111) grains needs to be above a threshold (of a few percent) for the development of an
abnormal grain structure. The microstructure analyses of this study provide the basis for
understanding electrical and or mechanical properties of metal/polymer film stacks.
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