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Abstract: In the last few years, significant advances have been achieved in the development of organic
semiconductors for use in optoelectronic devices. This work reports the doping and deposition of
semiconducting organic thin films based on manganese (III) phthalocyanine chloride (MnPcCl).
In order to enhance the semiconducting properties of the MnPcCl films, different types of pyridine-
based chalcones were used as dopants, and their influence on the optical and electric properties
of the films was analyzed. The morphology and structure of the films were studied using IR
spectroscopy and scanning electron microscopy (SEM). Optical properties of MnPcCl–chalcone films
were investigated via UV–Vis spectroscopy, and the absorption spectra showed the Q band located
between 630 and 800 nm, as well as a band related to charge transfer (CT) in the region between
465 and 570 nm and the B band in the region between 280 and 460 nm. Additionally, the absorption
coefficient measurements indicated that the films had an indirect transition with two energy gaps: the
optical bandgap of around 1.40 eV and the fundamental gap of around 2.35 eV. The electrical behavior
is strongly affected by the type of chalcone employed; for this reason, electrical conductivity at room
temperature may vary from 1.55 × 10−5 to 3.02 × 101 S·cm−1 at different voltages (0.1, 0.5, and 1.0 V).
Additionally, the effect of temperature on conductivity was also measured; electrical conductivity
increases by two orders of magnitude with increasing temperature from 25 to 100 ◦C. The doping
effect of chalcone favors electronic transport, most likely due to its substituents and structure with
delocalized π-electrons, the formation of conduction channels caused by anisotropy, and the bulk
heterojunction induced by the dopant. In terms of optical and electrical properties, the results suggest
that the best properties are obtained with chalcones that have the methoxy group as a substituent.
However, all MnPcCl–chalcone films are candidates for use in optoelectronic devices.

Keywords: organic semiconductor film; chalcones; optical properties; flexible device; electrical properties

1. Introduction

Organic photovoltaics is a field of research that has been growing steadily in the last
decade, leading to values of power conversion efficiency currently surpassing 10% [1–5].
The first organic photovoltaic cells, or organic solar cells, were manufactured more than
20 years ago and had an efficiency of around 1.7%. Nowadays, there are organic solar cells
with an efficiency of about 18% [4–6]. This type of cell is made from organic semiconductors
(OS) with a delocalized π-electron system. OS can absorb sunlight to create photo-generated
charge carriers and transport these charge carriers [7,8]. The use of OS has many advan-
tages, such as (i) low-cost synthesis, (ii) capability for optoelectronic-property modulation
of some materials, given the versatility of their synthetic methodologies, (iii) high molar
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extinction coefficients, which permits working with very thin films of these semiconductors
and reducing the amount of material used, and (iv) easy manufacture of thin-film devices
by vacuum evaporation/sublimation, solution cast, or printing technologies [8]. However,
the use of these types of materials also has some disadvantages. For instance, OS can be
regarded as “intrinsic wide bandgap semiconductors”, with a low intrinsic charge carrier
density at room temperature in the dark [8], which leads to low current densities. Neverthe-
less, chemical or molecular doping, which consists of mixing the OS with another molecule
with a strong electron-donor or electron-acceptor character, can increase the number of
charge carriers, which eases electronic transfer between both species when they are at a very
short distance. In p-type doping, the semiconductor is intentionally “contaminated” with
strongly oxidizing molecules, while, in n-type doping, strongly reducing molecules are
added. Among the molecules widely used as OS, one may consider phthalocyanines (Pcs)
and particularly metallophthalocyanines (MPcs), with metallic ions in their cores. MPcs are
macrocycles made up of 18 π-electrons with exceptional properties due to delocalization,
such as high chemical, thermal, and photochemical stabilities and appropriate redox proper-
ties. They also have a wide absorption region in their infrared/near-infrared spectra, as well
as optical nonlinearity related to their wide range of semiconducting properties [9–13].
Thanks to these remarkable electronic and optical properties, MPc thin films represent an
area of outstanding research for organic electronic devices [13–15]. For example, in recent
years, MPcs have been implemented in perovskite solar cells as hole transport materials
(HTMs), scoring in some cases efficiencies above 20% [12,16–18]. MPcs are also attractive
building blocks in molecular donor−acceptor (D−A) systems because of their ability to
efficiently absorb light in the visible region, as well as their capability to perform as electron
donors (D) upon photoexcitation in various D−A systems [19–23].

With these issues in mind, there is a natural interest in researching potential synergies
arising from the interaction between MPc cores and other stable organic materials, such as
chalcones, which are molecules of easy synthesis and low cost. In this work, we report the
doping and characterization of thin films of manganese (III) base phthalocyanine chloride
(Figure 1). These films were used to manufacture optoelectronic devices whose properties
were then evaluated, considering the structural features of each chalcone used as dopant
(see Figure 1). The justification for this work considers several issues. (i) This study proposes
the use in optoelectronics devices of Pcs containing a center of Mn with electronic structure
3d5, with the intention that the Mn-3d orbitals may approach the Fermi level [24,25].
(ii) Phthalocyanines with manganese chloride are relevant in this regard because this type
of Pcs exhibits distinctive optical properties [26–28] and photoelectric behavior worthy of
attention [29,30]. (iii) Most of the research about Pcs applied in molecular electronics is
related to MPcs of divalent metals, such as ZnPc, CuPc, and MgPc [1,9,19–23,31] or MPcCl
compounds, as AlPcCl [26,32–34] and GaPcCl [27,28,32,35], while there are comparatively
few studies of the optical and electrical properties of MnPcCl films [24,25,36]. (iv) Finally,
one contribution of this work lies in reporting and investigating the doping of MnPcCl
with chalcones as a way to enhance its properties and optoelectronic applications.

The chalcones are a class of compounds that contain different types of substituents in
their structure, connected through a three-carbon bridge with a keto carbonyl group and
an α, β-unsaturation [37,38]. When chalcone contains aromatic rings in its structure, the α,
β-unsaturation carbonyl system may exhibit increased electron delocalization [37]. Some
chalcones have shown nonlinear optical properties contributing to material developments
associated mainly with electronic applications [37–42], for example, in fields such as electro-
chemical sensing [43], optical limiting materials [44], and Langmuir films [45]. Moreover,
chalcone derivatives are thermally stable up to their melting point, which makes them
suitable candidates for doping stable host material in order to improve its photophysical
properties [46,47]. In addition, it has been reported that the introduction of heterocyclic
rings into the chalcone moiety increases the stability of chalcones in comparison with the
parent trans-chalcone, with the disadvantage that heterocyclic chalcones are commonly
less soluble [48]. Heterocyclic chalcones are soluble in nonprotic organic solvents, such as



Coatings 2022, 12, 246 3 of 15

dichloromethane, chloroform, and ethyl acetate. As the polarity of the solvents increases,
they become less soluble, mainly in polar protic solvents, such as methanol and ethanol,
where their solubility is moderate, probably due to their stronger intermolecular interac-
tions arising from the functionalized rings [48]. Specifically, the pyridylchalcones used
in this work (Figure 1) are quite stable at ambient conditions and do not undergo any
type of change in their physical and chemical properties when stored for long periods of
time. Due to this background and based on the number of chalcone derivatives that have
been used in the manufacture of optoelectronic devices, we decided to study the role of
pyridylchalcones in the manufacture of doped films for optoelectronic device applications.
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Figure 1. Structure of MnPcCl and chalcones.

Although numerous studies have been conducted on chalcone derivatives, studies
of chalcone thin films are lacking [38,49–51]. Hence, in this work, we investigated the
structural, morphological, optical, and electrical properties of MnPcCl–chalcone thin films.
Different chalcones were used as dopants (Figure 1), and the doped films were deposited
using vacuum evaporation technology. The use of chalcones to enhance the properties of
the manufactured doped films was devised due to the facility to produce compounds with
increased electron delocalization. Since these features can be easily covered with simple
chalcones, we decided to use easily accessible pyridilchalcones. UV-visible studies with
chalcones containing pyridine moieties reveal that the material has sufficient transmission
in the entire visible region and a wide optical band gap of 3.35 eV. These studies indicate
that the chalcone films can be promising candidates for optoelectronic applications and in
other photonic devices due to their large optical band gap and good thermal stability [52].
The structure and morphology of films were studied by infrared (IR) spectroscopy and
scanning electron microscopy (SEM). Subsequently, the dopant effect on the optical pa-
rameters and energy gap of the thin films was examined by UV-vis spectroscopy. Finally,
flexible devices were produced with each of the chalcone-doped films, and their electrical
behavior was later characterized.
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2. Materials and Methods
2.1. Doping of Organic Semiconductors (OSC)

All reagents and solvents were obtained from commercial sources and used without
further purification (Sigma-Aldrich, Saint Louis, MO, USA). Chalcones were used in this
study as organic dopants (see Figure 1), and their synthesis was carried out according to
the procedure reported previously by some of the authors of this work [53]. Subsequently,
manganese (III) phthalocyanine chloride, MnPcCl (C32H16ClMnN8) was chemically doped
with chalcones by a simple reaction in absolute methanol in a conventionally heated
Monowave 50 reactor with a pressure sensor (Anton Paar México, S.A. de C.V. Hidalgo,
México). Afterward, 181 mg (0.3 mmol) of MnPcCl were added to 47.8 mg (0.2 mmol) of
chalcone No. 1 (OS1), or 47.8 mg (0.2 mmol) of chalcone No. 2 (OS2), or 47.8 mg (0.2 mmol)
of chalcone No. 3 (OS3), or 55.4 mg (0.2 mmol) of chalcone No. 4 (OS4), or 57.6 mg
(0.2 mmol) of chalcone No. 5 (OS5), respectively and then dissolved in 6 mL of absolute
methanol. The reactor was operated with a borosilicate glass vial and manually closed by
a cover with an integrated pressure (0–20 bar) and temperature sensor. Every compound
remained on reflux for 40 min using a 2-step method: ramp to temp for 10 min at 140 ◦C and
hold time for 30 min at 140 ◦C, with a stirrer speed of 600 rpm and a cooling temperature
of 30 ◦C. The doped semiconductors were then filtered, purified, and dried in a vacuum.
These doped semiconductors are insoluble in organic solvents, such as ethanol, acetone,
isopropanol, and methanol. In order to verify the purity of the doped semiconductors, thin
plate chromatography was applied to all of them. Finally, to verify the main functional
groups of the organic semiconductors, IR-spectroscopy analysis was performed on a Nicolet
iS5-FT spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA), using KBr pellets
on a wavelength range of 4000 to 500 cm−1.

2.2. Thin Film Deposition and Characterization

Organic semiconductors OS1, OS2, OS3, OS4, and OS5 were subsequently deposited
using the high-vacuum sublimation technique. The substrates were made from polyethy-
lene terephthalate film, ITO coated (PET-ITO) monocrystalline n-type and p-type silicon
wafers, and Corning glass. Except for the substrate PET-ITO, all other substrates were pre-
viously submitted to a sonication cleaning process with different solvents and were dried
under a vacuum. The organic semiconductors were deposited by sublimation on a vacuum
chamber (Intercovamex, S.A. de C.V., Cuernavaca, Morelos, Mexico). The vacuum was
accomplished through two pumps: a mechanical pump that generated an initial pressure
of 10−3 Torr and a turbo-molecular pump that generated the final deposition pressure of
10−6 Torr. The deposition process involved evaporation equipment with molybdenum and
tantalum boats. During the deposition processes, the film thickness was evaluated with a
high-resolution thickness monitor and a SISMONI-1C-3mHz quartz sensor (Intercovamex,
S.A. de C.V., Cuernavaca, Morelos, Mexico). A further IR analysis was carried out in the
film deposited on the n-type silicon wafers with a Nicolet iS5-FT (Thermo Fisher Scien-
tific Inc., Waltham, MA, USA). A ZEISS EVO LS 10 scanning electron microscope (Zeiss
International Inc., Göttingen, Germany) was used to analyze the thin films supported by
the glass substrate. The films on glass substrates were also used to determine the optical
absorption of the materials with a Unicam spectrophotometer, model UV300 (Thermo
Fisher Scientific Inc., Waltham, MA, USA), in the wavelength range of 200–1100 nm. In or-
der to estimate the charge-carrying properties of the doped semiconductors, a flexible
device was manufactured. The doped semiconductor BHJ film was placed between the
ITO (anode) and the conductive carbon paint (cathode). The thickness and area of the
MnPcCl–chalcone BHJ were 76 nm and 4.61 cm2, respectively. Electric measurements were
performed with a programmable voltage source, namely the Keithley 4200-SCS-PK1 auto-
ranging pico-ammeter (Tektronix Inc., Beaverton, OR, USA). The evaluation of the electrical
behavior of the devices was performed with the voltage source and a sensing station with a
lighting- and temperature-controller circuit from Next Robotix (Comercializadora KMox,
S.A. de C.V., Mexico City, Mexico).



Coatings 2022, 12, 246 5 of 15

3. Results and Discussion
3.1. Doping, Deposition, and Characterization of the Semiconductor Films

The doping of MnPcCl with chalcone molecules was carried out as described in the
experimental section. The IR spectra shown in Figure 2a were performed to verify the
presence of the main functional groups in the doped MnPcCl–chalcone (OS1, OS2, OS3,
OS4, and OS5) in KBr and, based on these results, determine the viability of depositing
the thin films by means of the vacuum evaporation technique. Vacuum evaporation is a
clean technique for thin film deposition, as a vacuum is applied to reduce contaminants
such as oxygen and water and, on the other hand, to dope and create interpenetrating
donor–acceptor networks [8]. However, the thermal gradients generated during the deposi-
tion can chemically break down the semiconductor molecules; hence, the importance of IR
spectroscopy. The signals corresponding to both MnPcCl and chalcone in KBr pellets can
be identified in Figure 2a. Regarding MnPcCl in the spectrum, the band responsible for the
pyrrole in-plane stretch vibration in the phthalocyanine ring is observed around 1333 cm−1,
and the bands located around 1166, 1119, and 753 cm–1 result from the interaction be-
tween carbon and hydrogen atoms [31,37,54]. The α-form in MnPcCl can be characterized
by a band around 727 cm−1, while the β-form can be characterized by a band around
782 cm−1 [37,55]. The difference between the crystalline structures is the angle formed
between the symmetry axis and the stacking direction (see Figure 2b). The α-form has an
angle θ = 26.5◦ with this axis, while the β-form has an angle θ = 45.8◦ [37,55]. According
to the IR spectra, MnPcCl in the doped materials has both crystalline forms. As for the
chalcones used as dopants, the IR spectrum of Figure 2a shows the band corresponding
to carbonyl at around 1669 cm−1; it is also possible to observe the signal corresponding
to the double C=C bonds in the neighborhood of 1610 cm−1. After vacuum evaporation,
IR spectroscopy was performed again, now on the MnPcCl–chalcone films deposited on
n-type silicon. The results are shown in Table 1, in which the vibrational modes of the films
are also compared with those obtained for these materials in KBr pellets. Both vibrational
modes are similar, with a small difference due to film stress attributed to the deposition
process. From the above, it is concluded that the MnPcCl–chalcone doped semiconductors
did not suffer any degradation during the formation of the thin films.
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Table 1. Band positions and assignments of MnPcCl–chalcone semiconductors in KBr pellets (powder)
and films.

Assignment Powder
(cm−1)

Film
(cm−1)

Powder
(cm−1)

Film
(cm−1)

Powder
(cm−1)

Film
(cm−1)

Powder
(cm−1)

Film
(cm−1)

Powder
(cm−1)

Film
(cm−1)

Sample OS1 OS1 OS2 OS2 OS3 OS3 OS4 OS4 OS5 OS5

In-plane pyrrole
stretching 1327 1335 1335 1333 1332 1332 1334 1331 1332 1333

C-H bending 1164,
1119

1161,
1119

1167,
1119

1167,
1121

1167,
1119

1165,
1121

1166,
1120

1165,
1119

1166,
1119

1167,
1119

In-plane C-H
deformation 753 752 753 752 753 754 753 754 752 754

α-form in MnPc 729 726 724 726 729 727 729 726 727 724

β-form in MnPc 783 782 782 779 782 780 782 778 782 778

C=O stretching
bands of carbonyl 1660 1662 1656 1665 1656 1662 1652 1668 1652 1667

C=C bending of
chalcone 1607 1604 1609 1609 1607 1608 1607 1607 1607 1603

The morphology of the films was studied at different magnifications through SEM;
Figure 3 shows the microphotographs at 250× (Figure 3a) and 1250× (Figure 3b). The study
at high magnifications was carried out with the purpose of looking for micrometric-sized
imperfections in the films, which can affect charge transport and, in general, electrical
behavior. The study at low magnifications, in addition to looking for imperfections in the
films, helped to analyze their morphology on a larger surface. With both magnifications,
practically the same morphologies are observed. The difference in the chalcone used as
dopant apparently does not influence the quality of the deposit. Regardless of the dopant
used, a homogeneous morphology formed by fine grains and a free surface without holes
are observed. There seems to be only one phase, which is an indication of an adequately
dispersed heterojunction in each of the films. At 250×, the particles that are observed on the
surface of films OS2 and OS3 are a product of the deposition process and can be removed
mechanically with the help of nitrogen flow. From the results obtained, one may observe
that the quality of the films mainly depends on the operating parameters during their
manufacture, which was similar for all the deposits. Vacuum evaporation is a technique
that allows the formation of homogeneous MnPcCl–dopant films; this uniformity enhances
their optical and electric properties.

3.2. Optical Behavior Evaluation

The absorption of light by organic semiconductors gives an insight into their elec-
tronic transfer characteristics. For this reason, UV-vis spectroscopy was carried out in the
precursors in solid-state form and in the MnPcCl–chalcone films deposited on Corning
glass. According to the literature, the spectrum of the chalcones in Figure 4a shows the
absorption peaks in the region between 290 and 397 nm [56,57]. Figure 4b shows the UV-vis
spectra for the MnPcCl–chalcones films, which were strongly influenced by the presence of
MnPcCl. Phthalocyanines are compounds with high optical stability that absorb radiation
corresponding to the visible portion of the electromagnetic spectrum. The UV-vis spectrum
of the MnPcCl in Figure 4a presents three absorption bands in the visible region: the Q
band, a band related to charge transfer (CT), and the B band [13,36,58,59]. The Q band is
associated with π–π* transitions from the Highest Occupied Molecular Orbital (HOMO) to
the Lowest Unoccupied Molecular Orbital (LUMO) between orbitals of symmetry au and bg,
respectively. According to the spectra shown in Figure 4b for the MnPcCl–chalcone films,
this band is located between 630–800 nm and is responsible for the blue-green coloration
of these materials. It is important to consider that the interval between 630 and 800 nm is
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characterized by a high absorption; the edge of photoabsorption corresponds mainly to
the visible range of the spectrum, which is a relevant feature for photovoltaic systems [36].
On the other hand, the CT band is located between 465 and 570 nm and is associated with
unsaturated manganese ions. Finally, the B band at region 280–460 nm is due to more ener-
getic electronic transitions, related to π–π* transitions from occupied orbitals of symmetry
bu and au at lower energies than the LUMO. It is important to consider that this band is
also influenced by the chalcone used as a dopant [46,56,60]. The spectrum has maximum
absorption in the region 360–390 nm, which corresponds to the π→ π* transition for the
chalcones [46,56,60]. Figure 4c shows the transmittance for the MnPcCl–chalcone films over
Corning glass; the spectra show a peak at 470 nm, reaching a transmittance of 27% [36].
Two more peaks have been identified at 570 and around 925 nm for MnPcCl–chalcone films,
suggesting potential applications for these films in photovoltaics, photodiodes, and photo
sensors [36,61]. Finally, in the spectra of Figure 4, changes in film absorbance and trans-
mittance can be observed. The structure of the chalcone acting as a dopant seems to cause
these modifications. For example, the highest overall absorption and lowest transmission
have corresponded to semiconductor film OS1, while the lowest absorption and highest
transmission were observed in film OS3. It is interesting to notice that chalcones one and
three have a similar structure (see Figure 1), as both have a pyridine in position three
and are only distinguished by a position change of the methoxy group (–OCH3) in the
aromatic ring. It seems that the position change of the –OCH3 group (from para- to ortho-)
modifies the optical behavior, given that electronic delocalization in chalcone is affected by
the presence of the carbonyl group as well as by the position of the –OCH3 group, which in
the ortho- pattern may be interacting with the carbonyl by a hydrogen bond through the
vinyl hydrogen α.
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The absorption coefficients, α, for MnPcCl–chalcone films, as functions of wavelength,
are shown in Figure 5a. In order to calculate α, the following expression is used:

α = ln(T/d) (1)

where d is the thickness of the films and T is their transmittance. It can be observed that
α values are in the range of 105–107 cm−1 and are superior to those reported for pristine
MnPcCl [27], as well as for other MPcs [26,62]. In this case, the value of α changes drastically,
depending on the type of chalcone used as a dopant. Chalcones have remarkable linear
and nonlinear optical properties [37–43] and, according to the results obtained by Maidur
et al. [46,56], the presence of chalcones increases film absorption. On the other hand, most
electronic transitions in organic semiconductors occur between the HOMO and the LUMO,
with the bandgap representing the region between them. If α ≥ 10−4 cm−1, there is a
general expression that relates α to the energy bandgap [63]. The energy dependence of α
is given by Tauc’s relationship [36,62–65]:

(αhν) = A(hν− Eg
) r (2)
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Parameter A depends on the transition probability, Eg is the energy band gap, hν is
the photon energy, and r is a number that characterizes the transition process and takes the
value r = 2 for indirect transitions in amorphous films [66,67]. Figure 5b shows Tauc’s plots
of the films, from which the Eg values could be calculated by extrapolating a tangent line
to the hν axis. According to Figure 5b, the band gap values change slightly as a result of
modifications in the chalcone structure. Figure 5b shows two energy band gaps: the optical
band gap (Eg

opt) at low hν and the fundamental gap (Eg) at high hν [36]. The Eg
opt value

corresponds to transitions from the HOMO to the LUMO level, and the Eg value results
from transitions corresponding to the 3d→ π* orbit energy bands [36,68]. Eg

optvalues for
the films were found between 1.35 and 1.43 eV, while the Eg values were located between
2.28 and 2.42 eV. The values of Eg

opt and Eg are within the range of band gaps reported in
the literature and are also obtained by Tauc’s method for films based on MnPcCl [24,36,69].
It is important to mention as well that, in all cases, the band gap is also within the range
accepted for organic semiconductors (whose limit is 3 eV). The low Eg

opt values obtained
in this work suggest that films with MnPcCl–chalcone may be good candidates for use
in optoelectronic devices, as Eg

opt defines the nature of the electroluminescent signal in
light-emitting diodes and light absorption efficiency in solar cells. To provide further
evidence in this regard, an evaluation of the electric behavior is relevant at this point.

3.3. Manufacture of the Devices and Electrical Characterization

Flexible devices were manufactured in order to evaluate the electric behavior of the
MnPcCl–chalcone films. A schematic diagram of the devices is shown in Figure 6. The active
layer was constituted by MnPcCl–chalcone; thus, at any point within the film, there is a
donor–acceptor mixture. The bulk heterojunction (BHJ) is intended to increase the interface
area between the two species while reducing the distance between them, which promotes
the excitonic dissociation processes and reduces the recombination processes [24,70,71].
The transparent substrate used in the manufacture of the device is made of PET, the anode is
made of a transparent ITO conductor, and the cathode is made of graphite, also a conductor.
The performance of the device is best illustrated by its current-voltage (I-V) characteristics.
The forward- and reverse-bias I-V characteristics of the MnPcCl–chalcone BHJ films at room
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temperature are shown in Figure 7a–e. The highest current value was recorded in the device
with the OS3 film, followed by OS1, OS2, OS4, and OS5. Such a result might be indicative
of a more efficient charge injection from film OS3. This fact could be due to a lower injection
barrier between such film and the electrode leading to efficient charge transport between
MnPcCl and the chalcone three. Chalcones with a methoxy group donate electron density
through the aromatic ring, so they may be considered partial electron donors. The presence
of the methoxy group in OS1, OS2, and OS3 (see Figure 1), conversely, promotes a partial
electron acceptor behavior in MnPcCl, facilitating charge transport in the BHJ film.
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Additionally, from Figure 7, it is evident that the presence of chalcone significantly
modifies the semiconductor’s behavior. The devices with films OS3 and OS4 show a
quasi-ohmic behavior, which may allow their use as electrodes in optoelectronic devices;
this dependence could be related to the injection of charges towards the semiconductor.
On the other hand, there is no noticeable rectification at the I-V curve of the device with
film OS2; the symmetrical behavior is related to the ambipolarity of the device, as film OS2
can transport both electrons and holes. For this semiconductor, one obtains Eg

opt < 1.8 eV
so that it may be used in the manufacture of optoelectronic devices such as thin-layer
organic transistors [54,72] or active-layer solar cells [3,8]. Finally, in the I-V curves for
the devices with films OS1 and OS5, the existence of leakage current for OS1 and OS5
was observed [29]. This behavior is common in diode-type devices [73,74], although
charge transport mechanisms should be studied in more detail. A semilogarithmic plot
of the forward current vs. applied voltage for the same devices is shown in Figure 7.
At applied voltages smaller than 0.002 V, the logarithm of the current increases linearly;
this suggests that thermionic emission may be the dominant conduction mechanism in
such a potential range [29,73]. The extrapolated intercept of the linear portion of the
curves with the I-axis, at V = 0 V, yields the values of saturation current (Is), which are
reported in Table 2 [73]. Nevertheless, since the linearity range occurs in a very small
interval (0.01–0.02 V), the dominant conduction mechanism for voltages higher than 0.02 V
is defined by space-charge-limited current (SCLC) [29,73,74]. Within the contact between
the electrodes and the semiconductor film, in the vicinity of the electrodes, spatial charges
are formed which oppose the flow of current through the semiconductor film. Beyond a
certain threshold in the applied field, current saturation occurs.

Table 2. Electrical parameters of the devices with OS films.

Device IS (A) σ at 0.1 V
(S·cm−1)

σ at 0.5 V
(S·cm−1)

σ at 1.0 V
(S·cm−1)

OS1 2.24 × 10−8 2.92 × 10−2 3.16 × 10−2 5.56 × 10−2

OS2 2.32 × 10−8 1.55 × 10−5 1.89 × 10−5 2.82 × 10−5

OS3 1.18 × 10−7 1.43 × 10+1 1.51 × 10+1 3.02 × 10+1

OS4 2.73 × 10−9 6.27 × 10+0 8.26 × 10+0 1.45 × 10+1

OS5 7.14 × 10−10 7.64 × 10−1 7.64 × 10−1 7.73 × 10−1

Electrical conductivity (σ) is an important parameter; in semiconductor thin films, it in-
creases with temperature. For each device, σ was evaluated at applied voltages of 0.1, 0.5,
and 1.0 V and at different temperatures. Table 2 shows the values of σ at room temperature,
while Figure 8 shows the temperature dependence of σ at 0.5 V within a temperature range
of 25 to 100 ◦C. With respect to the results reported in Table 2, it is observed that, by increas-
ing the voltage, an increase in the σ of the device occurs, with the OS5 device presenting the
highest conductivity. However, σ values at room temperature for all devices are within the
range for organic semiconductor materials (10−6 to 10−1 S·cm−1); this is important because
an organic semiconductor is generally defined in terms of its conductivity at room tempera-
ture. These results are related to the chalcone presence and the features it contributes to
the semiconductor: (i) a high electronic delocalization, permitting charge transport; (ii) an
increase in the BHJ contact surface, which improves excitonic diffusion between MnPcCl
and the chalcone, and (iii) a BHJ-generated anisotropy, producing conduction channels for
charge transport. For the results in Figure 8, in all the devices, conductivity increases with
temperature, as expected for semiconductors. Within the range, conductivity increases by
two orders of magnitude in OS4 and less than an order of magnitude in OS1, OS2, OS3,
and OS5. These results supplement earlier studies regarding the use of MnPcCl–chalcone
semiconducting films for optoelectronic applications.
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4. Conclusions

Organic semiconductors of MnPcCl and chalcones as dopants were prepared. Thin
films of these semiconductors were deposited by high vacuum thermal evaporation, which
is a technique that allows film deposition of high purity and uniform morphology. Ac-
cording to the IR spectroscopic results, the MnPcCl–chalcone organic semiconductors do
not undergo degradation during the deposition process. MnPcCl–chalcone films showed
the Q band between 630–800 nm, a band due to charge transfer in the region between
465 and 570 nm, and the B band at region 280–460 nm. The films present two energy gaps:
the optical band around 1.40 eV and the fundamental gap around 2.35 eV. Electrical conduc-
tivity at room temperature varies from 1.8 × 10−5 to 1.5 × 101 S·cm−1 and increases with
temperature. Optoelectronic behavior and properties of the MnPcCl–chalcone films are
completely determined by the structure and type of chalcone, with the best properties aris-
ing in chalcones that have a methoxy group as a substituent. Thus, MnPcCl–chalcone doped
semiconductors show promise, in terms of optical and electrical properties, for possible use
in electronic devices.
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