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Abstract: In the present work, the titanium carbonitride coatings were deposited by the reactive
magnetron sputtering method at different substrate bias: 0, −70 V, and −100 V. The effect of the
substrate bias on the structure, composition, and mechanical and tribological properties of titanium
carbonitride coatings was studied. Scanning electron microscopy, nanoindentation, sliding wear
test (ball-on-disk method), X-ray phase, and elemental analysis methods were used to evaluate the
tribological properties and microstructure of the thin coatings. The dependencies obtained resulted
in the determination of the most preferred mode of deposition by magnetron sputtering at a negative
substrate bias in an atmosphere of argon–acetylene–nitrogen.

Keywords: titanium carbonitride; magnetron sputtering; substrate bias; wear resistance; wear rate;
friction coefficient; nanohardness; coating; substrate

1. Introduction

Hard protective coatings greatly contribute to the increase in wear resistance and
corrosion resistance of metals/metal alloys [1–3]. Currently, the titanium carbonitride
(TiCN) is of high relevance to create wear-resistant protective coatings with the purpose of
ensuring the maximum wear resistance and service life of friction unit parts. TiCN is a more
suitable coating for parts operating in constant friction due to its high resistance to abrasion
and wear [4,5]. TiCN coatings are formed by mixing C and N in an FCC (face-centered
cubic) structure and appear to have the best properties of the two original components,
such as the plasticity of TiC and adhesion strength of TiN. It was found that the tribological
properties of TiCN depend on the substrate, the deposition method, film thickness, and
structure features [6]. Therefore, it is of great technological importance to develop effective
methods of TiCN coatings production under real industrial conditions.

Various physical and chemical deposition techniques are used today to produce
TiCN coatings. There are methods such as magnetron sputtering (MS) [7–9], cathode
sputtering [10], plasma deposition [11], laser methods [12,13], CVD-based methods [14,15],
hybrid deposition [16,17], and others. MS is one of the promising methods for the deposition
of TiCN coatings with increased wear resistance. MS has a low level of impurities and
allows easy contro l of the deposition rate [18]. This method also produces coatings
with different morphologies and crystallographic structures depending on the sputtering
conditions. TiCN coatings exhibit a wide range of different properties depending on the
magnetron sputtering conditions such as reactive gas pressure and composition, operating
pressure, temperature, material and composition of the target, substrate, and others. Several
studies of TiCN [8,19–22] have been performed to study the effect of sputtering conditions
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on the properties of TiCN coatings, and the effect of substrate bias has not been clarified
sufficiently. It is of interest in this connection to study the effect of the substrate bias on
TiCN films obtained by reactive MS.

2. Materials and Methods

Titanium carbonitride (TiCN) coatings were deposited in a direct current MS system
using a 99 mm diameter, 5 mm thick titanium target of the VT1–0 grade. The distance
between the target and the substrate holder was kept constant at 30 cm. Well-polished
plates (15 mm × 15 mm) and disks (Ø58 mm) made of VT6 titanium were used as substrates.
The substrate surface was preliminarily prepared for cleaning from various contaminants,
which included grinding, polishing, acetone cleaning, and ion cleaning in vacuum. First,
grinding was carried out with abrasive papers P120, P180, P320, P600, P1200, and P2000.
Then, a three-stage polishing with diamond paste was performed: 5/1 (3–5 µm), 2/1
(1–2 µm), 1/0 (1 µm). After polishing, the substrates were washed with distilled water for
10 min and degreased with acetone. After performing the above processes, the substrates
were placed in the working chamber. The chamber was pumped down to the base pressure
below 5–10−3 Pa before deposition. The MS unit is equipped with an APEL-IS-21CELL
ion source (Applied Electronics, Tomsk, Russia) and APELMRE 100 magnetrons (Applied
Electronics, Tomsk, Russia). The substrates were ion-cleaned with argon at an operating
voltage of 2.5 kV, a current of 20–25 mA, a pressure of 0.2 Pa, and a duration of 20 min before
coating deposition. Testing of TiCN coating deposition modes was performed under the
conditions of asymmetric power supply to the magnetron sputtering system. The substrate
bias for this purpose was applied not only to the magnetron but also to the substrate. The
substrate bias e (Us) was 0, −70, and −100 V, which was supplied by an APEL-M-5PDC
power supply (Applied Electronics, Tomsk, Russia). The flow of inert and reaction gas was
controlled by RRG-12 Model flow meters (Eltochpribor, Moscow, Russia). The flow for Ar
was set at 18 sccm, for C2H2, it was set at 4.6 sccm, and for N2, it was set at 2.6 sccm. The
total flow of Ar/C2H2+N2 gas was set to 25.2 sccm to keep the working pressure in the
chamber at 0.4 Pa. Plasma was ignited after the Ar/C2H2+N2 gas atmospheric working
pressure was reached. The plasma current was fixed in all experiments at 2 A, the voltage
varied in the range of 500–700 V. The deposition time of all coatings was constant, 2 h.
Finally, the thickness of TiCN films was about 1–1.5 µm.

TiCN films were analyzed for morphology, elemental and phase composition, tribo-
logic tests, and nanohardness. The deposition rate (DR) was defined as the ratio of coating
thickness to deposition time. The thickness of the coatings was measured by the weight
method by weighing 36 cm2 aluminum foil before and after deposition using a Sartorius
Cubis MSA3.6P (Sartorius, Goettingen, Germany) analytical scale with an accuracy of 1 µg
and checked by scanning electron microscopy (SEM) (JEOL, Tokyo, Japan).

The morphology of the coatings was analyzed by SEM on a JXA-8230 microscope
(JEOL, Tokyo, Japan) at an accelerating voltage of 25 kV and an electron beam current of
up to 7 nA. The backscattered electron mode (CОМРО) was used for all sample sections
selected for SEM study. The elemental composition of the coating was determined by
energy-dispersive X-ray analysis (EDX). To check the coating thickness, the coating was
deposited on glass. Then, for examination, a thin plate of another glass was compressed
onto the surface of the already coated glass sample on a special holder. Thus, using the
SEM image, it was possible to check the thickness of the coating in several areas.

The phase composition of the coating was determined by a D8 Advance diffractometer
(BRUKER, Karlsruhe, Germany) with radiation α-Cu (λ ≈ 1.54 Å). X-ray photography was
performed with focusing according to the Bragg–Brentano method. Diffraction patterns
were recorded in the range of angles 2θ: 20 ÷ 90◦ with a step of 0.05◦, and the shooting
speed was 2 deg/min at a voltage of 35 kV and a current of 20 mA. The PDF 2 database
was used for the phase analysis.

The tribological characteristics of the coatings were measured in the sliding friction
mode according to the “ball-on-disk” scheme on a TRB3 tribometer (CSM Instruments,
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Peseux, Switzerland). Sample rotation speed, 1 cm/s; load, 1 N; wear track radius, 7 mm;
friction path, 100 m; data collection speed: 50 Hz, a Si3N4 ball with a diameter of 6 mm was
used as a counter body. The reduced wear was calculated using the volumetric wear of the
coatings during the tribological test. To do this, using profilometry, the cross-sectional area
of the wear track was measured.

Nanoindentation was performed on a NanoScan-4D nano-hardness tester (Nanoscan,
Moscow, Russia). We made 10 indentations with a Berkovich indenter at a load of 50 mN.
The indenter penetration depth into the coating was 340–400 nm. Young’s modulus and
hardness were determined by the method of Oliver and Farr.

3. Results and Discussion

Figure 1 shows the dependence of the deposition rate and thickness of the TiCN
coating on the negative substrate bias. The thickness of the TiCN coating as can be seen
from the graph (Figure 1, black line) on the substrate without voltage is 1.45 µm; further,
it decreases to 0.87 µm (−100 V). The deposition rate (Figure 1, red line) decreases from
the sample without voltage to the sample with negative substrate bias −100 V from 0.73
to 0.45 µm/h, respectively. Such a tendency of the coating thickness reduction was noted
in works [9,23,24]. The reason for this is probably the effect of re-sputtering due to ion
bombardment or surface growth by incoming ions, as noted in the papers [9,23,24]. The
negative substrate bias applied to the substrate provides a continuous ion bombardment
of the substrate. This is called re-sputtering, which results in a lower DP of the TiCN
coatings [9].
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Figure 1. Dependence of DR and thickness of TiCN coating on Us.

Figure 2 shows the surface and thickness of TiCN-coated samples after MS in the
studied substrate bias voltage range. The SEM image shows that the morphology of the
deposited coatings does not differ from each other. From the image’s analysis, it follows
that the coating structure has a uniform and dense structure without pores, chips, and
cracks. The deposited coating repeats the surface relief of the VT6 titanium substrate. In
all experimental modes, the microstructure of the coatings has a similar appearance with
lines from substrate microscratches, which remained after grinding during the substrate
preparation. The reported coating thickness at 0 V is 1.45 µm thick on a glass substrate.
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Figure 2. SEM images of the morphology and coating thickness of TiCN coatings obtained at different
substrate bias voltage: (a) 0; (b) −70 V; (c) −100 V; and (d) coating thickness obtained at without
substrate bias voltage 0 V.

The effect of the applied negative substrate bias voltage on the chemical composition
of TiCN coatings deposited at different Us values is shown in Table 1. The composition
of the coating was obtained using EDX analysis over a surface area of 40 × 40 µm2 at a
magnification of ×2000. The elemental composition of the one without voltage coating
consists of titanium 47.6 at %, carbon 19.0 at %, and nitrogen 33.4 at %. There are some
changes in the chemical composition as the bias voltage increases to −100 V, namely an
increase in carbon to 34 at % and approximately a stable amount of nitrogen around
33–35 at %. Titanium decreases from 47.6 to 30 at %. The increase in the amount of carbon
and reduction of titanium is associated with carburizing the surface of the titanium target
with the continuation of the sputtering time, which creates favorable conditions in the
plasma to form TiC rather than TiN.

Table 1. Dependence of the elemental composition of TiCN coatings on Us.

Substrate Bias
Chemical Composition of Coating, at %

Ti C N

0 47.6 19.0 33.4
−70 V 30.0 34.4 35.6
−100 V 32.2 33.1 34.7

Figure 3 shows the X-ray phase analysis of the TiCN coatings deposited at various
negative substrate bias voltage. The diffractogram shows that three main phases are
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detected in all coatings: TiCN, TiN, and TiC. The structure of TiCN coatings changes
from amorphous to crystalline, as can be seen from the picture. The samples obtained
with substrate bias show narrower peaks presenting TiCN, TiN, and TiC compared to the
without voltage coating, indicating good crystallinity. Table 2 shows percentage data on the
phase composition of the coatings obtained at 0, −70 and −100 V. The main phase forming
coatings during magnetron sputtering is titanium carbonitride. Its maximum content is
found in the coating formed at a potential voltage of −70 V (58.2%).
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Table 2. Percentages of TiCN coating phases depending on Us.

Substrate Bias
The Phase Composition, Percentage

TiCN TiC TiN

0 41.8 25.2 32.9
−70 V 58.2 15.7 26.1
−100 V 44.6 20.9 34.5

The wear resistance of TiCN coatings depends mainly on the microstructure, hardness,
and adhesion, which are usually measured in terms of friction coefficient and wear mass
loss [25]. The coefficient of friction (CoF) of all coatings was measured relative to Si3N4
balls. TiCN coatings generally have a low friction coefficient value. The graph of friction
coefficient with an average value of deposited coatings at Us = 0, −70, −100 V, and titanium
substrate VT6 is shown in Figure 4. The resulting coatings showed an average CoF value
from 0.06 to 0.19. It can be seen that the sample deposited on the substrate bias of −70 V
has a low CoF. In other cases, the CoF values are approximately the same, which are in the
area of about 0.18. The CoF results are in good agreement with those obtained for TiCN
films by Saoula N et al. [9,25]; however, the CoF for the −70 V sample is much lower than
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in these works. The composition of the transition layer and the friction interface should
be considered concerning the change in CoF [26]. The low CoF behavior is explained by
the formation of third bodies in the contact and the subsequent formation of a lubricating
transition layer, which is mainly due to the increased carbon sp2 [27,28]. In addition, the
elemental and phase analysis of this coating proves the increased carbon composition.
In addition, a possible reason for the decrease in the CoF at −70 V may be an increase
in hardness. According to [29,30], a decrease in the friction coefficient correlates with
surface hardening.
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Tribological tests showed reduced wear in TiCN coatings obtained with substrate bias
compared to without voltage coatings. Figure 5 shows the average CoF and wear rate (WR)
for the VT6 substrate and TiCN coatings obtained at Us = 0, −70, and −100 V. The TiCN
coatings deposited without voltage and at −100 V showed more similar CoF, but the WR
differ significantly for them. The WR of the −100 V sample is almost two times lower than
the WR of the sample without voltage. The best results among the obtained coatings were
achieved by the coating deposited at −70 V with WR equal to 1.4 × 10−6 mm3/mN. This
is due to the higher hardness, higher sp2 carbon content, and higher proportion of phase
composition TiCN, which is consistent with the results of works [9,25]. The coatings wore
approximately close to each other despite the significant difference in the average CoF
values for −70 and −100 V. The −70 V sample showed a strong decrease in CoF, which was
certainly due to the higher carbon content in its structure (34.4 at %), which promotes the
growth of amorphous intergrain phases [17]. All obtained coatings show low CoF without
sharp jumps in the graph, which indicates a high cohesive and adhesive strength of the
formed coatings by the MS method [31].
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Figure 6 shows optical micrographs of the wear track of TiCN coatings after a ball-on-
disk wear test at a normal load of 1 N and a track length of 100 m, at a radius of 7 mm. All
coatings show signs of abrasion. The coating obtained at −70 V has higher wear resistance,
which is confirmed by the smallest width of the wear track and damage to the surface
of the coating. This is due to higher hardness, higher carbon content, and low average
coefficient of friction. The remaining coatings have approximately the same track width,
although their wear rates differ significantly (Figure 5). At the site of groove formation on
the coating surface deposited at a bias of 0 V, local areas with a changed color are visible.
This indicates the development of tribochemical reactions between the coating and the
Si3N4 ball. Perhaps this is due to a more significant temperature increase during friction in
comparison with other samples. In the case of a coating obtained at −100 V, many scratches
are observed in the center of the wear track, parallel to the sliding direction, which indicates
the formation of wear products. It should be noted that at the coating −70 V, the surface of
the wear track was covered with a smaller amount of powders of wear products, which was
probably from products from the material of the ball. Thus, the analysis of the structure of
the friction surface proves that the coating obtained under the conditions of deposition at a
bias of −70 V has the best wear resistance among the considered coatings.

Figure 7 shows the changes in nanohardness (H) and Young’s modulus (E) of the coat-
ings as well as the calculated H/E and H3/E2 values. Figure 7a shows that the nanohard-
ness increases to a maximum value of H = 19 GPa for a coating applied with a voltage of
−70 V. The Young’s modulus of the substrate showed a high value of E = 174 GPa, further
starting at 145 GPa (0 V) and rising to 179.2 GPa for −100 V. The lowest nanohardness of
13.5 GPa and Young’s modulus of 145 GPa is obtained for the without-voltage TiCN coating
when comparing the obtained coatings. The above nanohardness and friction coefficient
data are not sufficient to demonstrate the tribological properties of the coatings. Such
parameters as the ratio of nanohardness of coatings to Young’s modulus, H/E, and H3/E2

can be considered as an indicator of good resistance to mechanical degradation and destruc-
tion [32,33]. Higher values of H/E and H3/E2 can lead to lower wear/loss rates [34,35].
These values are not tribological parameters, though. Figure 7b shows the H/E and H3/E2

values for the substrate material and TiCN coatings obtained at Us = 0, −70, and −100 V.
Using the substrate bias voltage leads to a 10% increase in H/E, H3/E2 by almost 2 times.
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The best H/E ratio and H3/E2 ratio is the coating obtained at Us = −70 V. This sample has
a high H/E > 0.1 ratio, indicating that the coating has good fracture resistance, as reported
in works [32,33]. This result is confirmed by wear tests, which showed the lowest wear rate
of all magnetron sputtering coatings obtained.
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coating when comparing the obtained coatings. The above nanohardness and friction co-
efficient data are not sufficient to demonstrate the tribological properties of the coatings. 
Such parameters as the ratio of nanohardness of coatings to Young’s modulus, H/E, and 
H3/E2 can be considered as an indicator of good resistance to mechanical degradation and 
destruction [32,33]. Higher values of H/E and H3/E2 can lead to lower wear/loss rates 
[34,35]. These values are not tribological parameters, though. Figure 7b shows the H/E and 
H3/E2 values for the substrate material and TiCN coatings obtained at Us = 0, −70, and −100 
V. Using the substrate bias voltage leads to a 10% increase in H/E, H3/E2 by almost 2 times. 
The best H/E ratio and H3/E2 ratio is the coating obtained at Us = −70 V. This sample has a 
high H/E > 0.1 ratio, indicating that the coating has good fracture resistance, as reported 

Figure 6. Optical micrographs of wear track after tribological ball-on-disk test at a normal load of
1 N and a track length of 100 m for TiCN coatings obtained at different substrate bias voltage: (a) 0 V,
(b) −70 V, (c) −100 V.
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4. Conclusions

TiCN coatings were deposited by reactive magnetron sputtering on a substrate with
voltage in an argon–acetylene–nitrogen atmosphere. The influence of substrate bias on the
deposition rate, elemental, and phase composition of the coatings were studied, and the
nanohardness and tribological properties of the coatings were investigated.

The deposition rate of TiCN coatings decreases as the substrate voltage increases to
−100 V. It was shown that the elemental composition of the resulting coatings can vary
significantly depending on the application of voltage to the substrate. The application of
substrate bias voltage leads to an increase in carbon and a decrease in titanium concentra-
tions. The crystallinity of the obtained coatings increases with increasing bias voltage up to
−100 V.

The largest fraction of the TiCN phase in the coatings is formed at −70 V. A low
coefficient of friction is fixed on TiCN coatings obtained at −70 V. Tribological tests have
determined that substrate bias voltage reduces the wear rate of TiCN coatings by increasing
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the nanohardness. The nanohardness results show that substrate bias voltage during
coating deposition leads to higher nanohardness and Young’s modulus values, as well as
their ratio.

Comprehensive research has resulted in the determination of the preferred mode with
a potential voltage of −70 V, where TiCN coatings with low friction coefficient, wear rate,
and high nanohardness are formed, and an acceptable composition is formed. Thus, as a
result of the obtained dependences, the most preferred mode of the obtaining coating from
presented, which is resistant to tribodestruction, was revealed.
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