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Abstract: In this study, the arc evaporation of pure graphite and composite cathodes with small
amounts of metals (Mo, Fe) or nonmetals (B, Si) was investigated by means of a laser-arc process. Both
specific aspects of the arc evaporation and the effects on the deposition of the doped and undoped
carbon coatings were studied. The deposition rate, the chemical composition and the mechanical
properties of the generated films were evaluated. In addition, the dependence of the deposition rate
and the composition on the height position of the substrates in relation to the cathode were also
the subject of the investigations. Finally, the erosion rate and the arc spot behavior on the cathode
were analyzed. It is shown that homogeneously doped (t)a-C:X coatings can be reliably synthesized
with the laser-arc technique. There are differences in the various properties of the coatings and the
deposition rate. The latter is attributed in particular to the erosion behavior of the cathodes.

Keywords: laser-arc; tetrahedral amorphous carbon (ta-C); doped carbon coating; cathode erosion;
metal-containing carbon; nonmetal-containing carbon; Diamond-like carbon (DLC)

1. Introduction

Tetrahedral amorphous carbon (ta-C) coatings have found a wide range of industrial
applications, e.g., for tribological components, for cutting tools and in magnetic storage
devices, due to the outstanding combination of several properties, such as high hardness,
high Young’s modulus, chemical inertness, good tribological behavior and special optical
properties [1–3]. The deposition processes of carbon coatings are well understood, and
comprehensive studies have been undertaken by Robertson or Schultrich [2,4]. Significantly,
the cathodic arc evaporation of carbon is an appropriate process for the deposition of ta-
C due to its high deposition rate, high ionization and the optimal energy range of the
ions [5]. Limitations to the use of ta-C coatings are mainly due to the macroparticle
emission [6] that occurs during the evaporation of graphite cathodes. To overcome this
problem, filter systems [1] or post-treatment processes [7] can be utilized to minimize the
effect of macroparticles and the resulting growth defects. An alternative way to minimize
the macroparticle erosion itself is given by Kandah et al. [6,8,9]. In those works, the cathode
material is optimized with regard to graphite grain size, the density of the graphite cathode
and pore size (distribution), as well as the electrical resistivity of the graphite material.
By optimizing these parameters, the arc spot velocity on the cathode surface is increased,
leading to a reduction in the number of emitted macroparticles.

The doping of carbon coatings is a promising way to tailor coatings with regard
to specific properties (see Figure 1). Several authors [2,10–13] investigate the effect of
cathode modification and doping elements on the deposition and properties of carbon
coatings, whereby the studies from Sánchez-López [11] and Zia [12] gave comprehensive
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overviews. The effect of doping carbon coatings is described in order to improve the
properties of the coatings with respect to intrinsic stress, crack resistance or temperature
stability (for references, see Table 1). In most cases, the coatings are doped by modifying
the graphite cathodes with other elements. Doping carbon films can be realized in various
ways. Cathode modification through the infiltration of graphite cathodes with saline
solutions or liquid metal containing the modifying element [14] is one option. This requires
an open porosity capable of infiltration in order to store the liquid. Another option is
using a mixture of graphite powder and a modifying element containing powder, which is
pressed and sintered [15]. The selective variation of the content of dopants in the coating
during the deposition is possible via the co-evaporation of carbon and dopant-containing
target(s). Finally, carbon evaporation can be carried out in a gas atmosphere (with hydrogen-
containing [2], nitrogen-containing [16] and silicon-containing gas [17], etc.). Common
physical vapor deposition (PVD) processes, such as arc PVD or sputtering, as well as
combinations, such as plasma-enhanced chemical vapor deposition (PECVD) processes,
can also be used as deposition processes [1].
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Figure 1. Effect of dopants on the properties of doped carbon coating; modified from [11].

Metal doping often results in a softening of the carbon matrix, shifting the bonding
state from sp3 to sp2, leading to a-C:Me coatings [15,18]. Nonmetals or small amounts
of carbide formers do not show such a sharp decline in hardness reduction compared to
metal ones [1]. Thus, doped coatings (ta-C:X) with properties similar to ta-C are formed, for
instance, with regard to high sp3/sp2 ratios. In many cases, a significant stress reduction is
observed due to doping with metals or nonmetals [19].

Important for the comparison of the effects of the doping elements is the erosion
behavior of cathodes during arc evaporation. The erosion behavior of pure cathodes is
well analyzed [8,9,20–29], but a lack of information about compound cathodes still exists.
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Kimblin [25,26] and Daalder [21–23] show that the erosion rate Er, representing a mass loss
per electric charge (µg/C), includes three main influences (see Equation (1)):

Er = Eion + EMP + Egas (1)

The erosion rate is caused by ion evaporation (Eion), by macroparticles (EMP) and by
gas formation (Egas), whereby the latter case plays a subordinate role.

The ion erosion rate Eion represents a lower limit for the erosion rate of a cathode
material, and is only influenced by the arc current [23,30]. Daalder calculates this minimal
erosion rate for pure carbon cathodes, where only ions contribute to the erosion with
13.16 µg/C [21,23]. For graphite composite cathodes, no information on erosion rates are
available. For understanding the erosion behavior, it is not only the cathode material that is
important; the size and structure of the cathode are also considered to be relevant [21,25,26].

Table 1. Effect of dopants and selected references.

Dopant Intended Effect of the Dopant Reference

Boron (B) Reduction of intrinsic stress while maintaining high hardness [19,31–35]
Silicon (Si) Increase in thermal stability, surface smoothening [36,37]
Iron (Fe) Reduction of intrinsic stress, change of wetting properties [15,38–40]

Molybdenum (Mo) Reduction of intrinsic stress, reduction of electrical resistivity, improved wear behavior [18,41]

In this study, the effect of doping was comprehensively investigated by using sintered
composite cathodes made from graphite and doping element powders. Two nonmetals
(B, Si) and two metals (Fe, Mo) were investigated as doping elements with the aim to tailor
the coating properties in particular directions, as summarized in Table 1.

In recently published works, it was shown that doping with some elements can also
reduce the surface roughness significantly, which is likely caused by a low emission of
particles during evaporation [17] or due to smaller particles [42].

2. Materials and Methods

The experimental setup is shown in Figure 2. Evaporation was carried out in a high
vacuum at a pressure of about 10−4 Pa. A pulsed vacuum arc discharge of the graphite
cathode (Figure 2, (1)) produced the plasma (Figure 2, (8)), which mainly consists of
positively charged carbon ions, electrons and, in the case of compound targets, also the
positively charged ions of the doping element. Furthermore, neutrals and macroparticles
were formed during the evaporation process. The repetitive ignition of the arc pulses was
triggered by a pulsed laser using a commercial Q-switched, Nd-doped yttrium aluminum
garnet (Nd-YAG) laser (Figure 2, (2)). The laser pulse length was about 100 ns, with
an energy of about 15 mJ, which is smaller than the arc discharge energy by a factor of
1000 (approx. 15 J). The combination of the linear scanning of the laser spot and the rotation
of the graphite target results in uniform erosion. The employed current source provides a
sinusoidal current of up to 1600 A at a discharge duration of 330 µs. A pulsed bias voltage
of 100 V was applied synchronously to the arc pulses. The duration of the bias pulse was
set to 175 µs.

Due to the reduced height of the modified graphite targets (180 mm in diameter at
60 mm height), and to allow low coating temperatures for these studies, the repetition rate
was set to 50 Hz. The substrate ((7) in Figure 2) was set in a two-fold rotation and was
equipped with a bias voltage source ((4) in Figure 2), which allowed defined bias pulse
overlaps. A magnetron-sputtering source ((6) in Figure 2) was used to deposit a chromium
interlayer to ensure the sufficient adhesion of the carbon coatings.
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Figure 2. Scheme of the coating device DREVA 1200 (left): (1) cathode; (2) laser scanning system;
(3) two-part anode; (4) bias supply; (5) radiation heater; (6) magnetron sputtering source; (7) substrate
holder and rotation; (8) plasma; and coating chamber with Laser-Arc ModuleTM LAM500 (right).
Photo by ©Jürgen Jeibmann, Dresden, Germany.

The main objective of this investigation was to study the evaporation process of
modified and pure graphite cathodes and the properties of deposited doped and pure
carbon coatings. For this purpose, pure graphite and sintered graphite compound cathodes
with nominal amounts of 5 at.% B, Si, Fe or Mo were used to synthesize the ta-C and
doped carbon coatings. In contrast to a standard cathode arrangement in the laser-arc
process, with two graphite cylinders and a total cathode length of 40 cm, only small cylinder
segments consisting of 3 discs each with a total height of 6 cm were used in this work. For
the investigation of the chemical composition of the (t)a-C:X coatings as a function of height
position in relation to the cathode position, several samples were mounted across the entire
effective coating height (~60 cm) within the coating chamber (see Figure 3). 
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Figure 3. Scheme of the vertical sample position relative to center of the cathode (P1–P5) with a
minimal distance of 65 cm (cathode surface (Figure 2; no. 3) to the sample holder (Figure 2; no. 7)
and a maximal distance of 100 cm.
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The coatings were deposited on flat steel samples (hardened low-alloy chromium steel
(100Cr6, EN 1.3505, SAE 52100, Nosta GmbH, Höchstädt, Germany) with a size of 18 mm
× 13 mm × 3 mm, polished to Ra < 20 nm). Prior to deposition, the samples were cleaned
in an ultrasonic bath with an alkaline solution and then dried. For coating, they were fixed
on a holder in an 8-axis planetary system and coated in a twofold rotation. The coating
process started with an argon ion etching step using a hollow cathode. Next, a 100 nm thick
Cr adhesion layer was deposited by magnetron sputtering, followed by (t)a-C:X deposition
using an unfiltered laser-arc.

The evaporation process was characterized with respect to the lateral arc spot move-
ment and erosion rates of the cathodes. The dimensions of the arc spot traces on the cathodes
were measured after an evaporation of 1000 pulses. These values were averaged and put
in relation to the respective evaporation current. By weighing (precision balance PCB
10000-1 Kern&Sohn GmbH, Balingen-Frommern, Germany) the cathodes prior and after
the evaporation, the gravimetric erosion rate Er,g was calculated in relation to the electrical
charge during the evaporation. The density of the cathodes was calculated from the initial
weight and volume. With this information, the volumetric erosion rate Er,v could be derived.
The deposition process and the prepared samples were characterized with respect to their
deposition rate Dr and chemical composition. The deposition rate was calculated according
to the coating thickness and effective deposition time from the number of ignited pulses
and the pulse frequency. By means of the ball crater-grinding method (KSG110 from Ino-
vap Dresden, now HEF Group, Andrézieux-Bouthéon, France), the coating thickness was
measured according to DIN EN ISO 26423. For the analysis of the chemical composition, all
samples were measured using SEM (acceleration voltage of 10 V, spot size 50 and working
distance of 10–13 mm) with an EDS-system JEOL 6610 + X-Max 80 mm2 (JEOL, Akishima,
Japan and X-MAX 80 from Oxford Instruments plc., Abingdon, United Kingdom). The
chemical composition was determined using AZtec software (version: 3.3).

3. Results and Discussion
3.1. Coating Properties and Deposition Rate

A summary of selected coating properties from sample position P1 (Figure 3) is given
in Table 2. Additional information about the coating properties can be found elsewhere [42].
All coatings were prepared with a similar coating thickness. Coatings containing nonmetal
dopants have mechanical properties and deposition rates comparable with undoped ta-C,
whereby a slight reduction with dopant amounts of around 5 at.% could be observed. In
the case of metal dopants, hardness and Young’s modulus and the deposition rates were
drastically reduced, with a simultaneously higher doping content in the coating. The
highest deposition rate is obtained for undoped ta-C, while the lowest deposition rate is
observed for a-C:Fe, with the highest amount of dopant in the coating.

Table 2. Properties of ta-C and (t)a-C:X coatings, mounted on sample position P1; summary from [42].

Target Resulting
Coating

Amount of
Dopant
(at.%)

Coating
Thickness d

(µm)

Deposition Rate Dr
(µm × 10−6 Pulses)

Indentation
Hardness HIT

(GPa)

Young’s Modulus EIT
(GPa)

C (pure) ta-C - 4.9 ± 0.4 3.3 52.5 ± 0.9 541 ± 15
Nonmetal dopants

C-B ta-C:B 5.0 4.2 ± 0.3 2.5 50.9 ± 0.5 530 ± 9
C-Si ta-C:Si 5.7 4.3 ± 0.4 2.4 44.8 ± 0.2 497 ± 5

Metal dopants
C-Fe a-C:Fe 10.3 4.0 ± 0.4 0.7 14.4 ± 0.1 168 ± 4
C-Mo a-C:Mo 7.4 4.9 ± 0.5 1.2 25.2 ± 0.3 323 ± 5

The elemental distribution within the doped coatings was analyzed by cross-section
EDS analysis in SEM (Figure 4). Fe-containing coatings show a very slight increase in
Fe from the interface to the surface of the coating, whereas the other coatings show no
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significant gradient over the coating thickness. Therefore, no evidence for macroscopic
variations in composition or temporal effects on deposition can be detected. The significant
drop in the measured signal for ta-C:Si and a-C:Mo is an artefact of the metallographic
preparation. Here, a narrow gap has formed between the sample and the embedding
medium, which led to the observed drop.

For every sample position in relation to the cathode (see Figure 3), the chemical compo-
sition of the coatings was evaluated. The results of the position-dependent compositions for
all doped coatings are shown in Figure 5. From the plasma investigations [1], it is known
that the emission of species into the vacuum chamber shows an angular distribution. Due
to this angular distribution, an elemental distribution of dopants in the deposited coat-
ings may occur. Furthermore, the varying absolute and horizontal distance (see Figure 3)
between the cathode and the position of each sample relative to the plane of the cathode
could result in a variation in the amount of dopant in the coating. In the case of ta-C:B, the
coating composition shows almost no deviation in the chemical composition in relation to
the sample position, and the content of B corresponds to the nominal amount of B in the
cathode material. In the case of Si, a slight deviation in the coating composition from the
nominal Si amount in the cathode and in its dependence on the sample position is observed.
Along the plane of the cathode’s center, the amount of Si is around 6 at.%; with increasing
distance, the amount of Si decreases down to 4 at.%.
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In the case of metals as doping elements, a more pronounced distribution in the
chemical composition in relation to the sample position occurs, especially for Fe. On the
sample along the plane at the cathode’s center, the Fe content reaches a maximum of around
10 at.%, which is twice as high as the nominal amount of Fe in the cathode. Chen et al. [15]
find a similar behavior of Fe enrichment in coatings caused by several effects. A preferential
evaporation of Fe, due to the differences in the melting temperature of Fe and C, could be
an explanation. By increasing the distance to the plane of the cathode center, a continuous
decrease in Fe content down to around 5 at.% is clearly visible. A similar behavior is
obtained by doping with Mo. The sample position along the plane at the cathode center
leads to a slightly higher amount of Mo compared with the nominal cathode composition,
but towards the outer positions, a decrease in the amount of Mo is recognizable. The
reduction in hardness and Young’s modulus in the metal-doped coatings (see Table 2
and [42]) is attributed to the effect on the formation of sp3-bonded C-bonds. Thus, it can be
assumed that the relatively heavy metal atoms hinder the formation of three-dimensional
sp3 structures and, thus, favor the formation of the (planar) sp2 structures.
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Figure 5. Element concentration over the vertical sample position relative to the center of the cathode;
the nominal element concentration in the cathode is 5 at.%.

Finally, investigations were carried out on the deposition rate as a function of the
vertical sample position. First, it should be clarified whether the deposition rate for the
distribution of the doped coatings differs from pure ta-C. For comparison, the absolute
and the normalized (to the highest value of each distribution) deposition rate is shown in
Figure 6. In general, the deposition rate decreases towards the sample positions away from
the plane of the cathode center. It should be mentioned that the plasma focus is slightly
shifted upwards, also causing a shift in the deposition rate and the chemical content.
Undoped ta-C has the highest absolute deposition rates for all the sample positions. B and
Si doping leads to a significant reduction in the deposition rate by about 25%. However,
a drastic reduction occurs in the case of Mo and Fe dopants: here, the deposition rate is
reduced by about 65% (Mo) and about 80% (Fe) at the maximum.

Three possible reasons for the differences in deposition rates are: (a) the evaporation
or erosion rates, (b) the possible shadowing of the plasma at the anode slot due to arc spots
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of different sizes or (c) a different distribution of the plasma in the coating chamber. The
latter reason obviously plays a subordinate role, as the normalized representation of the
distributions (see inlay in Figure 6) shows a somewhat broader distribution only for the
case of Fe doping.

In the next section, the influence of the erosion rate (a) and the trace of the arc spot (b)
on the deposition rate will be investigated.

3.2. Cathode Erosion and Arc Spots

In order to understand the influence of doping elements on the deposition rates,
investigations were carried out on the erosion of the cathodes during arc evaporation, as
well as on the expansion of the arc spots on the cathode surface (Figure 7). For all cathodes,
the lateral size of the traces of arc spots in relation to the evaporation current is shown in
Figure 8. Generally, by increasing the arc evaporation current from 800 to 1600 A, the arc
spots tend to spread in a more pronounced manner over the cathode surface, leading to an
increase in the arc spot movement size. For B-modified and pure graphite cathodes, the arc
spot movement is low, whereas the arc spots on Fe- and Si-modified graphite cathodes show
a pronounced further spread of the arcs. The measurements may suggest that the expansion
of the arc spots scales indirectly and proportionally to the cohesive energy of the cathode
material. Values for the cohesive energy of the graphite and elements added to the graphite
cathode are listed in Table 3. Additionally, an influence of the electrical conductivity or
microstructure (e.g., porosity) of the cathode material on the movement of arc spot on the
cathode surface was discussed for different types of graphite by Kandah et al. [6,8,9].
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Figure 6. Absolute and normalized (inlay) deposition rates of different sample positions relative to
the cathode center.
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In Table 4, the calculated erosion rates of graphite and modified graphite cathodes are
shown. For pure carbon cathodes, the highest erosion rate is observed. By modifying the
graphite cathode, the erosion rate for all types is reduced. The reduction in the erosion rate
for Mo- and Fe-modified cathodes is more pronounced than for B- and Si-modified ones. 
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Figure 7. Example of traces of arc spots on graphite cathode surface with an arc current of 1600 A.
The calculated lateral arc spot movement length is 17.2 mm.
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Figure 8. Lateral size of arc spot traces on the cathode surface in relation to the evaporation current.
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Table 3. Atomic mass and cohesive energy of carbon and doping materials.

Material Atomic Mass Cohesive Energy (eV/atom)

Iron (Fe) 56 4.28 [1]
Silicon (Si) 28 4.63 [1]

Molybdenum (Mo) 96 6.82 [1]
Carbon (C) 12 7.37 [1]
Boron (B) 11 ~8 [43]

Table 4. Comparison of gravimetric and volumetric erosion rate and calculated density of target
material for an evaporation current I = 1600 A.

Target Calculated Density of Target Material
(g/cm3)

Gravimetric Erosion Rate Er,g
(µg/C)

Volumetric Erosion Rate Er,v
(10−5 cm3/C)

C (pure) 1.85 ± 0.01 47.7 ± 3.1 2.9 ± 0.3
Nonmetal dopants

C-B 1.83 ± 0.01 34.1 ± 1.7 1.9 ± 0.1
C-Si 1.95 ± 0.06 36.5 ± 1.9 2.0 ± 0.2

Metal dopants
C-Fe 2.44 ± 0.01 17.0 ± 4.1 0.7 ± 0.2
C-Mo 2.62 ± 0.02 27.2 ± 6.6 1.0 ± 0.2

As described above (Equation (1)), the erosion rate consists predominantly of an ion
erosion rate Eion and a macroparticle erosion rate EMP. The ion erosion rates known from
the literature are about 13 µg/C for graphite [21,23], 40–50 µg/C for metallic Fe [23] and
50–55 µg/C for metallic Mo [23] (no data are available for pure B and Si because these
materials are not evaporable in the arc process). Surprisingly, adding Fe or Mo to the
graphite does not increase the erosion rate, but decreases it drastically, as can be seen in
Table 4. This cannot have anything to do with the macroparticle emission rate EMP, because
the Fe- and Mo-doped coatings tend to show even fewer particle-induced defects than in
the case of pure ta-C [42]. The drastic reduction in the erosion rate of composite cathodes
compared to pure graphite must therefore have other reasons. We suspect that this is
related to the local electrical conductivity in the composite graphite, which influences the
formation of current paths in the cathode. Even in pure graphite, Kandah [6] has found
strong differences in erosion rates depending on the graphite type, i.e., the structure of the
graphite cathode.

A higher erosion rate Er,v results in a higher deposition rate Dr. This almost linear
relationship is illustrated in Figure 9. A pure carbon cathode with the highest erosion rate
of around Er,v = 2.9 × 10−5 cm3/C exhibits also the highest deposition rate Dr = 1.3 µm/C
compared to the modified cathodes. Corresponding to the reduction of the erosion rate, the
deposition rate is also moderately reduced in the case of nonmetals (B, Si), and drastically
so in the case of metals (Fe and Mo).

The linear relationship makes it clear that the erosion rate is the primary cause of the
differences in deposition rates. All other influences, such as the shading of the plasma as
it passes through the anode shield or different plasma distributions in the chamber, are
secondary in their effects.
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Figure 9. Deposition rate Dr over the volumetric erosion rate Er,v of coatings for sample position P1;
mounted along the plane of the cathode center.

4. Conclusions

In this paper, pure ta-C and doped carbon coatings with metal and nonmetal elements
were deposited using a laser-arc evaporation process. Both the influence of the added ele-
ments on the cathode erosion and the influence on the deposited (t)a-C:X coating properties
were investigated. It was shown that doped (t)a-C:X coatings with homogeneous element
distribution can be reliably produced with the laser-arc process. By analyzing the homo-
geneity by means of EDS measurements, no evidence of chemical gradient or temporal
effects of the chemical deposition was observed. Investigations into the deposition rate
and the chemical composition in relation to the vertical sample position revealed a similar
deposition behavior with respect to the deposition rate distribution. Slight deviations in
the chemical content of the coatings, differing with the sample position, were found for
nonmetals, whereas metal doping led to a strong deviation in the chemical content of the
coating. The deposition rates for the doped coatings are lower than for pure ta-C. A drastic
reduction was observed in the case of the metal dopants (Fe and Mo). It was shown that
the greatest influence of the deposition rate lies in the erosion rate during arc discharge on
the cathode. However, minor influencing factors can also be the height distribution of the
plasma as well as the lateral expansion of the arc spots, in combination with the shadowing
effect of the anode shield.

Further investigations should be conducted using TEM and Raman analysis to clarify
the coating structure, how dopants are incorporated in the carbon coatings and how they
change the properties of coatings in detail. Furthermore, the extent to which the doped
coatings can be deposited on parts with more complex geometry, and whether there are
geometric influencing factors, should also be investigated. A final important object of
investigation would be to find the cause of the strong differences in erosion rates for the
different dopants in the cathodes, and the extent to which this has something to do with
the emission of macroparticles.
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