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Abstract: Gallium oxide (Ga2O3) is a semiconductor with a wide bandgap of ~5.0 eV and large
breakdown voltages (>8 MV·cm−1). Among the crystal phases of Ga2O3, the monoclinic β-Ga2O3 is
well known to be suitable for many device applications because of its chemical and thermal stability.
The crystalline quality of polycrystalline β-Ga2O3 films on c-plane sapphire substrates was studied
by rapid thermal annealing (RTA) following magnetron sputtering deposition at room temperature.
Polycrystalline β-Ga2O3 films are relatively simple to prepare; however, their crystalline quality
needs enhancement. The β-phase was achieved at 900 ◦C with a crystallite size and d-spacing of
26.02 and 0.2350 nm, respectively, when a mixture of ε- and β-phases was observed at temperatures
up to 800 ◦C. The strain was released in the annealed Ga2O3 films at 900 ◦C; however, the clear
and uniform orientation was not perfect because of the increased oxygen vacancy in the film at that
temperature. The improved polycrystalline β-Ga2O3 films with dominant (−402)-oriented crystals
were obtained at 900 ◦C for 45 min under a N2 gas atmosphere.

Keywords: β-Ga2O3; magnetron sputtering; c-sapphire substrate; rapid thermal annealing

1. Introduction

Gallium oxide (Ga2O3) is a semiconductive material with a direct bandgap of 4.5–5.0 eV,
remarkable thermal and chemical stability, high transparency in ultraviolet (UV) and visible
(VIS) regions, and high dielectric constants in the range of 10.2–14.2 [1]. The monoclinic
β-Ga2O3 is more stable than the α-, γ-, δ-, and ε-phases with n-type conductivity owing to
oxygen vacancy as a donor level [2]. The other four phases are metastable and can trans-
form to β-Ga2O3 at temperatures above 750 ◦C [1,3]. β-Ga2O3 has attracted attention for
future electronic applications, owing to its distinguished properties, such as an ultra-wide
bandgap range of 4.7–4.9 eV, a critical electric field (EC) strength of 8 MV/cm, an excellent
electron mobility of 300 cm2/V·s, and an exceptional Baliga figure of merit (BFOM) of
3444 [1,4].

Polycrystalline β-Ga2O3 films are relatively simple to prepare; however, their poor
crystalline quality does not meet the requirements for certain electronic applications. Con-
versely, the preparation of single-crystal β-Ga2O3 with high crystalline quality is com-
plicated and costly. β-Ga2O3 films with highly preferred orientation can offer suitable
crystalline quality between single crystal and polycrystalline, showing a balance between
physical properties and cost [5]. Many efforts have been made by relevant technologies
to achieve high crystalline quality polycrystalline β-Ga2O3 films [1,2]; however, suitable
substrate is required to prevent a large lattice mismatch and coordination difference at the
interface between the films and substrate [6,7].

Notably, various substrates such as sapphire (Al2O3), magnesium oxide (MgO), yttria-
stabilized zirconia (YSZ), gallium arsenide (GaAs), and Si have been employed for the
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heteroepitaxy of β-Ga2O3 [8,9]. In particular, the c-plane (0001) sapphire has been widely
employed as a substrate for β-Ga2O3 because of its six-fold symmetry. Crystals of (−201)-
oriented β-Ga2O3 also exhibit six-fold symmetry and similar thermal expansion coefficients
as β-Ga2O3 (αc = 3.15 × 10−6 K−1) and sapphire (αc = ~4.3 × 10−6 K−1) [6,10].

For the heteroepitaxy of β-Ga2O3, dislocations are created inside the epitaxy layer
to relax the residual stress, degrading the performance of the devices [11]. A buffer layer
between the c-plane sapphire substrate and the epitaxy layer can be a solution to reduce
the difference in the lattice constants to decrease the residual stress [12–14]. In α-Ga2O3
epitaxial growth, the buffer layer using some metal alloys decreased threading dislocation
density significantly and eliminated strain accumulation at the α-Ga2O3–sapphire inter-
face [14–16]. Because β-Ga2O3 for power device applications requires significantly fewer
defects than for optical device applications, to produce a high-quality monoclinic-phase β-
Ga2O3 epitaxial layer for power device applications, high-quality polycrystalline β-Ga2O3
films on a c-plane sapphire substrate are proposed as the buffer layer, which acts as a lattice
template in this study. Because the quality of the β-Ga2O3 homoepitaxial layer with fewer
defects, such as threading dislocation and twin boundary, was determined according to the
dislocation density of the substrate [17], it is necessary to focus on the crystalline quality of
the β-Ga2O3 buffer layer.

Radio frequency (RF) magnetron sputtering deposition was selected to prepare high-
quality polycrystalline β-Ga2O3 films on a c-plane sapphire substrate for industrial mass
production among the various methods. The RF magnetron sputtering method can produce
high-quality films with low cost, high deposition rate, easy control of process parameters,
suitable uniformity, high homogeneity, and significant adhesion over a comparatively
large area. Polycrystalline β-Ga2O3 films are universally obtained at elevated substrate
temperatures during film deposition because β-Ga2O3 crystallization can only be realized
at relatively high temperatures [18]. Another method is to fabricate polycrystalline β-Ga2O3
films through a two-step method by post-annealing the as-deposited Ga2O3 films at room
temperature. Here, the β-Ga2O3 films were fabricated and characterized by post-annealing
with a rapid thermal annealing (RTA) system at various temperatures after deposition onto
c-plane sapphire substrates by RF magnetron sputtering at room temperature to enhance
the crystalline quality. There have been several previous investigations on the effects of the
post-annealing process of sputter-deposited Ga2O3 films [2,19,20], but there have been few
studies to apply these films as a lattice template on the c-sapphire substrate for application
to power devices, except for optical devices. For the fabrication of the β-Ga2O3 buffer layer
at high temperatures, the residual stress of the β-Ga2O3 films should be studied intensively
as a function of the temperature.

2. Experimental Details

Ga2O3 films were deposited on 1 × 1 cm2 c-plane (0001) sapphire substrates using
an RF magnetron sputtering system (IDT Engineering Co., Gyeonggi, Korea) at room
temperature [21], with a Ga2O3 (TASCO, Seoul, Korea, 99.999% purity, 5.08 cm diameter)
target under a fixed set of process parameters: a pre-sputtering process for 5 min prior
to each run, a frequency of 13.56 MHz, an RF sputtering of 100 W, an Ar gas flow rate of
50 sccm, a base pressure of 133.3224 × 10−6 Pa, a substrate-to-target distance of 5.0 cm,
and a vacuum pressure of 999.9178 × 10−3 Pa during sputtering at room temperature. The
deposition time was fixed at 34 min to obtain a constant thickness of approximately 200 nm
(Figure S1, in Supplementary Materials). After the sputtering deposition, the samples were
subjected to RTA (GRT-100, GD-Tech Co., Gyeongsangbuk, Korea) from 500 to 900 ◦C for
45 min under a N2 gas atmosphere [19,22].

The crystalline structure of the films was analyzed using X-ray diffraction (XRD, PAN-
alytical B.V., Almelo, The Netherlands, X’pert-PRO-MRD, Cu Kα = 0.15405 nm, 40 kV,
30 mA) over a 2θ range of 10–80◦ with a step size of 0.026◦ and scanning speed of 8.5◦/min.
Field emission scanning electron microscopy (FESEM, JEOL, Tokyo, Japan, JSM-7500F) was
employed to reveal the morphological characteristics of the Ga2O3 films. X-ray photoelec-
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tron spectroscopy (XPS, Thermo Fisher Scientific Inc., Waltham, MA, USA, K-Alpha+) was
used to analyze the composition and chemical nature of the Ga2O3 films. Field emission
transmission electron microscopy (FETEM, JEOL, Tokyo, Japan, JEM-2100F, a field emission
gun source at 200 kV) and selected area electron diffraction (SAED) were performed to
evaluate the quality of the crystal lattice.

3. Results and Discussion

The surface morphologies of the as-deposited and annealed Ga2O3 films at different
post-annealing temperatures were analyzed using FESEM. Figure 1 shows the top-view
FESEM images of the Ga2O3 films on the c-plane (0001) sapphire substrates. None of the as-
deposited and annealed Ga2O3 films had extended cracks after the ex situ annealing process
using the RTA system [23]. The as-deposited film showed that the surface morphologies
comprised fine grains tightly connected with a relatively clear boundary, as shown in
Figure 1a. There was no significant difference between the annealed film at 500 ◦C and
the as-deposited films. For the annealed film at 600 ◦C, the high annealing temperature
provided the as-deposited grains with thermal energy to accumulate to form large grains
with blurred boundaries. Distorted hexagonal islands occurred on the surfaces of the
annealed film at 700 ◦C, as shown in Figure 1d, similar to the reported island nucleation
of ε-Ga2O3 in epitaxial growth on a c-plane sapphire substrate by metalorganic chemical
vapor deposition at 650 ◦C [12,24,25]. It was considered that agglomeration, rather than the
merging into large crystals, began to occur at 800 ◦C in a part of the film, and discontinuities
and voids were observed [26]. Uniform, dense, compact, and well-defined grains with
clear boundaries were observed in the annealed films at 900 ◦C; the grain size gradually
increased with an increase in the annealing temperature from 500 to 900 ◦C.
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Figure 1. Top-view field emission scanning electron microscopy (FESEM) surface images of (a) as-
deposited and annealed Ga2O3 films at different post-annealing temperatures: (b) 500, (c) 600, (d) 
700, (e) 800, and (f) 900 °C. 

Figure 1. Top-view field emission scanning electron microscopy (FESEM) surface images of
(a) as-deposited and annealed Ga2O3 films at different post-annealing temperatures: (b) 500, (c) 600,
(d) 700, (e) 800, and (f) 900 ◦C.

The as-deposited Ga2O3 films exhibited amorphous or microcrystalline structures. A
post-annealing process was performed by RTA to improve their crystallinity. Figure 2a
shows the XRD patterns of the as-deposited and annealed Ga2O3 films at various annealing
temperatures in the 2θ range of 10–80◦. The XRD patterns of the annealed film at 500 ◦C
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show broad amorphous features and weak peaks along with (006) and (003) diffraction
peaks from the sapphire substrate, which indicates that the β-Ga2O3 crystallization was
not easily achieved under the low annealing temperature of 500 ◦C. It was observed
that three diffraction peaks along (–201), (–402), and (–603) at 2θ = 18.38◦, 38.21◦, and
58.84◦, respectively, corresponded to β-Ga2O3 at the annealing temperature of 600–900 ◦C
(ICDD/JCPDS PDF card No. 87-1901). This reveals that the arrangement of oxygen atoms in
the β-Ga2O3 (–201) plane was equivalent to that in the c-plane sapphire [27,28]. In contrast,
the annealed Ga2O3 films at 600 and 700 ◦C comprised three diffraction peaks along
(0002), (0004), and (0006) at 2θ = 19.09◦, 37.62◦, and 59.12◦, respectively, corresponding
to ε-Ga2O3. The shoulder of ε-Ga2O3 at the diffraction peak along (–402), corresponding
to β-Ga2O3 at 2θ = 38.12◦, disappeared in the annealed Ga2O3 film at 800 ◦C, while a
diffraction peak along (0002) remained at 2θ = 19.10◦, corresponding to ε-Ga2O3. The
metastable ε-phase transformed into the thermodynamically stable β-phase within the
range of 700–800 ◦C [3,12,29,30]. The intensities of the diffraction peaks along (–201), (–402),
and (–603) increased with an increase in temperature, as shown in Figure 2a.
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°C [32]. However, it was considered that certain stresses caused by internal/external fac-
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Figure 2. (a) X-ray diffraction (XRD) patterns of the as-deposited and annealed Ga2O3 films with
different annealing temperatures of 500, 600, 700, 800, and 900 ◦C [31]. (b) Full widths at half
maximum (FWHM) and crystallite size along the (–402) plane of the annealed Ga2O3 films with the
annealing temperature from 600 to 900 ◦C. (c) Average grain sizes under the same conditions.

The full width at half maximum (FWHM) of the (–402) diffraction peak, as a function of the
annealing temperature, is shown in Figure 2b. This FWHM decreased to 0.428◦ with an increase
in temperature from 600 to 900 ◦C, which was attributed to the large driving energy to migrate
atoms to suitable lattice sites to achieve high crystalline quality at 900 ◦C [32]. However, it was
considered that certain stresses caused by internal/external factors affected the structure of the
films at this temperature [33,34]. The crystallite size of the films was estimated from the (–402)
diffraction peak using both the Debye–Scherrer formula DD–S = 0.94 λ/ω·cosθ and Williamson–
Hall equation DW–H = 0.94 λ/(ω·cosθ−ε·sinθ) [35–38], where λ is the Kα radiation wavelength
of Cu (λ = 0.15406 nm), ω is the FWHM of the (–402) diffraction peak, ε is the lattice strain,
and θ is the Bragg angle corresponding to the (–402) diffraction peak. The crystallite size
gradually increased from 15.30 to 20.50 nm for DD–S and 18.97 to 22.98 nm for DW–H with
an increase in temperature from 600 to 900 ◦C, as shown in Figure 2b. In comparison with
DD–S and DW–H, the overall DW–H exhibited large values, showing a similar tendency to
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increase, while the slopes of the increase in DW–H were relatively lower than those in DD–S
at 700 and 900 ◦C. In the Williamson–Hall equation, the Bragg angle of the diffraction peak
along (–402) shifted toward lower values from 2θ = 38.21◦ to 37.98◦ with an increase in
temperature from 600 to 900 ◦C. This shift was revealed as one of the main reasons for the
larger values of DW–H compared to those of DD–S, although the effect of strain remains to
be further investigated. According to Bragg’s law, the shift in the Bragg angle was affected
by a change in the spacing of the crystallographic planes, where the tensile strain increases
the d-spacing, causing a shift in the Bragg angle of the diffraction peak towards lower 2θ
values, whereas compressive strain decreases the d-spacing, resulting the shift towards
higher 2θ values in the XRD pattern [39]. Average grain size, which was estimated using
SEM images and ImageJ software [40], is also shown in Figure 2c.

The diffraction data analysis with lattice constants (a, b, c, and β) was refined us-
ing X’Pert HighScore Plus software (Panalytical B.V., Almelo, The Netherlands) [41,42].
The lattice constants of the monoclinic β-Ga2O3 are generally a = 1.223 ± 0.002 nm,
b = 0.304 ± 0.001 nm, and c = 0.580 ± 0.001 nm, and the angle between the a- and c-axes
is β = 103.7 ± 0.3◦ [1,43,44]. Above 600 ◦C, the annealed film exhibited a typical mon-
oclinic crystal structure with two inequivalent Ga sites and three inequivalent O sites.
The lattice constants slightly changed with an increase in the annealing temperature from
600 to 900 ◦C, while the lattice constants of the Ga2O3 film at 600 ◦C were a = 1.2219 nm,
b = 0.3035 nm, c = 0.5803 nm, and β = 104.06◦. There were slight fluctuations in the a value
(1.2190–1.2220 nm) and c value (0.5803–0.5821 nm) when the b value varied between 0.3019
and 0.3035 nm. The β value showed a tendency to decrease from 104.06◦ at 600 ◦C to 103.86◦

at 800 ◦C and suddenly returned to 104.06◦ at 900 ◦C. This variation in the lattice constants
is shown in Figure 3a–d with an increase in temperature, indicating that the lattice constants
of the strained lattice of Ga2O3 are far from their bulk values. The volume of a unit cell was
obtained from the expression for monoclinic systems: V = abc·sinβ. The volumes of the
unit cell in all annealed films were in the range of 208.70 × 10−3–208.83 × 10−3 nm3, which
was less than the corresponding bulk value of 209.63 × 10−3 nm3 at all temperatures [8,33],
as shown in Figure 3e, indicating that the Ga2O3 films compressively strained the unit cell
of the films within the range of 600–900 ◦C. There are two distinct Ga sites: the Ga(I) atoms
are bonded to four neighboring O atoms in a tetrahedral arrangement, while the Ga(II)
atoms are octahedrally arranged and bound to six neighboring O atoms [44]. The wave
function of the conduction band bottom generally comprises 4s orbitals of Ga3+ ions in
octahedral sites [29]. A compressive strain may lead to an increased octahedral occupancy
by Ga3+ ions, forming a compact structure in the unit cell, whereas a tensile strain in the
film may lead to an influx of Ga3+ ions in the tetrahedral sites, forming a relatively loose
structure [29].

Figure 3f shows the strain (ε) due to crystal imperfections and distortions of the Ga2O3
films that were annealed at 600, 700, 800, and 900 ◦C, as calculated using the equation
ε = ω/4tanθ, where ω is the FWHM of the predominant diffraction peak and θ is the Bragg
angle corresponding to the diffraction peak obtained from the XRD data [45–47]. The
strains along the (–402) orientation decreased from a maximum of 8.562 × 10−3 at 600 ◦C
to a minimum of 6.187 × 10−3 at 900 ◦C. With an increase in the annealing temperature
from 600 to 900 ◦C and a relaxation in the compressive strain, an increasing number of
Ga3+ ions occupied the oxygen tetrahedral sites from the oxygen octahedral sites; therefore,
the volume of the unit cell showed the slightly volumetric contraction at 700 ◦C although
the compressive strain released rapidly, while volumetric expansion occurred for compact
structures at 800–900 ◦C as the compressive strain released, as shown in Figure 3e,f. The
volumetric expansion and transformation of the ε-phase into the thermodynamically stable
β-phase occurred at 800 ◦C [24,25,29]. The proportion of octahedrally and tetrahedrally
coordinated Ga is 1:1 in the monoclinic β-phase when the disordered Ga atoms occupy
octahedral and tetrahedral sites to give the 2:3 stoichiometry in the ε-phase [48]. It is
suspected that volume expansion was limited at 900 ◦C as a relatively increased octahedral
occupancy by Ga3+ ions due to the transformation from ε- to β-phase. The dislocation
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density (δ) of the Ga2O3 films was calculated at the same annealing temperatures using the
equation δ = 1/D2, where D is the crystallite size obtained from the XRD data. A similar
trend in the dislocation density was obtained for the strain along the (–402) orientation
(not shown). The lowest value of 2.3790 × 1015 line/m2 along the (–402) orientation was
obtained at 900 ◦C when the dislocation density decreased from the highest value of
4.2730 × 1015 line/m2 at 600 ◦C. This indicates that the largest crystallite size (Figure 2b)
was observed at 900 ◦C as a result of the released compressive strain and dislocation density.
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600, 700, 800, and 900 ◦C. (a–c) Lattice constants of a, b, and c, respectively. (d) Angle between the a-
and c-axes of β. (e) Volume of a unit cell obtained from the expression V = abc·sinβ, for monoclinic
systems. The bulk values of the lattice constants are a = 1.2222 nm, b = 0.3041 nm, c = 0.5809 nm, and
β = 103.85◦; therefore, the bulk value of the volume of the unit cell is V = 209.6265 × 10–3 nm3 [36].
The range of the reference values of lattice constants was shaded with a = 1.223 ± 0.002 nm,
b = 0.304 ± 0.001 nm, c = 0.580 ± 0.001 nm, and β = 103.7 ± 0.3◦ [1,43,44]. (f) Strain (ε) and d-spacing
along the (–402) plane.

Figure 3f shows the interplanar distances corresponding to the d-spacings for the
monoclinic Ga2O3 orientation along the (–402) plane with a change in temperature from 600
to 900 ◦C. The d-spacing value corresponding to the (–402) plane was calculated using the
equation d–402 = λ/2sinθ, where λ is the Kα radiation wavelength of Cu (λ = 0.15406 nm) and
θ is the Bragg angle corresponding to the diffraction peak obtained from the XRD data [49].
The d–402 value of the annealed Ga2O3 films was lower than the bulk value (0.249 nm)
because the films were compressively strained within the range of 600–900 ◦C [50], which
was generally attributed to the different equilibrium lattice spacing of the films with the
substrate in the much thinner films than the substrate [51]. The d–402 values of the annealed
Ga2O3 films increased from 0.23520 to 0.23596 nm with an increase in temperature from
600 to 900 ◦C. The release of the compressive strain causes a shifting of the diffraction peak
along (–402) towards a lower Bragg angle [39], as shown in Figure 2, which increases the
d-spacing in the above equation. The slope of the increase in d–402 gradually decreased with
the gentle release in the compressive strain at 900 ◦C. The d-spacing finally approached
the more standard value due to the gradual shifting of the diffraction peak along (–402)
towards a lower Bragg angle under the same condition, which was possibly due to the
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existence of considerable point defects, including oxygen vacancy in the lattice [8,33,52].
It became necessary to examine the XPS analysis results to identify the cause of the rapid
decrease in temperature.

To further study the quality of the Ga2O3 films, particularly the oxygen vacancies
inside the films, the chemical compositions and bonding energies of the films were investi-
gated by XPS at the annealing temperatures of 800 and 900 ◦C, showing a sharp difference
in the lattice characteristics (Figure 2), as shown in Figure 4. All the XPS spectra were de-
convoluted using XPSPEAK4.1 software (Washington State University, Pullman, WA, USA).
The spectrum of the C 1s peak with a binding energy of 285 eV was used as a reference for
data calibration. High-resolution narrow scans were employed to examine the core-level
elements, such as Ga 2p, Ga 3d, and O 1s, in the Ga2O3 films. The core-level XPS spectra
of the annealed Ga2O3 film at 800 ◦C shifted by 0.677–0.870 eV toward a higher binding
energy than that at 900 ◦C. The chemical shift towards higher binding energy without
any obvious change in the spectral shape is due to the large electronegativity difference
between the coordinating groups. This difference can be attributed to the formation of a
large number of crystal defects in the annealed Ga2O3 film at 800 ◦C, which shows the
presence of both β-Ga2O3 and ε-Ga2O3 phases, as observed from the XRD results. The Ga
2p doublet was symmetric and narrow at the binding energies of 1118.49 and 1117.76 eV
(Ga 2p3/2) and 1145.36 and 1144.64 eV (Ga 2p1/2) in the annealed Ga2O3 films at 800 and
900 ◦C, respectively, with a spin-orbit splitting (SOS) energy of 26.87 eV, as shown in
Figure 4a,d. The small peaks at 1138.37 and 1136.77 eV were loss features between two spin-
orbit coupled peaks originating from inelastic interactions between the emerging electrons,
which reduced their energy. Because the Ga 2p peaks have no appreciable shoulder-like
feature, as direct evidence for the gallium interstitials, which also have very high formation
energy [53], the origin is deduced to be rather due to oxygen vacancies or others.
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The Ga 3d peaks in Figure 4b,e were deconvoluted into two peaks situated at 21.06
and 20.39 eV (Ga 3d5/2) and 20.31 and 19.92 eV (Ga 3d3/2) for the annealed Ga2O3 films
at 800 and 900◦C, respectively. This was in addition to the overlapped O 2s peaks at
23.70 and 23.12 eV. The Ga 3d5/2 peaks centered at the high binding energies of 21.06 and
20.39 eV represented the Ga3+ oxidation state associated with the Ga–O bond expected in
the Ga2O3 [54]. The Ga 3d3/2 peaks at the low binding energies of 20.31 and 19.92 eV may
be related to the Ga+ or Ga2+ oxidation state in the GaOx bond; this observation suggests
either a Ga-rich growth or a presence of oxygen vacancies near the surface.

In Figure 4c,f, each O 1s peak in the annealed films at 800 and 900 ◦C comprised two
peaks, O(I) at 531.62 and 530.81 eV, corresponding to the lattice oxygen Ga–O bonds of
Ga2O3 and O(II) at 533.11 and 532.24 eV, respectively, associated with defected oxygen
sub-lattice such as oxygen-related vacancies in the Ga2O3 films [55]. However, the area
ratio of the O(II) to O 1s peaks in the annealed films increased from 11.73% at 800 ◦C to
17.69% at 900 ◦C, indicating that the annealed film at 900 ◦C had a slight increase in the
oxygen vacancies. Therefore, it was inferred that prominent defects which resulted in
shifting of binding energy at 800 ◦C are other defects including dislocation rather than the
oxygen vacancy, which needs to be investigated more closely in a follow-up study.

TEM was conducted to examine the crystalline quality of the annealed Ga2O3 films on
the c-plane (0001) sapphire substrates at 800 and 900 ◦C, which were the changed conditions
in the crystalline state at all annealing temperatures. Figure 5 shows the high-resolution
TEM images, SAED patterns, and inverse fast Fourier transform (IFFT) images of the films.
Figure 5a–c show the TEM image, SAED pattern, and inverse Fourier transform (IFFT)
image, respectively, of the annealed Ga2O3 film at 800 ◦C. Three nanocrystalline planes
(systems of parallel equidistant lines) with interplanar distances of 0.23588, 0.14820, and
0.46930 nm corresponding to β-Ga2O3 were observed [56]. The TEM image of the films
at 800 ◦C shows Moiré fringes due to several minute β-Ga2O3 (–402) nanocrystals with a
pseudomorphic coherence for (–603) and (–201) orientations, which may have originated
from the partial symmetry mismatch between the monoclinic β-Ga2O3 and hexagonal
ε-Ga2O3 [57–59]. Notably, the Moiré fringes did not necessarily appear at high dislocation
densities in the films [60]. Detailed information on the lattice dislocation structure of the
nanocrystals in the film at 800 ◦C was obtained by the IFFT of the TEM image. The IFFT
image, obtained from the center of the TEM image in Figure 5a, shows linear defects,
including an edge dislocation (T-shaped symbol) and screw dislocations (red-dashed
rectangular frames) [61].

The TEM image in Figure 5d shows that the orientation of the annealed Ga2O3 film
at 900 ◦C improved despite the remaining dislocations, which comprised regions with a
better atomic arrangement, showing an aligned arrangement sloping with distinct angles
and interplanar distances of upward to the left with 0.23529 nm. These correspond to the
d-spacing of the monoclinic β-Ga2O3 (–402) plane with similar XRD results in Figure 3f.
Figure 5d shows that the annealed Ga2O3 films at 900 ◦C exhibit a polycrystalline nature
with β-Ga2O3 (–402) texture-dominated crystal films, correlating with the XRD results.
As shown in the SAED pattern, diffraction spots and dispersive diffraction rings were
observed, owing to the presence of polycrystalline components in the films. The IFFT
image obtained from the center of the TEM image in Figure 5d shows ordered lattice fringes
with the same d-spacings, as shown in Figure 5f. This confirms that linear defects, such
as dislocations and boundaries, as shown in Figure 5c, decreased. As expected for the
annealed Ga2O3 film at 900 ◦C with the relaxed strains, it can achieve significantly reduced
defects and relatively clear and uniform β-Ga2O3, although they were not perfect because
of the unintended occurrence of point defects at 900 ◦C.
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Figure 5. (a,d) Transmission electron microscopy (TEM) images, (b,e) selected area electron diffraction
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films at the annealing temperatures of (a–c) 800 ◦C and (d–f) 900 ◦C.

4. Conclusions

Improved crystalline quality β-Ga2O3 films on c-plane sapphire substrates were fabri-
cated by RF magnetron sputtering deposition followed by RTA at 900 ◦C for 45 min. The
amorphous nature of the Ga2O3 films was observed in the as-deposited and annealed films
at a low temperature of 500 ◦C; a mixture of ε- and β-phases was observed within the range
of 600–800 ◦C, whereas only the β-phase appeared with a crystallite size of 26.02 nm at
900 ◦C. The d-spacing decreased and approached the standard value when the strain was
consistently relaxed with an increase in the annealing temperature to 900 ◦C. Although
the dislocation density in the annealed Ga2O3 films was reduced at 900 ◦C, a clear and
uniform orientation was not achieved, and the oxygen vacancy concentration increased in
the film at that annealing temperature. Nevertheless, a better polycrystalline nature with a
dominant β-Ga2O3 (–402)-preferred crystal film was achieved from the annealed Ga2O3
film at 900 ◦C. A follow-up study to grow a β-Ga2O3 single crystal on the buffer layer of
the c-plane sapphire substrate with improved crystal quality under the process conditions
for mass production and confirm its characteristics will be required.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings12020140/s1, Figure S1: Cross-sectional field emission
scanning electron microscope (FESEM) images of (a) as-deposited and annealed Ga2O3 films at
different post-annealing temperatures: (b) 500, (c) 600, (d) 700, (e) 800, and (f) 900 ◦C.
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