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Abstract: As a pre-treatment process in the pre-passivation of stainless steel, pickling treatment
has a significant effect on the formation of the pre-passivation film. Thus, the surface composition
and defects of Super 13Cr martensitic stainless steel (Super 13Cr) were evaluated under different
pickling parameters to further improve the corrosion resistance of the pre-passivation film. The
samples were prepared using the acid immersion method and by changing the immersion duration
and the acid concentration. The inclusion and chemical composition on the Super 13Cr surface were
characterized via a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy
(EDS). The pickling treatment contributes little to the morphology, dimension, and other characteristic
parameters of the inclusions. With the increasing duration and acidification concentration, the Cr
content on the surface of Super 13Cr increases initially and then decreases. By contrast, the Fe
content decreases initially and then increases. The pickling parameters corresponding to the lowest
Fe content and the highest Cr content are identical, i.e., the exposure duration is 50 s and the acid
concentration is 48 g/L. The pickling treatment in this case could be divided into two stages: outer
film dissolution and inner film dissolution. The pickling parameters basically contribute little to
the defects of martensitic stainless steel but can significantly affect the surface Cr and Fe content.
Retaining the Cr-enriched inner layer could improve the content of Cr in the pre-passivation film
and then improve the corrosion resistance of the film. Thus, compared with the original sample with
native film, the corrosion resistance of the sample with a Cr-enriched inner layer improved by a factor
of about 40.

Keywords: Super 13Cr martensitic stainless steel; pre-passivation; pickling treatment; corrosion
resistance

1. Introduction

With the development of oil and gas fields, the service environment of pipes is be-
coming more and more rigorous. Super 13Cr martensitic stainless steel (Super 13Cr) (API
Spec 5CRA-2010) is becoming a preferred material in high CO2 environments with low
H2S because of natural passivation in the atmosphere [1–3]. However, the pitting induced
by defects and other factors obviously induces the sensitivity of stress corrosion cracking
(SCC) [4–6]. As a result, stress corrosion cracking is a challenge that plagues the application
of Super 13Cr [7–10].

Recently, some methods, such as the chemical composition, the molding process, and
the post-treatment process, were selected to attempt to improve the pitting corrosion and
stress corrosion cracking resistance of Super 13Cr [11–13]. On the basis of traditional Super
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13Cr, commercial Super 13Cr is fabricated by increasing the mass fraction of the elements
Ni and Mo and reducing the carbon content [14–16]. Meanwhile, Super 13Cr contains a
fraction of inverter austenite that can improve its corrosion resistance [17–20]. Increasing
the Cr content in stainless steel is a general and apparent method to improve the corrosion
resistance performance [21,22], such as in the 15Cr and 17Cr stainless steel developed by
JFE Holdings, Inc. (Tokyo, Japan). Compared with the Super 13Cr, these two stainless
steels both significantly improve the corrosion resistance [23]. However, compared with
Super 13Cr, the prices of 15Cr and 17Cr stainless steel increase by about 20% and 40%,
respectively, and these price increases are equivalent to 1–2 times the price of ordinary P110
pipelines. Therefore, other methods need to be developed to improve the pitting resistance
of Super 13Cr while maintaining the current cost.

Generally, the thickness of the natural passivation film on the stainless-steel surface
is within the range of 1–3 nm. Nanoscale films can significantly improve the corrosion
resistance of stainless steel [24]. If the thickness of this passivation film increases, the
corrosion resistance of the stainless steel should be further improved. Based on this
idea, the austenitic stainless steel has adopted a pre-passivation process to prepare a pre-
passivation film on the surface, which has been widely applied [25–28]. Due to the low
Cr content of Super 13Cr, instead of the acid pre-passivation, alkaline liquor is an ideal
pre-passivation solution. However, the reports on Super 13Cr passivation to date have
focused primarily on the effect of the film generated during the application on the corrosion
resistance [17,29,30]. The films in these reports are actually the corrosion product caused by
the corrosion medium during application. Thus, the corrosion resistance of pre-passivated
Super 13Cr to date is not yet clear. As one of the main processes before pre-passivation,
pickling treatment could improve the pre-passivation efficiency. Unfortunately, the change
in surface parameters, such as the native film and the defects, during picking treatment is
unclear, which is the basis for the preparation of high corrosion resistance film.

In this paper, the elements and the inclusions on a Super 13Cr surface under different
pickling parameters are elaborated in detail. Moreover, an electrochemical test was per-
formed on the pre-passivation samples with different pickling parameters to sketch out the
effect of the pickling parameters on the corrosion resistance of the Super 13Cr.

2. Experimental
2.1. Materials

The material used in this case is Super 13Cr (Baoshan Iron & Steel Co., Ltd., Shanghai,
China), and its chemical composition is shown in Table 1. The chemical composition meets
the requirements of the API Spec 5CRA-2010. The sample size used in this case is 40 mm ×
10 mm × 3 mm. Before the test, the samples were ground, step by step, with 500#, 800#,
and 1200# SiC sandpaper, and then polished with a diamond polishing fluid with a particle
size of 0.5 µm. The samples were put into an ultrasonic cleaner and washed with acetone
and anhydrous ethanol.

Table 1. The chemical composition of Super 13Cr (wt%).

C Si Mn P S Cr Ni Mo Fe

0.017 0.23 0.49 0.012 0.0043 13.3 5.01 1.85 Bal.

2.2. The Pre-Treatment in Acid Solution and Pre-Passivation

An alkaline solution of NaOH with a concentration of 1 g/100 mL was employed
to remove the grease on the sample surface, carried out at a temperature of 90 ◦C with
a duration of 5 min. The degreased samples were corroded in a H2SO4 solution with a
concentration of 48 g/L. The immersion duration was selected, including 0, 30, 50, 70, 90,
and 110 s, respectively.

Five defects and matrix positions on the surface of the original sample were observed
and marked, and then the sample was pickled in the acid solution for a duration of 30 s. The
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five identical defects on the surface were profiled after the 30 s pickling treatment with a
scanning electron microscope (TESCAN VEGAIIXMU, Czech TESCAN, Czech) and energy
spectroscopy (OXFORD7718, Oxford Instruments, London, United Kingdom). Likewise,
these five defects were observed after 50, 70, 90, and 110 s pickling treatments, respectively.
The change tendency of the defects and the chemical composition on the surface of the
Super 13Cr were sketched to research the effect of pickling duration on the surface of the
Super 13Cr.

In addition, six acid concentrations were also prepared to elaborate the surface state of
the Super 13Cr, including 0, 29, 48, 66, 85, and 103 g/L, respectively. The perfectly similar
to immersion duration method was employed to profile the in-suit defects and the chemical
composition.

A pre-passivated solution including 70 g NaOH, 15 g Na3PO4, 0.5 g NaNO2, and
500 mL distilled water was allocated. The solution was stirred fully with a glass rod until
all the solute completely dissolved. Three typical samples with pickling parameters of
48 g/L—50 s, 103 g/L—110 s and the original sample were pre-passivated at a temperature
of 100 ◦C. The pre-passivation dwell time was 30 min.

2.3. Electrochemical Test

A Corrtest CS235 (Jiahang Bochuang Technology, Beijing, China) electrochemical
workstation was employed to carry out the electrochemical test. A three-electrode system
was used. The Super 13Cr sample, two graphite electrodes, and a saturated calomel
electrode (SCE) were used as the working electrode, the counter electrode, and the reference
electrode, respectively. The corrosion performance of the Super 13Cr in seawater was
examined, and thus, a 3.5% NaCl solution was used in this case. The electrodes were
stabilized for 30 min, and then the open circuit potential (OCP) was recorded. Alternating
current (AC) impedance and the polarization curve tests of the three samples were carried
out after the pickling passivation treatment. All tests were carried out at room temperature
and at atmospheric pressure.

The initial potential measured by the electrochemical polarization curve was −500 mV
(relative to the open circuit potential), the termination potential was +1500 mV (relative to
the open circuit potential), and the scanning speed was 0.33 mV/s. The frequency range
of the AC impedance spectrum was 10−2–105 Hz, and the amplitude of the impedance
measurement signal was a sinusoidal wave of 10 mV.

2.4. Observation of the Microstructure

Abrasive papers of different types were employed to grind the samples successively.
After that, polishing was finished with a 0.5 µm diamond on micro-cloth. The samples were
corroded in a solution containing 4% HNO3, 4% HF, and 92% distilled water. Then, the
metallographic microstructures were observed with an optical microscope (BX6, Olympus,
Tokyo, Japan).

The surface chemical composition and defects of the Super 13Cr were observed with
a scanning electron microscope (SEM, JSM-6390A, JEOL, Tokyo, Japan), equipped with
energy-dispersive X-ray spectroscopy.

3. Results
3.1. Microstructure of Super 13Cr

The metallographic microstructure of the Super 13Cr is shown in Figure 1. The results
indicate that a typical tempered martensite microstructure was observed. High strength
and appropriate toughness are necessary properties of the metal used in oil-field tests,
especially for the downhole tubing. Thus, the steel used in oil fields is generally heat-
treated, including quenching and tempering, and a tempered microstructure could be
achieved in the Super 13Cr. The matrix phase still keeps the original quenched-slat shape
after tempering, distributing some ε-carbides. The ε-carbides improves the strength and
relieves the negative effect of the carbon precipitation on the strength. In addition, the
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carbon precipitation from the matrix phase improves the toughness and the plasticity of
the steel. Therefore, the Super 13Cr used in this case had an appropriate toughness and a
high strength.
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Figure 1. Metallographic microstructure of Super 13Cr: (a) low magnification, (b) high magnification.

3.2. Surface Characteristic Depended on the Acidification Duration

In order to accurately represent the influence of acidification duration on the defects
on the Super 13Cr surface, five defects on one sample surface in each pickling duration
were observed. One representative defect in each duration was employed to illustrate the
evolving characteristics of the defects. In addition, the results of the EDS spectra in this
case were all achieved by the averaging of the five values.

The defect morphologies with different pickling durations are shown in Figure 2. The
results show that the inclusion on the surface of the Super 13Cr is spherical, with a diameter
of about 15 µm. The inclusion still retained the spherical shape and the dimension, which
indicates that the inclusion was independent of the pickling duration.

The EDS spectra of a representative inclusion with different pickling durations are
shown in Figure 3. The results show that the inclusion mainly includes Mg, Al, and O.
The inclusions in the stainless steel were brought into the production process and the
deoxidation process through mixing [31]. Al, as a strong oxidation metal, is the common
deoxidant used in the production process of steel [32]. However, the amount of Al in the
deoxidation process of molten steel was not used in this case, which would reduce the
excess Al to form Al2O3 and react with the MgO existing in the molten steel to form Al,
Mg compound oxides, or magnesium and aluminum. Meanwhile, a fraction of aluminum
dissolves in the molten steel during the smelting process, which constantly reacts with the
dissolved oxygen and the surrounding oxides in the molten steel to form the inclusions of
Al2O3 or Al2O3-MgO [33,34]. Therefore, the inclusion in the Super 13Cr stainless steel in
this case was Al2O3-MgO.
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According to the pitting mechanism of stainless steel, inclusions are one of the main
reasons for the stress corrosion cracking [35]. Therefore, Al2O3-MgO inclusions are the
main reason for the destruction of the Super 13Cr surface passivation film. The properties
of Al2O3-MgO inclusions are roughly similar to those of Al2O3. They have a high melting
point, a high level of hardness, and a corrosion resistance to acids, which make it impossible
for them to react significantly with a dilute sulfuric acid solution in a short time. Thus,
the shape and the dimension of the inclusions during acidification in this paper basically
did not change. In addition, the inclusion cloud did not fill with stainless steel surface
defects; there was a fraction of pore areas between the inclusion periphery and the matrix
phase. Due to the high corrosion resistance of the inclusion itself, the pitting corrosion of
the stainless steel at the inclusion site may have been caused by the corrosion of the gap
between the matrix phase and the inclusions. Therefore, the chemical elements in the gap,
depending on the duration, were analyzed.

Figure 4a,b show the different surface morphologies of the same defect before and
after soaking in a dilute sulfuric acid solution, and Figure 4c,d show the EDS spectra
corresponding to Figure 4a,b. According to Figure 4c,d, the chemical elements in the gap
between the matrix phase and the inclusion are mainly Fe and Cr. Therefore, the gap could
be regarded as the transition zone between the defect and the matrix metal. Based on the
EDS spectra, the content of Cr and Fe in the gap changes significantly before and after
soaking in a dilute sulfuric acid solution: the Cr content increases significantly, while the
content of Fe decreases. On the one hand, the increasing Cr content would effectively
improve the resistance to pitting at the defects of the matrix, but it would also decrease the
sensibility of the stress corrosion cracking caused by pitting.
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3.3. Effect of Pickling Treatment on Super 13Cr Surface Chemical Composition

The main purpose of stainless-steel pre-passivation is to prepare a thick pre-passivation
film on the surface before application and improve the pitting corrosion resistance. Based
on the film-formation mechanism of pre-passivation film, the chemical composition of the
stainless-steel surface before pre-passivation has a significant impact on the composition
of passivation film. Therefore, in order to maximize the corrosion resistance of the pre-
passivation film, the content of Cr in the pre-passivation film should be as great as possible.
Thus, the influence of two acid-treatment factors on the surface chemical composition of
stainless steel was studied in this paper. In order to improve accuracy, the accelerating
voltage during the EDS spectrum test was designed to be 20 keV. The EDS spectra were
tested on the stainless-steel surfaces with different acidification durations and acid concen-
trations. The results are shown in Figures 5 and 6. In order to improve the reliability of the
results, five zones were selected randomly after the pickling treatment, and the results are
the average value of five regions in each group.
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Figure 6. The EDS spectra of samples at different acid concentrations: (a) 29 g/L; (b) 66 g/L; and
(c) 103 g/L. The result of sample soaked in solution with acid concentration of 48 g/L is shown in
Figure 5b.

The results show that the surface of stainless steel mainly contains Fe and Cr. There-
fore, the main elements on the stainless-steel surface remained unchanged within the test
conditions in this paper, while the contents of the main elements changed. The Cr element
firstly increased and then decreased; the Fe element firstly decreased and then increased
inversely, as shown in Figure 5. Figure 6 shows the EDS spectra with different sulfuric acid
concentrations. An identical result to that shown in Figure 5 was obtained: the Cr element
increased first and then decreased; the Fe element decreased first and then increased. Thus,
it can be summarized that the Cr element increases firstly and then decreases, and the
content of the Fe element decreases firstly and then increases with the acid concentration
and duration.

Figure 7 shows the relationship between Cr and Fe and soak duration and acid
concentration. As mentioned above, in order to improve the reliability of the results,
the results are the average value of five regions. Figure 7a shows that the content of Cr
on the surface of Super 13Cr increases first and then decreases as acidification duration
increases. The content of Cr increased to about 14.1% after 50 s of soaking and then
gradually decreased. Compared with the original sample, the content of Cr increased by
about 4.1%. In comparison, the content of Fe decreased in the first 50 s and then increased.
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The soaking test was performed using different acid concentrations. In this experiment,
the soaking duration was designed to be 50 s. The Cr and Fe contents, depending on the
acid concentration, are shown in Figure 7b. When the acid concentration is within the range
of 0–48 g/L, the Cr content increases, and the Cr content gradually decreases when the
acid concentration exceeds 48 g/L. On the contrary, within the acid concentration range of
0–48 g/L, the content of Fe elements decreases from 13.5% to 13.1% and then gradually
increases when it exceeds 48 g/L.

To sum up, the highest Cr content and the lowest Fe content on the matrix surface
could be obtained when an acid concentration of 48 g/L and an acidification time of 50 s
were selected during the acidification process. The enrichment of Cr on the matrix surface
can enable it to form a thicker and denser corrosive product film on the material surface.
The production of this film can effectively prevent the occurrence of pitting and significantly
improve the stress corrosion cracking resistance of the material [36]. In addition, it was
found that a high Cr content not only improves the uniform corrosion resistance, but also
the local corrosion [21,22,37].

The reason for the above phenomenon may be caused by the native film on the Super
13Cr. Based on the native film covering the austenitic stainless steel, we determined that the
native film is mainly divided into two layers. The outer layer is an iron-nickel oxide layer,
and the inner layer is a Cr-enriched layer [38–40]. On the basis of the results, the iron-nickel
oxide outer layer dissolved once the sample was exposed to the sulfuric acid solution. As a
result, the Fe content decreased during the initial exposure phase. The Cr-enriched inner
layer began to dissolve once the Fe-enriched outer layer had dissolved completely. Thus,
when the acidification time and acid concentration increased to a critical value, the Cr
content began decreasing, and the Fe began increasing, as shown in Figure 7.

Based on the above results, a reasonable parameter for pickling treatments could
maximally improve the content of the Cr element on the surface before pre-passivation.
Ultimately, a high-corrosion-resistance pre-passivation film could be fabricated on the
Super 13Cr. The effect of the pickling parameter on the corrosion resistance of the Super
13Cr as tested by the electrochemical test is discussed in the next section.

3.4. Electrochemical Test

In order to test the effect of the pickling treatment on the corrosion resistance of the
pre-passivation film on Super 13Cr, the electrochemical performances of three types of
samples were tested.

The potential difference between the working electrode and the reference electrode
without load, that is, the electrode potential at zero current density, is open-circuit potential.
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This is a process of electrode change from instability to stability. Figure 8a shows the
open-circuit potential curves of Super 13Cr with different pickling treatments. The test
was terminated when the potential was independent of the time and gradually stabilized.
The open circuit potentials were −580 mV, −430 mV, and −290 mV, which correspond to
the native film and the films with pickling durations of 110 s and 50 s, respectively. Thus,
the corrosion resistance of the Super 13Cr could be improved by pre-passivation, and the
pickling treatment parameters could also affect the corrosion resistance of the Super 13Cr
in terms of the thermodynamics.

Coatings 2022, 12, x FOR PEER REVIEW 10 of 13 
 

 

103 g/L and 110 s was 7.291 μA/cm2. Obviously, the untreated sample has the highest 
corrosion rate in a 3.5% NaCl solution. When the pickling parameters are 48 g/L and 50 s, 
the current density of the sample decreases by about 97%. In comparison, the current den-
sity of the sample decreased by about 31% when the pickling parameters are 103 g/L and 
110 s. Thus, the pre-passivation has a passive effect on the Super 13Cr in terms of the 
corrosion resistance. In addition, the corrosion resistance could be improved by a factor 
of about 40 via a change in the pickling parameter. 

  
(a) (b) 

 
(c) 

Figure 8. Results from electrochemical measurements. (a) the OCP versus pickling treatment pa-
rameters, (b) potentiodynamic polarization curves, and (c) Nyquist plots of the tested samples. 

Table 2. Corrosion current densities of the pre-passivation films with different pickling conditions. 

Pickling Parameters Native Film 48 g/L—50 s 103 g/L—110 s 
Icorr/(μA/cm2) 10.542 0.266 7.291 

The Nyquist plots are presented in Figure 8c. All the Nyquist plots exhibit a single 
semicircle, suggesting a similar passive mechanism, and the pre-passive films are intact. 
The diameters of the plots of the pre-passivated samples are larger than those of the orig-
inal samples with native film, and the diameters of the plots change with the pickling 
treatment parameters. This means that the corrosion resistance of the Super 13Cr increases 
with the film thickness, consistent with the polarization results. 

On the basis of the above the results, the pre-passivation process has a greatly posi-
tive effect on the corrosion resistance of Super 13Cr; the pickling treatment could affect 
the pre-passivated film and then affect the corrosion resistance of the Super 13Cr in terms 
of the thermodynamics and the dynamics. 

Figure 8. Results from electrochemical measurements. (a) the OCP versus pickling treatment
parameters, (b) potentiodynamic polarization curves, and (c) Nyquist plots of the tested samples.

Figure 8b shows the potentiodynamic polarization curves of the Super 13Cr that
sustained pre-passivation with different pickling treatments. Obviously, there is no clear
passivation behavior in the native sample. However, there is a relatively obvious passiva-
tion area in the pre-passivation samples. Compared with the Super 13Cr covered in the
native film, the electrode potential of the pre-passivation sample increased, and the corro-
sion current density decreased. The corrosion current density derived from the Figure 8b
areshown in Table 2. The corrosion current density of the original sample with native film
was 10.542 µA/cm2. The current density of the sample with pickling parameters of 48 g/L
and 50 s was 0.266 µA/cm2. The current density of the sample with pickling parameters
of 103 g/L and 110 s was 7.291 µA/cm2. Obviously, the untreated sample has the highest
corrosion rate in a 3.5% NaCl solution. When the pickling parameters are 48 g/L and 50 s,
the current density of the sample decreases by about 97%. In comparison, the current
density of the sample decreased by about 31% when the pickling parameters are 103 g/L
and 110 s. Thus, the pre-passivation has a passive effect on the Super 13Cr in terms of the
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corrosion resistance. In addition, the corrosion resistance could be improved by a factor of
about 40 via a change in the pickling parameter.

Table 2. Corrosion current densities of the pre-passivation films with different pickling conditions.

Pickling Parameters Native Film 48 g/L—50 s 103 g/L—110 s

Icorr/(µA/cm2) 10.542 0.266 7.291

The Nyquist plots are presented in Figure 8c. All the Nyquist plots exhibit a single
semicircle, suggesting a similar passive mechanism, and the pre-passive films are intact.
The diameters of the plots of the pre-passivated samples are larger than those of the original
samples with native film, and the diameters of the plots change with the pickling treatment
parameters. This means that the corrosion resistance of the Super 13Cr increases with the
film thickness, consistent with the polarization results.

On the basis of the above the results, the pre-passivation process has a greatly positive
effect on the corrosion resistance of Super 13Cr; the pickling treatment could affect the
pre-passivated film and then affect the corrosion resistance of the Super 13Cr in terms of
the thermodynamics and the dynamics.

4. Conclusions

(1) The size and morphology of the inclusion on the surface of the Super 13Cr em-
ployed in this case basically do not change after soaking in a dilute sulfuric acid solution,
but the Cr content in the matrix/inclusion transition area increases after acidification and
the Fe content decreases.

(2) The Cr content on the surface of stainless steel increases first and then decreases
with the soaking duration and acid concentration. On the contrary, the Fe content decreases
first and then increases. The content of the Cr element reaches the peak value, and the
content of Fe element is at the valley when the soaking time and the acid concentration are
50 s and 48 g/L.

(3) Compared with the original sample with native film, the corrosion resistance of the
pre-passivated Super 13Cr improves dramatically in terms of the thermodynamics and the
dynamics. The corrosion resistance in this case could be maximally improved by a factor of
about 40 by changing the pickling parameters in the pre-passivation process, according to
the corrosion current density.

(4) The dissolution of the native film on the Super 13Cr surface during the pickling
treatment could be divided into two phases, including the outer film dissolution phase and
the inner film dissolution phase. The pickling treatment affects the corrosion resistance
through the chemical composition of the pre-passivation film. The corrosion resistance
would be greatly improved if only the Fe-enriched outer film dissolves instead of dissolving
the whole native film during the pickling treatment.
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