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Abstract: In order to define a favorable oil and gas accumulation area, this study focused on reservoir
recognition which is based on logging data of old wells. The Gaofengchang structure in eastern
Sichuan is used as a test area to discuss the necessity and feasibility of curve construction by combining
new and old wells. Analysis of the reasons for the inaccuracy of the traditional curve reconstruction
method is also provided. Given the interdependence of the well log in the depth domain sample
sequence, a new intelligent construction method (BI-LSTM) based on the cyclic neural network is
proposed. A discussion on the effect of data increments on prediction accuracy is also provided. The
following four conclusions were achieved through curve reconstruction experiments: a high-precision
CNL pseudo-curve was obtained; an underdetermined equation in optimization logging interpreta-
tion method needed to be extended to a positive definite equation; the quantitative processing of the
complex lithologic reservoir parameters for the old wells was realized; and the processing result of
the lithology physical property were basically consistent with the core data. Therefore, the BI-LSTM
proposed in this paper could improve the accuracy of logging curve construction and has a good
promotion significance for the old well review.

Keywords: Feixianguan Formation; underdetermined system; curve reconstruction; circulating
neural network; old well review

1. Introduction

In 1963, the first oolitic beach gas reservoir of the Feixianguan Formation was discov-
ered by well Ba-3 in the Shiyougou structure, eastern Sichuan, which was 4.26 × 104 m3/d
in gas yield. After that, dozens of independent oolitic beach gas reservoirs of the Feixian-
guan Formation, Fuchengzhai, Jiannan, Huangcaoxia, Gaofengchang and other structures
were discovered, which opened the prelude to the exploration of the oolitic beach gas
reservoir in eastern Sichuan. Even so, the exploration of the Feixianguan Formation gas
reservoir in the Sichuan Basin has been neglected for a long time. The causes of this phe-
nomenon are the small scale of reserves, which is less than 500 million cubic meters, and the
lithology of the gas reservoir which is composed mainly of micritic limestone and oolitic
limestone. At that stage, the logging data of the Feixianguan Formation gas reservoir only
recorded AC, GR and RT, RXO curves, namely the acoustoelectric combination [1]. In 1995,
with further exploration, 10 billion cubic meters of gas reservoir was discovered in the
Feixianguan Formation oolitic beach of the Dukouhe structure, which wrote a new chapter
of gas reservoir exploration in eastern Sichuan once again. Since then, we have made the
logging data more complete mainly with the comprehensive logging series. At present, the
oolitic beach resources of the Feixianguan Formation in eastern Sichuan are estimated to be
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331.15 × 1012 m3, and the proved reserves are 0.986 × 1012 m3. The low proved rate, 3.36%,
warns us to make further exploration. Therefore, it is of great practical significant to study
the log optimization processing interpretation of the old well which could help us to find
out the oolitic beach reservoir distribution in the Feixianguan Formation.

2. Basic Characteristics and Logging Response of the Feixianguan Formation Reservoir

According to the petrochemical analysis, the mineralogical composition of the Feix-
ianguan Formation in eastern Sichuan is mainly composed of clay, calcite, dolomite and
gypsum. Namely: limestone, mudstone, dolomite and gypsum (by lithology) [2,3]. Brief
introduction as follows: The limestone, mainly the oolitic limestone and the micrite lime-
stone, is widely developed in this area. The fine-grained mudstone is mainly developed
in the bottom of the Tf4 and Tf1. The gypsum is developed in the Tf4, and the rest of the
formations appear in the form of the gypsum nodule occasionally. The oolitic dolomite and
the oolitic limestone are the main reservoir rocks, and, among them, the oolitic dolomite
is the best reservoir rock, but its development frequency is low; the oolitic limestone, in
contrast, is high in development frequency, but, to be good reservoir, it has to be reformed
by fracture reconstruction. The distribution of the various lithologies in the Feixianguan
Formation is shown in Table 1.

Table 1. Statistics of mineralogical composition of the Feixianguan Formation.

Layer
Lithification Analysis Result

Histogram
Dolomite (%vol) Calcite (%vol) Gypsum (%vol) Clay (%vol)

Tf4 1–70, 25 5–98, 52 0–55, 4 5–40, 15

Tf3 0–90, 8 5–100, 83 0–30, 0.5 0–30, 7

Tf2 0–98, 18 0–100, 75 0.75, 0.5 0–23, 4

Tf1 0–80, 5 0–100, 82 / 0–63, 10

According to the core and the thin section calibration, the Feixianguan Formation
reservoir is of the fracture-pore type, and the logging response shows low gamma, high
acoustic wave, high neutron, low resistivity and positive difference characteristics. Figure 1
and Table 2 show the typical logging response characteristics of various lithologies.

Table 2. Different lithology logging response characteristics in Feixianguan formation.

Lithology Porosity (%)
Typical Logging Response Characteristics

GR (API) AC (µs/ft) CNL (%) DEN (g/cm3) RT/RXO

Limestone
Oolitic 1–6 low, 10–20 higher, 48–52 >0 low, 2.6–2.7 lower, plus difference

characteristic

Micritic 0–1.5 higher, 15–25 lower, 47–49 Near the
“0” line

lower,
2.69–2.72

higher, approximate
coincidence

Dolomite 1.5–12 low, 10–20 high, 48–55 >0 lower, 2.6–2.8 low, obvious plus
difference characteristic

Anhydrite 0–1 low, 10–15 low, 43–47 <0 High, >2.9 high, approximate
coincidence
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Figure 1. Different lithology logging response characteristics in Feixianguan formation.

3. Pseudo-Curve Reconstruction Method

According to the petrochemical analysis, the reservoir of the Feixianguan Formation
is characterized by complex lithology and poor physical property. It can be seen from the
logging response analysis that, normally, the complete conventional logging curve could
indicate the lithologies and the physical properties of the reservoir better. In the light of the
lithologic characteristics, the rock volume physical model can be simplified to five parts,
namely, clay, gypsum, calcite, dolomite and porosity [1,4]. In order to solve five unknown
quantities, we needed at least five curves to set up a system of simultaneous equations.
However, out of a total of twelve wells in this area, only five old wells (X1–X5) had complete
conventional logging curves; the remaining seven old wells (X6–X12) just had AC, GR and
RT, RXO curves. Obviously, these old wells could only establish one underdetermined
equation, including four equations and five unknown quantities, which could not meet
the basic requirements of the quantitative solution of parameters of the complex carbonate
reservoir. Therefore, it was unrealistic to expect the quantitative processing of complex
lithology unless the pseudo-curve could be constructed and the underdetermined equation
extended to the positive definite equation.

3.1. Selection of the Reconstruction Curves

In order to reduce the error transfer and the uncertainty of the pseudo-curve, we
had to make a choice between two logging curves, CNL and DEN, during the curve
construction [5–7]. In this section, we will demonstrate the selection of the reconstruction
curves. Firstly, by analyzing the crossplot of the core porosity of the coring section of well
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X1 and the 3-porosity curve (Figure 2), we found that the CNL curve was most significantly
correlated with the core porosity, with the correlation coefficient of 0.71, less with the AC
curve, and the least with the DEN curve, only 0.4. Obviously, the CNL curve could reflect
the physical properties of reservoir better.

Figure 2. Cross plot of the core porosity and the 3-porosity curve of well X1. (a) the core porosity
versus the AC curve; (b) the core porosity versus the DEN curve and (c) the core porosity versus the
CNL curve.

Secondly, we analyzed the relationship between the logging curves. It is known that
the GR curve is sensitive to the clay, the AC, DEN and CNL curve can reflect the lithologies
and physical properties of the reservoir simultaneously, and the RT curve can reflect the
oil/gas-bearing properties [8,9]. We used the CNL curve and the DEN curve of well X1,
respectively, to make a correlation analysis with other curves (Figure 3). It turned out
that the correlation coefficients of the GR, AC and RT curve with the CNL curve were
significantly higher than that with the DEN curve. The reason is that the high-density
drilling fluid caused expansion of hole diameter and induced fracture in some sections
of wells, which affected the AC curve and the DEN curve [10–12]. Therefore, it was more
appropriate to reconstruct the CNL curve than the DEN curve.

3.2. Selection of Construction Method

Regression is the essence of the old well curve reconstruction problem. At present,
there are a lot of research and reports on the reconstruction methods for curves, including
curve fitting, BP neural network, support vector machine, etc. [5,13–15]. These traditional
reconstruction methods for curves basically have the same idea: Firstly, a certain number
of the parameter eigenvalues are extracted, which form the training sample data set.
Secondly, by using the mathematical algorithm, the corresponding curve prediction model
is established [16]. The key of this technology is the convergence rate and the error analysis.

It is easy to find that, for the training data set, these traditional methods can obtain a
good effect in self-judging ability but not in prediction effect [17]. Yet it is worth noting
that, even if some methods can achieve good results, these have low accuracy of the curve
construction to spoil the logging interpretation, which leads to multi-solution or even
wrong interpretation [18,19]. Such a status quo is caused for the following reasons: Firstly,
lack of the feature information leads to loss of details when we extract the parameter
eigenvalue; secondly, lack of the training data leads to model over-fitting. Only a machine
learning method with high generalization performance can break this dilemma [20]. Given
that the logging data of unknown depth should be close within the nearby range when
reconstructing curves, we chose the depth model BI-LSTM with a facility of drawing out
the context sequence information to construct the pseudo-curve.

BI-LSTM is an extension of the recurrent neural network (RNN), which is a new
method based on the common LSTM. By using BI-LSTM, we could divide one-way LSTM
into two directions, namely the positive timing directions and the negative timing directions,
and connect two networks to the same output by putting the forward information and the
reverse information as the output of the current node at the same time [21,22]. BI-LSTM
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compensated for the limitations of the common neural network, solved the problem of
“context semantic loss” caused by the lack of operation connection between each input
layers, added the reverse operation based on the RNN and achieved the final results of
the training data, namely the stacking of the forward RNN and the reverse RNN [23–25].
Beyond that, owing to the presence of LSTM, the imperfection of the RNN that cannot
handle the long-term dependency information was also eliminated [26,27]. Figure 4 shows
the schematic diagram of BI-LSTM network structure.

Figure 3. Cross plot of the CNL curve, the DEN curve and other curves of the Feixianguan Formation
of well X1. (a) the DEN curve versus the GR curve; (b) the DEN curve versus the AC curve; (c) the
DEN curve versus the Rt curve; (d) the CNL curve versus the GR curve; (e) the CNL curve versus the
AC curve . . . and (f) the CNL curve versus the Rt curve.

Figure 4. BI-LSTM network structure diagram.

The algorithm can be expressed as:

ht = f (Uxt + Wht−1) (1)
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h′t = f
(
U′xt + W ′h′t+1

)
(2)

yt = g
(
Vht + V′h′t

)
(3)

where, xt is the input value of the BI-LSTM network at time t; yt is the output value of the
BI-LSTM network at time t; ht is the value of the forward hidden layer at time t; ht−1 is
the value of the forward hidden layer at time t − 1; V is the weight of the output layer in
the forward calculation; g is the corresponding activation function; U is the weight of the
input layer; f is the corresponding activation function; W is the corresponding weight of
the hidden layer; V′ is the weight of the output layer in reverse calculation; U′ is the weight
of the output layer; W′ is the weight of the hidden layer; h′t is the output of LSTM memory
unit in reverse calculation at time t; and h′t+1 is the output of LSTM memory unit in reverse
calculation at time t − 1. The output value of the BI-LSTM network at time t was obtained
by the forward and reverse output.

3.3. Pseudo-Curve Reconstruction Experiment

Given the influence of the reservoir lithologies, the physical properties and the oil/gas-
bearing properties on the logging curves, we used three logging curves, GR, AC and RT, as
the input curves for CNL reconstruction. Taking the logging data of well X1 as the input
sample and well X5 as the test sample, experiments were conducted by using multiple linear
regression (MLR), BP neural network, support vector machine (SVM, and BI-LSTM [5,14,28].
According to the experiment results, the advantages of the reconstruction method for the
curve can be discussed through three test parameters: the correlation coefficient (R), root
mean square error (RMSE) and determination coefficient (R2). The closer R2 is to 1, the
more accurate estimate is.

The concrete calculating methods are as follows.
SSres is the sum of squares of residuals, which can be calculated by Equation (4):

SSres = ∑
i
(yi − fi)

2 (4)

where, yi is real sample data, y is sample average value and fi is estimated data.
SStot is the total sum of squares, which can be calculated by Equation (5):

SStot = ∑
i
(yi − y)2 (5)

R2 is the determination coefficient, which can be calculated by Equation (6):

R2 =
SSres

SStot
(6)

The experimental results of well X1 and well X5 are shown in Table 3.

Table 3. Statistical comparison table of different algorithms predict accuracy.

Data Set Evaluation Parameter
Method

MLR BP SVM BI-LSTM

Self-judgment of Training Set X1

R 0.951 0.969 0.972 0.99

RMSE 0.799 0.642 0.635 0.153

R2 0.91 0.96 0.97 0.97

Examination of Training Set X5

R 0.64 0.69 0.74 0.82

RMSE 1.45 1.27 1.12 0.96

R2 0.46 0.58 0.66 0.71
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Figure 5 shows the effect of regression algorithms in well X1. Combined with Table 3,
the self-judging curve was found to be consistent with the measured curve in the training
set. Through contrastive analysis, we drew the conclusion: To the correlation coefficient
(R), R of these regression algorithms were all greater than 0.95, showing good results; to
the root mean square error (RMSE), BI-LSTM was the smallest, which was only 0.153, the
multiple logistic regression (MLR) was the largest, which was 0.799, BP neural network and
support vector machine lay halfway in between; to the determination coefficient (R2), SVM
and BI-LSTM were the best, MLR was the worst. Briefly, all three parameters indicated that
BI-LSTM was the optimal algorithm for the pseudo-curve construction.

Figure 5. The back estimation sketch of well X1.

Figure 6 shows the prediction effect of different algorithms in well X5. The main
contributions are as follows: For most well sections, the predicted curve was found to be
consistent with the measured curve in trend and, for some well expansion sections, the
predicted curve of the multiple regression and the BP algorithm was diametrically opposite
to the measured curve. Three-parameter analysis showed that the prediction effect of these
two algorithms was poor: R was less than 0.7, RMSE was greater than 1.2 and R2 was less
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than 0.6. In comparison, though the prediction effect of the support vector was rather ideal,
BI-LSTM showed greater advantages. For BI-LSTM, R was significantly higher, RMSE
was only 0.96 and R2 was up to 0.71. Through the BI-LSTM algorithm, we achieved a
pseudo-neutron curve. For such a pseudo-neutron curve, the frequency band distribution
range was narrower than the original curve, the high-gamma segment was smaller than
the original curve and the low-gamma segment was larger than the original curve. After
standardization, the pseudo-neutron curve was found to be consistent with the original
curve in the low-gamma segment, but there was still a large error in the high-gamma
segment. Significantly, the processing results did not interfere with the identification of the
reservoirs and the calculation of the reservoir parameters, although large errors existed.
The main reason for this is that the high-gamma segment was not the favorable reservoir.

Above all, the results show that the BI-LSTM network was the best method for pseudo-
curve construction, which improved the prediction precision and the accuracy greatly.
Through the BI-LSTM algorithm, the internal relationship of different logging curves was
reconciled, the dependency relationship of the sample sequences in the logging domain
was considered, the long-term dependence problem was solved and the perfect advantage
of making full use of data information was reflected.

3.4. The Impact of Data Volume on Predicted Results

For the machine learning algorithm, in general, the more training samples we have,
the more regularity information of the data set we achieve [4,29]. With the implementation
of the training tasks and the accumulation of the experience, the model acquired a strong
generalization ability. We took the data of well X1, X2, X3 and X4 as the training data in
turn and took the data of well X5 as the effect test. This was done to discuss the influence
of the data information on the prediction result of BI-LSTM.

It can be seen from the Figure 7 and Table 4 that, with the increase of the training data,
there was a rising trend of the pseudo-curve prediction result in R and R2 but not for RMSE,
suggesting that the prediction accuracy of BI-LSTM was improving. Yet it is worth noting
that BI-LSTM was not affected by the data amount solely; when we took well X1 and well
X2 as the training data set, R2 increased significantly from 0.71 to 0.76 but, with the addition
of the training data of well X3 and well X4, the growth trend of R2 slowed down gradually.

Table 4. Experimental statistic BI-LSTM algorithm in data increment.

Well Name Evaluation
Parameter

BI-LSTM

Training Set X1 Training Set X1X2 Training Set X1X2X3 Training Set X1X2X3X4

Test Set X5

R 0.82 0.88 0.92 0.95

RMSE 0.96 0.72 0.67 0.37

R2 0.71 0.76 0.78 0.79
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Figure 6. Forecast effect chart well X5.
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Figure 7. Prediction of BI-LSTM algorithm in well X5 data increment.

4. Application Effect Analysis

When using the optimized logging processing method for the data processing inter-
pretation, note these points: the weight of the pseudo-neutron curve should be lower than
0.3, and the weight coefficient of the other measured curves should be set to 1. Figure 8
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shows the comparison before and after the processing results of the pseudo-neutron curve
construction in X6 old well. Before that, there were only four curves, GR, AC, RT and RXO.
It means that the processing result can only be treated like a single limestone mineral, and
the lithological, geophysical feature differs greatly from the core analysis data.

Figure 8. Comparison of well X6 logging interpretation in lithology and physical properties.

After that, the core porosity was found to be consistent with the logging porosity in
trend, with a correlation coefficient of 0.896. For this kind of optimum processing result, the
data points mostly distributed near the 45◦ line (Figure 9), the relative error was 14.7% and
the absolute error was only 0.28. By comparison, the evaluation indexes were improved
dramatically after curve construction (Table 5). The treated lithology profile was found to
be consistent with the lithification analysis profile, basically, which demonstrates that the
construction method of BI-LSTM curve is feasible.

Figure 9. Cross plot of the core porosity and porosity of well X6. (a) the core porosity versus porosity
before curve construction; (b) the core porosity versus log porosity after curve construction.
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Table 5. Index comparison table of before and after processing results of curve construction.

Comparative Analysis of Porosity Average (%) Correlation
Coefficient

Absolute
Error (%)

Relative
Error (%)

Core porosity 1.90 \ \ \
Porosity before 0.30 0.815 1.6 84.2

Porosity after 2.18 0.896 0.28 14.7

5. Conclusions

(1) According to the correlation analysis of the core physical property and the 3-porosity
curve in the Feixianguan Formation, the CNL curve is most significantly correlated
with the core porosity, less with the AC curve and the least with the DEN curve. The
results show that, compared with the DEN curve, in constructing the pseudo-curve,
the CNL curve is a more rational choice.

(2) Compared with the traditional method, BI-LSTM shows greater advantages. This
method not only gives full consideration to the interdependence of the sample se-
quences in the logging depth domain, but also improves the construction precision
and accuracy of the pseudo-curve by increasing the amount of data.

(3) With the increase of the amount of training data, the prediction accuracy of the pseudo-
curve constructed by BI-LSTM is gradually improved. Yet it is worth noting that
BI-LSTM is not affected by the data amount solely.

(4) By using BI-LSTM, the accuracy of the old well pseudo-curve is improved. However,
it is suggested that the neutron curves should be standardized before being used
for logging data processing and interpretation, and the weight coefficient should be
reducing when using the curves.
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Abbreviations

AC acoustic
GR natural gamma ray
Rt true formation resistivity
Rxo flushed zone formation resistivity
CNL compensated neutron logging
DEN density
Tf1~Tf4 1st~4st member of Feixianguan Formation
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