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Abstract: The pivotal roles of smart packaging in the food industry are ensuring food quality and
safety as well as providing consumers with important information about the food, allowing them to
make more informed purchase/consumption decisions. The purpose of this study is to provide a
holistic bibliometric analysis of smart food packaging. Bibliometric analysis collected 878 documents
from the Scopus database. The annual trend revealed a three-phase growth, i.e., initial (1986–1999),
development (2000–2016), and exponential (2017–2022). Since 2017, smart food packaging has
attracted increasing research interest. From the keywords analysis, similar general topics of research
were identified before and after the coronavirus outbreak (COVID-19). Remarkably, COVID-19
accelerated research and development toward finding sustainable and safe bio-based materials.
However, most smart packaging materials are still not commercialized mainly due to the high cost of
production and the absence of international standard regulations. Overall, academia is steps ahead in
commercialization, where novel materials and mechanisms are tested for their efficiency and safety.
The widespread of smart packaging relies on finding sustainable and safe solutions that are feasible
at large scale and accepted by consumers.

Keywords: food safety; sustainability; COVID-19; bibliometric analysis; biodegradable material; nan-
otechnology

1. Introduction

Food packaging plays several pivotal roles in food protection, nutrient stability, and
quality preservation. Moreover, it provides essential information about product shelf life,
ingredients list, and nutritional labeling [1]. Nevertheless, the high amount of food pack-
aging waste has increasingly become a serious environmental and economic burden [2].
It was recently reported that one-way packaging can represent up to half of the environ-
mental impacts of the food value chain [3]. Therefore, shifting to reusable and recyclable
packaging might contribute efficiently to waste management (e.g., plastic) [4]. This strategy
aligns with Goal 11, Goal 12, Goal 14, and Goal 17 of the 2030 Sustainable Development
Goals (SDGs). In 2019, the coronavirus pandemic (COVID-19) has disrupted food supply
chains worldwide [5]. COVID-19 induced global health and economic crisis that had a
major impact on consumer attitude, dietary habits and perception of food safety, and
packaging [6–8]. Additionally, it contributed to putting upfront the shortcomings of classic
packaging, such as limited control of product quality and safety, as well as traceability. For
the post-COVID-19 era, new strategies are being implemented to leverage the innovation
of packaging to fit new purposes beyond those classic strategies [9].

By definition, smart packaging refers to packaging systems with embedded sensor
technology used for foods [10]. Compared to the classic one, smart packaging comes as an
innovative strategy with additional functionalities to extend shelf life and monitor freshness,
improving product safety, guaranteeing high-quality standards, as well as supporting
sustainability all along the food production chain [11,12]. The market of smart packaging is
witnessing a fast growth and was valued at USD 22,257.6 million in 2020 and is expected
to reach USD 38,662.0 million by 2030 [13]. Active and intelligent packaging are two
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variants of smart packaging. Based on the European regulation (EC) No. 450/2009 [14],
active packaging is a system designed to deliberately incorporate components that would
release or absorb substances into or from the packaged food or from the environment
surrounding the food. Although active packaging is not a new concept, it has significantly
evolved during the last decades [15]. The use of natural biopolymers (e.g., protein, starches,
and cellulose) in the packaging material with biological activities (e.g., antibacterial and
antioxidants) regulates the environment inside the packaging, ensuring freshness and
extending the shelf life of the food [16,17]. The European Food Safety Authority (EFSA)
defined intelligent packaging as materials that monitor the condition of packaged food or
the environment surrounding the food [18]. This packaging consists of indicators, biosensor
or data carriers attached inside or on the surface of the food package [19]. This system can
communicate the conditions of the packaged product and its history (pathogens, toxins,
time, and temperature) to the consumers without interacting with the food [12,20,21].

Although extensive research is currently underway, not all the developed smart
packaging systems have been implemented at an industrial scale [17,22]. Costs and time
related with the research and development of new packaging materials are hampering
the growth of the market [19]. The nature and complexity of packaging materials can
cause safety issues and thus requires further trials to test their toxicity, which also requires
proper regulation [11,12]. Additionally, integrating new packaging materials within the
existing systems requires time and investments [20]. Therefore, there is plenty of room
for innovation to reduce the gap between research and commercialization [23,24]. In this
light, this study intends to thoroughly investigate the research landscape and trends of
smart food packaging. Scopus is recognized as the largest abstract and citation database
of peer-reviewed literature covering a wide-range of disciplines [25,26]. In this study,
Scopus was used as the source of bibliometric records, while for the data visualization,
VOSviewer was employed. Bibliometric analysis enables the assessment of scientific
production and main topics related to the smart food packaging. This analysis has been
widely implemented to evaluate academic outputs of various research fields [27–29]. The
main goal of the bibliometric analysis is to analyze the growth of research, main topics,
geographical distribution, scientific impact, and key actors in the field [27,29].

2. Methodology: Bibliometric Analysis

In this study, the literature dataset was collected from Scopus database. Scopus is
a web-based, multidisciplinary database hosted by Elsevier, and it provides bibliometric
data of peer-reviewed articles published in scientific, medical, technical, and social science
disciplines. Scopus covers different subject areas, publication years, document types,
indexed sources (22,000) from over 5000 publishers worldwide, patents and funding data.
Compared to other bibliometric databases, Scopus (Elsevier’s abstract and citation database)
is a suitable database for the present study since it includes a multitude of fields, which is a
mandatory criterion as proven by previous bibliometric studies [30,31].

On 29 October 2022, the literature search was conducted by entering the search queries
(TITLE-ABS-KEY (smart AND packaging AND food)). Inclusion criteria were published
records, including articles, comments, reviews, book chapters, and conference papers. With
a further restriction to English as language, a total of 883 documents were collected. By
setting the time span as ranging from 1986 to 2022, we obtained 878 documents. The
collected documents were classified according to diverse aspects, i.e., number of documents
per year, distribution by subject categories and by sources, and affiliation by country and
institution. The final list of documents was analyzed using Microsoft Excel (Microsoft
Office 365, Washington, WA, USA). In a second step, the final excel sheet was divided into
two tables, publications before and after COVID-19. The cutoff was decided based on the
first article mentioning COVID-19.

In regard to keywords analysis, ‘all keywords’ (meaning in the titles and abstracts
of the selected documents) and ‘authors keywords’ were analyzed and charted using
VOSviewer software, developed at Leiden University’s Centre for Science and Technology
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Studies, Leiden University, the Netherlands [32]. The VOSviewer charts were presented
in bubbles and curved lines. The most used keywords were marked using larger circles.
Different colors indicate different clusters with different keywords [32].

3. Results and Discussion
3.1. Annual Trend of Publications

A total of 878 documents that met the research criteria were published from 1986 to
2022. Figure 1 visualizes the annual trend of the retrieved publications. The growth curve
of scientific publications can be divided into three stages. During the initial phase, (from
1986 to 1999) the smart packaging concept was still seen as a futurist idea to overcome
conventional packaging shortcomings. The second stage is characterized by a development
phase that lasted from 2000 to 2016. During this period, the total number of publications was
247 documents. No clear trend was observed, with a fluctuation of the annual number of
releases, in which the highest number of publications was recorded in 2015 (31 documents).
The growing interest in smart food packaging could be fueled by the need of finding
innovative solutions to overcome traditional packaging-related issues [33–35]. Owing
to the continuously increasing customer experience expectations, the growing product
complexity, and the waste reduction concerns, traditional packaging is no longer sufficiently
adequate [36,37]. On the other hand, smart packaging enables changes (in the product
and/or its environment) monitoring (intelligent packaging) and changes mitigation (active
packaging) to provide a safe food product to consumers. Studies on nanomaterials applied
in food packaging started to gain priority in research [37–39]. Moreover, the first generation
of intelligent packaging emerged to solve safety and quality issues through the supply
chain, and to reduce product losses [40].
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Figure 1. Annual trend of smart food packaging publications.

Exponential phase is the third ongoing stage and it started since 2017. A dramatic
growth of interest from the academia was observed showing a booming trend in scientific
publications. Advances in materials and engineering also contributed to boost research in
this sector [41–43]. New technologies, such as nanotechnology and artificial intelligence,
offered new materials/films to improve safety and quality of foods with an extended shelf
life [16,41]. Various nanomaterials are being studied to provide active, bio-based, and
smart/intelligent packaging [44,45]. Several research funding calls, such as HORIZON-
JU-CBE-2022 and H2020-JTI-BBI-2020, have been supporting projects with the aim of
preserving/improving food quality and reducing food waste. In addition, bio-based
packaging is gaining a lot of interest to replace conventional plastic. For instance, USABLE
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PACKAGING project and DanuBioValNet project are EU funded ongoing projects focused
on levitating bio-based packaging.

3.2. Subject Categories

The total research areas identified were 26 and of these 21 had at least 10 publications.
The top 20 research areas with the highest number of publications are illustrated in Table 1.
The most prominent areas on smart packaging are Engineering, Agricultural and Biological
Sciences, Materials Science and Chemistry, and Biochemistry, Genetics and Molecular
Biology.

Table 1. Main subject area related to smart food packaging, as classified by Scopus 1.

Rank Subject Area Documents Record (%)

1 Engineering 320 36.4%

2 Agricultural and Biological Sciences 313 35.6%

3 Materials Science 248 28.2%

4 Chemistry 181 20.6%

5 Biochemistry, Genetics and Molecular Biology 177 20.2%

6 Chemical Engineering 119 13.6%

7 Physics and Astronomy 102 11.6%

8 Medicine 79 9.0%

9 Environmental Science 70 8.0%

10 Computer Science 58 6.6%

11 Energy 48 5.5%

12 Economics, Econometrics and Finance 39 4.4%

13 Pharmacology, Toxicology and Pharmaceutics 32 3.6%

14 Business, Management and Accounting 31 3.5%

15 Social Sciences 31 3.5%

16 Immunology and Microbiology 28 3.2%

17 Nursing 17 1.9%

18 Earth and Planetary Sciences 15 1.7%

19 Mathematics 13 1.5%

20 Health Professions 12 1.4%
1 more than one can apply.

3.3. Most Prolific Countries and Institutions

A total of 79 countries participated in publishing the retrieved documents. Particularly,
30 countries had more than 10 publications. The top 20 prolific countries are shown in
Table 2. India was the most prolific (119 publications) and was followed by the USA
(112 publications), China (94 publications), and Italy (56 publications).

3.4. Most Prolific Institutions

In total, 150 institutions have contributed to the total record. However, only 9 of them
had more than 10 publications, as illustrated in Table 3. Urmia University was the most
prolific, with 28 publications. Other prolific institutions included Tabriz University of
Medical Sciences (19 documents), University College Cork (16 documents), Kyung Hee
University (13 documents), University of Massachusetts Amherst (13 documents), and
Consiglio Nazionale delle Ricerche (13 documents).
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Table 2. The top prolific countries.

Rank Country/Territory Documents Record (%)

1 India 119 13.6%
2 USA 112 12.8%
3 China 94 10.7%
4 Italy 56 6.4%
5 Iran 54 6.2%
6 Spain 45 5.1%
7 United Kingdom 44 5.0%
8 South Korea 42 4.8%
9 Brazil 37 4.2%
10 Indonesia 33 3.8%
11 Ireland 30 3.4%
12 Portugal 28 3.2%
13 Turkey 27 3.1%
14 Canada 23 2.6%
15 Greece 23 2.6%
16 Australia 21 2.4%
17 Malaysia 20 2.3%
18 Egypt 15 1.7%
19 Germany 15 1.7%
20 Thailand 14 1.6%

Table 3. The top prolific institutions.

Institution Country Documents Record (%)

1 Urmia University Iran 28 3.2%

2 Tabriz University of Medical Sciences Iran 19 2.3%

3 University College Cork Ireland 16 1.8%

4 Kyung Hee University Republic of Korea 13 1.5%

5 University of Massachusetts Amherst USA 13 1.5%

6 Consiglio Nazionale delle Ricerche Italy 13 1.5%

7 Ministry of Education China China 11 1.3%

8 CSIC–Instituto de Agroquímica y
Tecnología de los Alimentos IATA Spain 11 1.3%

9 Tehran University of Medical Sciences Iran 11 1.3%

10 Universidade do Minho Portugal 9 1.1%

11 Hasanuddin University Indonesia 9 1.0%

12 Yonsei University Mirae Campus Republic of Korea 9 1.0%

13 Rutgers University–New Brunswick USA 9 1.0%

14 School of Public Health USA 9 1.0%

15 Consejo Nacional de Investigaciones
Científicas y Técnicas Spain 8 1.0%

16 Gorgan University of Agricultural
Sciences and Natural Resources Iran 8 0.9%

17 Universidade de Vigo Spain 8 0.9%

18 Clemson University USA 8 0.9%

19 Universitas Jember Indonesia 8 0.9%

20 National Technical University of
Athens Greece 7 0.8%
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3.5. Key Actors

In the list of relevant authors associated with smart food packaging, out of 2860 authors,
5 authors had more than 10 publications (Table 4).

Table 4. Most relevant authors by publications.

Authors Affiliation Documents

Kerry, J. Department of Food and Nutritional Sciences, University College
Cork, National University of Ireland, Cork, Ireland 15

Rhim, J.W.
Department of Food and Nutrition, BioNanocomposite Research

Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu,
Seoul 02447, South Korea

12

Moradi, M. Department of Food Hygiene and Quality Control, Faculty of
Veterinary Medicine, Urmia University, Urmia, Iran 11

Liu, J. College of Food Science and Engineering, Yangzhou University,
Yangzhou 225127, PR China 10

McClements, D.J. Department of Food Science, University of Massachusetts Amherst,
Amherst, MA 01003, USA 10

Dr. Kerry, J. is one of the main actors, who has worked on food (meat products) smart
packaging and biodegradable materials [36,46].

Dr. Moradi, M. stands out for his research in regard to the use of nanotechnology and
electrospinning to develop films for active and intelligent packaging [42,47].

Dr. Rhim, J.W. has focused on bio-nanocomposites for food packaging appli-
cations [39,48].

Dr. Liu, J. has worked on developing active and intelligent packaging films using
biomaterials [49,50].

Dr. McClements, D.J. has contributed by research to nanomaterials and their use in
developing smart packaging [51,52].

3.6. Most Prolific Journals

A total of 878 publications were published in 123 journals. Of these, 11 journals had
at least 10 published articles. Table 5 shows the 10 most featured journals. From the
analysis, the “International Journal of Biological Macromolecules” had the highest number
of publications (40), followed by Food Packaging And Shelf Life, Trends In Food Science
And Technology, Food Hydrocolloids, and Food Control.

3.7. Keywords Analysis

Scientific studies have used keywords to classify recent topics of interest in regard
to smart packaging in the food industry. In this study, 6634 keywords resulted from the
VOSviewer analysis of all keywords, while those relative to the author were 2246. Using all
of them with a threshold of 20 occurrences, 82 keywords were found to meet this threshold
and the strength of the links between their co-occurrence (Figure 2). As a result, three main
clusters represented with three different colors (i.e., green, red, and blue) were identified.
These clusters are closely related as illustrated in Figure 2.

Red showed general topics in regard to smart packaging and its role in the food supply
chain. This cluster included words, such as active packaging, nanotechnology, modified
atmosphere, food preservation, food processing, food microbiology, quality control, food
labeling, food waste, food quality, and human. Remarkably, although intelligent packaging
was among the list of 82 keywords used in Figure 2, it was not shown unlike active
packaging. This suggests that more research is focused on active packaging compared to
intelligent packaging since it has a longer history [40,44].
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Table 5. The top prolific journals.

Rank Source Publisher, Country Documents Record (%)

1 International Journal Of Biological Macromolecules Elsevier (Netherlands) 40 4.6%
2 Food Packaging And Shelf Life Elsevier (Netherlands) 16 1.8%
3 Trends In Food Science And Technology Elsevier (Netherlands) 16 1.8%
4 Food Hydrocolloids Elsevier (Netherlands) 15 1.7%
5 Food Control Elsevier (Netherlands) 14 1.6%
6 Iop Conference Series Earth And Environmental Science IOP Publishing (UK) 13 1.5%
7 Food Chemistry Elsevier (Netherlands) 12 1.4%

8 Critical Reviews In Food Science And Nutrition Taylor and Francis Ltd.
(USA) 11 1.3%

9 Sensors And Actuators B: Chemical Elsevier (Netherlands) 11 1.3%
10 Carbohydrate Polymers Elsevier (Netherlands) 10 1.1%
11 Polymers MDPI (Switzerland) 10 1.1%
12 Food Research International Elsevier (Netherlands) 9 1.0%
13 Foods MDPI (Switzerland) 9 1.0%
14 Nanomaterials MDPI (Switzerland) 9 1.0%
15 Packaging Technology And Science Wiley (USA) 9 1.0%
16 Materials MDPI (Switzerland) 8 0.9%

17 Acta Horticulturae
International Society for

Horticultural Science
(Belgium)

7 0.8%

18 Diabetes Self Management SAGE Publications Inc.
(USA) 7 0.8%

19 Food And Bioprocess Technology Springer Nature
(Switzerland) 7 0.8%

20 Molecules MDPI (Switzerland) 7 0.8%
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Blue consisted of keywords, such as biomolecules, biopolymers, and nanocomposite
packaging materials. This underlines the current direction in research and proposals aiming
at the promotion of naturally sourced materials to create packaging of foods [39,53–55].
Growing concerns over the environment and sustainability related to artificial materials
are boosting scientists to find eco-friendly films [17,53,56].

Green showed specific natural compounds used in developing smart food packag-
ing. This reflects the increased interest in biodegradable packaging materials, including
anthocyanin, starch, cellulose, and chitosan [57]. Polysaccharides are versatile, biodegrad-
able, non-toxic, affordable, sustainable, and available polymers [43,53,54]. Cellulose and
chitosan are widely used for food packaging due to their good film and gel-forming ability,
recyclability, and inherent antimicrobial properties [24,58,59]. Starches can be used for food
packaging as an adhesive and additive but the mechanical properties of the resulting films
still have some limitations [59–61]. Overall, some biomaterials have brittle texture, fast
aging, and poor mechanical properties [62]. Therefore, scientists continue to search for solu-
tions to improve their features. Creating a combination of compounds with complementary
attributes resulted in films with enhanced mechanical properties [62–64]. For instance,
polysaccharides have attracted extensive attention as a film-forming material for active and
intelligent colorimetric packaging with the addition of anthocyanins [65]. Anthocyanins
are pH-sensitive to the environment and thus are used in developing pH responsive smart
films [66–68]. Colorimetric films can realize/facilitate real-time monitoring of food fresh-
ness [60,69,70]. At present, the use of anthocyanins in active and smart packaging films
has attracted increasing attention in the field of food engineering [63,71]. Other pigments,
such as curcumin, shikonin, alizarin, and betalain, with similar features to anthocyanins
are used as freshness indicator films [55,72,73].

Using authors’ keyword options and a threshold of 6 publications, 69 keywords were
found (Figure 3). In contrast to Figure 2, the authors’ keywords (Figure 3) captured more
specifically the current research directions in the smart food packaging.
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Authors’ keyword clouds were clustered in seven groups/colors:

1. Turquoise is the main cluster with “smart packaging” as the main keyword. This
cluster contains works, such as “bacterial cellulose” and “biosensors”.

2. Orange covers keywords related to intelligent packaging with words, such as “nano-
materials”, “smart material”, “food spoilage”, and “food quality”.

3. Blue is closely related to the turquoise and orange clusters and includes keywords,
such as “indicator”, “freshness indicator”, “electrospinning”, “curcumin”, and “shelf
life”.

4. Purple focuses on polymers and biopolymers related to food waste, sustainability,
controlled release, and antimicrobial packaging.

5. Green focuses on mechanisms of smart packaging and their safety with words, such as
“quality”, “safety”, “spoilage”, “sensors”, and radio-frequency identification “RFID”.

6. Yellow had nanotechnology as a central nod. This cluster contained words, such as
“nano sensors”, “food preservation”, “safety”, “food additives”, and “processing”.
This reflects the interest in this technology in nanomaterials for developing intelligent
packaging.

7. Red consisted of words related to packaging biomaterials with keywords, including
“chitosan”, “starch”, “gelatin”, and their properties (i.e., antioxidant and antibacterial).

3.8. Impact of COVID-19 on Research Topics

Total publications (n = 878) were divided into two groups, i.e., before (n = 606) and
after (n = 272) COVID-19. The total keywords before COVID-19 were 4484, while after
COVID-19 were 3235. Using a threshold of 20 occurrences, 39 keywords were retained for
the pre-COVID-19 period and 31 for post-COVID-19 (Figure 4).
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For the pre-COVID-19 era, three main clusters (i.e., green, red, and blue) were iden-
tified. Blue was focused on packaging materials, such as nanoparticles and biomaterials
(cellulose). Red was related to the importance of smart and intelligent packaging in food
preservation and safety all along the production chain. Green focused on food control and
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the impact of food packaging on human health. Overall, academia was more focused on
packaging materials in relatedness to food safety [38,74,75]. To ensure the safety of packag-
ing materials in contact with food, regulatory authorities have developed guidelines and
regulations for the risk assessment [37,75]. Nevertheless, this latter is not universal, but dif-
ferent systems have been developed around the world by agencies, such as Food and Drug
Administration (FDA, USA), Health Canada, and the European Commission [76–78]. In
August 2009, EFSA published guidelines regarding the submission of dossiers for the safety
assessment of active and intelligent substances used in food packaging in Europe [79].

For the post-COVID-19 era (Figure 5), researchers’ interest was focused first on the
packaging role in food preservation and storage (green color). The unexpected emergence
of the COVID-19 pandemic has changed the behavior of customers [80–82]. People tended
to stockpile and buy more than they can consume due to the increased risk of shortages
during the sanitary crisis [82,83]. This has urged more research to understand the impact of
different types of packaging on food quality in association with innovative processing, such
as nanotechnology [16,84]. Red cluster gathers packaging materials and biomaterials, such
as anthocyanins and chitosan and their bioactive activities in the food, as well as chemical
materials. This cluster contained the mode of detection, which is mostly chemical reactions
related to pH and color change. H ions and ammonia are also among the identified key-
words, and they are concrete examples of the color change on the intelligent indicator used
for monitoring meat quality during storage. The use of smart packaging in meat products
has been studied in several publications [69,85–87]. Meat is a staple food characterized by
a high perishability [88]. During storage, the decomposition of fresh and processed meat
products by enzymes and microbes produces volatile ammonia compounds, which are
early indicators of quality/safety damage. Protein degradation during meat storage leads
to the generation of ammonia, which is responsible for pH increase. Here, this volatile
nitrogenous compound reacts with H+ ions and produces H ions [89]. The OH ions in
the packaging are directly proportional to the pH value, which affect the change in the
intelligent indicator [90].
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In regard to authors’ keywords, 1399 were found pre-COVID-19 versus 1070 post-
COVID-19. Considering a threshold of 6 publications, 35 keywords were retrieved for
pre-COVID-19 compared to 27 after the pandemic. Figure 6 shows six clusters. Yellow has
the central nod presenting smart packaging with keywords related to biopolymers, food
quality, and nanocomposite. This cluster is connected to the light blue cluster that includes
encapsulations and biosensors. Red and purple are connected and related to intelligent
packaging types (sensors and indicators) and their role in food safety and food waste.
Post-COVID-19, biodegradable material appeared among the most used keywords by
authors (Figure 7, blue cluster). This suggests the shift toward more sustainable materials
for environmental motives and increased awareness in finding solutions [12,17]. Green
covered keywords related to the use of chitosan in making nanoparticles/material for
packaging. However, post-COVID-19 research shows a higher diversity in biomaterials,
such as starch, curcumin, anthocyanin, and shikonin (Figure 7). Blue is more of a holistic
cluster showing topics related to agriculture, food, and packaging technology. Overall, the
main topics related to food safety and packaging materials are remained the same before
and after COVID-19. Nevertheless, more biomaterial is being studied after COVID-19 with
the focus on food safety [8,91,92]. Probably, this is due to the increased pressure as a result
of the international crisis, such as COVID-19 and wars to develop safe (for humans and
planet) biomaterials for commercialization and their more broad use [91,93].
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3.9. Challenges and Opportunities

Opportunities rely on the use of biomaterials with ingredients having bioactive ac-
tivities, such as antioxidant and antimicrobial. Nanotechnology and electrospinning are
contributing in making these bioactive nanoparticles with multifunctionality [16,94,95].
Further research is still needed for producing new packages from health beneficial sources.
COVID-19 reinforced the urgent need for packaging biomaterials ensuring safety, conve-
nience, and sustainability (Figure 8). The increased awareness on the association between
food quality and safety, as well as health urged consumers’ demand for more information
about what they are eating [8,91]. Smart packaging offering traceability and real-time
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information regarding the products would be beneficial for providing valuable safety
information to consumers. Ecofriendly claims are attracting consumers due to increased
awareness toward the impact of plastic on the environment [17,96]. This could encourage
consumers to pay more for these types of products. E-commerce packaging has grown
steadily in recent years, especially after COVID-19 [96]. Improved control and tracking of
foods can be performed using intelligent packaging.
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Figure 8. Opportunities and challenges of smart food packaging.

Smart food packaging is facing several challenges. The safety of bioactive material is a
key factor to boost the shift from lab to industrial scale. There is still a need for guidelines
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with clear specifications and analyses to show the safety of material used in packaging.
Mass production is still challenging, and solutions are required to reduce the cost, while
being environmentally friendly, as well as safe for use by humans. The recovery of bioactive
ingredients from agro-industrial by-products can represent a solution to develop nanopar-
ticles [48,97]. For instance, in the EU, large amounts of vegetable by-products rich in
carotenoids might contribute to the reduction in the cost of developing active packaging.
The fast evolution in digitalization, such as artificial intelligence and sensors would support
a faster growth in intelligent packaging materials [98,99]. Proving feasibility and cost
effectiveness will boost the progress of this type of packaging as a good candidate to ensure
food safety and quality. Moreover, 3D printing would support the designing and executing
of custom-made films that fit with the product requirements [100,101].

4. Conclusions

In conclusion, smart food packaging is not a new concept, but it is increasingly con-
sidered as an effective solution to ensure food quality and safety. Currently, at academic
level, it is in the development phase where different topics are being studied. The main
research topics are food safety, packaging materials, health, sustainability, and food preser-
vation. When dividing the scientific literatures in two groups, pre- and post-COVID-19,
the main topics are the same, but a trend toward sustainable solutions, such as the use of
biodegradable materials is more accentuated after COVID-19. This underlines that this
moment of crisis ensured more recognition of the benefits of active and intelligent packag-
ing technologies. The challenges are related to the economic feasibility and scalability of
smart food packaging. Global times of crisis, including the pandemic and armed conflicts,
are stimulating factors to policy makers, manufacturers, and regulatory authorities to join
efforts toward the faster development of smart food packaging.
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