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Abstract: In this research, the existence of an asymmetrical Gaussian confinement potential (AGCP)
along the quantum well (QW) growth direction and of a parabolic potential perpendicular to the
polar coordinate direction were considered. The magnetic field and temperature properties of the
longitudinal optical (LO)-phonon mean number, ground-state energy (GSE), ground-state binding
energy (GSBE) and vibrational frequency (VF) of strongly coupled magnetopolarons in triangular
confinement potential QWs (TCPQWs) were investigated according to the quantum statistical theory
as well as the linear combination operator and unitary transformation methods. We obtained
analytical expressions for the GSE, GSBE, VF and LO-phonon mean number as functions of the applied
magnetic field, temperature, AGCP barrier height, AGCP range, polar coordinate system’s polar
angle and polar coordinate system’s confinement strength. It was demonstrated by the calculated
numerical results that the GSE, GSBE, VF and LO-phonon mean number varied with the related
physical quantities. The obtained theoretical results are expected to provide a reference for future
research on polarons.

Keywords: vibrational frequency; temperature; magnetopolaron; LO-phonon mean number; ground-
state binding energy; ground-state energy

1. Introduction

Quasiparticles [1], also known as collective excitations, are sudden changes that occur
in microcomplex systems. As an early quasiparticle–polaron concept, a polaron [2,3] was
used to define the formation unit of excess carriers (electrons and holes) in potential wells
generated by replacing the surrounding ions with carriers. In magnetic semiconductors,
the carrier spin and surrounding magnetization cloud induced by them could be regarded
as the quasicomposite particles called magnetopolarons. Theoretical and experimental
research has described the importance of polarons in different systems [4–14]. It is worth
mentioning that quantum well (QW) systems can be constructed with ionic crystals or polar
semiconductor materials [15,16], therefore strongly affecting the physical properties [17–19]
of electron–phonon interactions. Particularly, the photoelectric properties of different QW
systems with peculiar quantum size effects have attracted the attention of some scholars
to polarons [20–24]. Scientific and technological progress has introduced several external
factors into the research field of QWs, such as magnetic fields [25,26], electric fields [27],
pressure [28–30], confined potentials [31,32], etc., which have broadened the research
field of QWs. When a polaron moves in a QW system, it interacts with the lattice and
is influenced by different confined potentials. Confined potentials can be divided into
strong and nonstrong confined potentials. For confined potentials, many studies have been
conducted on the influences of different confined potentials on polaron properties. For
example, Fotue et al. [33] calculated the time evolution of the quantum mechanical state
of abound magnetopolarons in a modified cylindrical quantum dot. In the condition of
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strong coupling, they investigated the eigenenergies and eigenfunctions of the ground
state and first excited state, respectively. Flebus et al. [34] theoretically studied the effects
of strong magnetoelastic coupling on the transport properties of magnetic insulators.
Kikkawa et al. [35] demonstrated that the Sharp structures in the magnetic-field-dependent
spin Seebeck effect voltages of Pt/Y3Fe5O12 at low temperatures are attributed to the
magnon–phonon interaction. Experimental results were well reproduced by the Boltzmann
theory when it included magnetoelastic coupling. Li et al. [36] reported an observation of
antiferromagnetic magnon polarons in a uniaxial antiferromagnetic insulator Cr2O3. By
tracking the temperature dependence of the spin Seebeck effect anomalies, they found that
magnon polarons showed behaviors similar to those of longitudinal acoustic and transverse
acoustic phonons.

The importance of polarons in a variety of systems has been confirmed by several
breakthroughs in experimental and theoretical studies. For example, in previous studies,
polarons were influenced by parabolic potentials and asymmetric Gaussian potentials [37],
or by parabolic potentials and asymmetric semi-exponential potentials [38], which led to a
series of interesting phenomena. In order to further explore polaron-related problems, this
paper discussed strongly coupled magnetopolaron properties in TCPQWs based on unitary
transformation, the linear-combination operator method, and the quantum statistical theory.
With continuous theoretical progress and the rapid accumulation of experimental evidence,
it is hoped that the obtained results will contribute to research on the polaron effects in
materials and other systems.

2. Theoretical Model

An electron was assumed to be in a 2D RbCl asymmetrical Gaussian confinement
potential. The electron was considered to move in the crystal, interacting with bulk LO
phonons. Magnetic field B was assumed to be along the z direction, B = (0, 0, B), and
was stated to have a vector potential in the Landau gauge, A = B

(
− y

2 , x
2 , 0
)
. Within the

framework of the effective-mass approximation, we divided it into the electron energy,
phonon energy and electron–phonon interaction energy and applied two limited potentials
to it. Additionally, the electron–phonon Hamiltonian system in a triangular confinement
potential QW (TCPQW) [39–41] was given by:
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1

2m

(
px −

β2

4
y

)2

+
1

2m

(
py +

β2

4
x

)2

+
p2

z
2m

+∑
q

}ωLOa†
qaq

+∑
q

(
Vqaq exp(iq · r

)
+ h.c) + V(z) + Vρθ,

(1)
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(3)

where p is the electron momentum operator, m is the effective band mass, β2 = 2eB
c , a†

q and
aq are the creation and annihilation operators of the bulk LO phonon with frequencyωLO
and wave vector q, V(z) is the asymmetrical Gaussian confinement potential (AGCP), and
r = (ρ, z) is the electron position vector. Additionally, z is the QW growth direction, V0 is
the asymmetrical Gaussian confinement potential barrier height, and R is the asymmetrical
Gaussian confinement potential range. Vρθ = 1

2 mω2
0ρ

2(1 + 2
7 cos 3θ

)
is the triangular
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confinement potential, ρ is the polar coordinate system, θ is the polar coordinate system’s
polar angle, andω0 is the confinement strength. Vq and α in Equation (1) are defined as

Vq = i(}ωLO/q)(}/2mωLO)
1/4(4πα/V)1/2

α =
(
e2/2}ωLO

)
(2mωLO/})1/2(1/ε∞ − 1/ε0)

(4)

A second Lee–Low–Pines (LLP) unitary transformation [42] on strong electron–phonon
coupling gave:

U2 = exp[∑
q

(a†
qfq − aqf∗q)] (5)

in which fq(f∗q) denotes the variational function. Then, linear combination operators [43] b†
j

and bj were introduced into Equation (1) as:

pj = (m}λ/2)1/2(bj + b†
j )

rj = i(}/2mλ)1/2(bj − b†
j )

(6)

in which λ is the variational parameter and subscript j corresponds to the x, y and z
directions. The ground-state wave function of the system was

|ψ0〉 = |0〉a|0〉b (7)

where |0〉a and |0〉b, which satisfied the bj|0〉b = aq|0〉a = 0 condition, denote the unper-
turbed zero phonon state and the vacuum state of the b operator, respectively. Then, the
ground-state transformed Hamiltonian was anticipated to be F(λ, fq) = 〈ψ0|U−1

2 HU2|ψ0〉 .
The conducting variations of F(λ, fq) were with respect to the variational function fq and
the vibrational parameter λ. The strongly coupled polaron vibrational frequency in a RbCl
AGCP could be numerically derived as

λ2 −
(

2α
3

√
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π

)
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3
2 −

(
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3mR2 +
4ω2

0
3

(
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2
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)
+
ω2

c
6

)
= 0 (8)

Assuming the above equation’s root to be λ0, the ground-state binding energy (GSBE)
and the ground-state energy (GSE) of the polaron could be variationally derived as

E0 =
3
4
}λ−V0 +
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1√
π
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) 1
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π
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) 1
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(10)

where E0 is the strongly coupled polaron’s ground-state energy and where Ep and Ee are
the independent energies of the phonon and electron, respectively. The LO-phonon mean
number was stated as

N = 〈ψ0 |U−1
2 ∑

q
a†

q aqU2|ψ0〉 = α

√
λ

πωLO
(11)
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3. The Effect of Temperature

The electron’s properties were calculated as the statistical mean of its various states
under finite temperature conditions. Based on the quantum statistical theory (QST) [44],
the statistical average of the bulk LO phonons was determined as

N =

[
exp

(
}ωLO

KBT

)
− 1
]−1

(12)

where KB is the Boltzmann constant and T is the temperature. The relationship of the
VF λ and the temperature T was determined based on self-consistent calculations using
Equations (11) and (12). From Equations (8)–(10), the polaron VF, GSE and GSBE were
found to be dependent on the temperature T and λ.

4. Results and Discussion

To discuss the theoretical findings in more detail, a RbCl crystal triangular confinement
potential QW was adopted to calculate the GSE E0, GSBE Eb, VF λ and LO-phonon mean
number N. The experiment parameters adapted in the calculations are summarized in
Table 1 as they were demonstrated in earlier research [45–47]. The GSE, GSBE, VF and
LO-phonon mean number as functions of the applied magnetic field, confinement potential
range R, height of AGCPQWs V0, polar coordinate system’s polar angle θ, confinement
strengthω0, temperature T and magnetic field’s cyclotron frequencyωc are presented in
Figures 1–12; the values of the partial physical quantities used in the figures are shown
in Table 2.

Table 1. Values of various parameters used in calculations.

Material m/m0 Coupling Constants α h̄ωLO(meV)

RbCl 0.432 3.81 21.45

Table 2. Values of partial parameters used in Figures.

Figures 1a, 2a, 3a and 4a ω0 = 10× 1013 Hz ωc = 10× 1013 Hz θ = 0 rad
Figures 1b, 2b, 3b and 4b ω0 = 5× 1013 Hz ωc = 5× 1013 Hz θ = 0 rad
Figures 5a, 6a, 7a and 8a ω0 = 5× 1013 Hz ωc = 10× 1013 Hz R = 0.4 nm
Figures 5b, 6b, 7b and 8b ωc = 10× 1013 Hz θ = 0 rad R = 0.4 nm

Figures 9a, 10a, 11a and 12a ω0 = 1× 1013 Hzωc = 1× 1013 Hz θ = 0 rad R = 1 nm
Figures 9b, 10b, 11b and 12b ω0 = 10× 1013 Hz θ = 0 rad R = 1 nm

Figures 1–4 show the relationship between the GSE, GSBE, VF, LO-phonon mean
number and the influence of the AGCP, respectively. As can be seen from Figure 1, the
GSE increased with an increase in the barrier height and a decrease in the range of the
AGCPQWs. The reason for this phenomenon was that the AGCP increased with an increase
in the barrier height, whereas it decreased with an increase in the range. With an increase in
the confinement potential, the confinement strength of the electrons increased in the growth
direction of the QW, which promoted the formation of polarons and led to an increase in
the GSE. Figure 2 denotes that the GSBE increased with an increase in the barrier height and
a decrease in the range of the AGCPQWs. The reason for this phenomenon was the same as
that for the effect of the AGCP on the GSE. From Figure 3, we noticed that the VF increased
with an increase in the barrier height and a decrease in the range of the AGCPQWs. The
reason for this phenomenon was the same as that for the effect of the AGCP on the GSE. This
occurred while the movement of the electrons was restricted by the confinement potential
in the z direction. Due to a smaller range in the particle motion, the thermal motion energy
of the electrons and the interaction between the electron and the phonons, which used the
phonons as a medium, increased with an increase in the confinement strength. The VF,
thus, rose. These were the results from the intriguing quantum size confinement effects.
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Figure 4 describes that the GSBE increased with an increase in the barrier height and a
decrease in the range of the AGCPQWs. The intriguing phenomenon in the figure was
caused by a stronger coupling of phonons to polarons, which was brought on by an increase
in the AGCP. This was compared with the following references: Xiao et al. [48] performed
a theoretical investigation on the GSE, GSBE, VF and LO-phonon averages of strongly
coupled magnetopolarons in asymmetric semi-exponential quantum wells. Sun et al. [49]
performed a theoretical investigation on the effects of the barrier height and range on the
vibration frequency, first excited state energy, excitation energy and coherence time in
semi-exponential confinement potential QWs. Miao et al. [50] investigated the effect of
the anisotropic parabolic confinement potential on the strongly coupled polaron ground
state and phonon mean number of RbCl asymmetrical semi-exponential quantum wells.
However, this paper attempted to study a TCPQW, and it proved in the experiment that
the triangular confinement potential was more than capable of binding electrons, which
led to positive energy and stronger polaron motion. The energy was positive, mainly due
to the difference in the potential added in the x–y direction.
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Figure 1. Ground-state energy E0 versus (a) AGCP barrier height V0 and (b) AGCP range R.
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Figure 2. Ground-state binding energy Eb versus (a) AGCP barrier height V0 and (b) AGCP range R.
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Figure 3. Vibrational frequency λ versus (a) AGCP barrier height V0 and (b) AGCP range R.
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Figure 4. LO-phonon mean number N versus (a) AGCP barrier height V0 and (b) AGCP range R.

The relation curves of the polar angle and confined strength versus the GSE, GSBE, VF
and LO-phonon mean number of strongly coupled magnetopolarons in RbCl TCPQWs of a
polar coordinate system are depicted in Figures 5–8. As can be seen in Figure 5a, the absolute
value of the GSE of strongly coupled magnetopolarons changed periodically with the polar
angle, which was because the TCPQWs formed by the RbCl crystals rotated periodically. It
can be observed from Figure 5b that the GSE of strongly coupled magnetopolarons also
increased with an increase in the confined strength of the polar coordinate system. This was
due to the motion of the electrons being constrained by the limited potential of the polar
coordinate system, which, in turn, led to electron–phonon interaction coupling. The range
in the particle motion decreased with an increase in the confined intensity so that the energy
of the electron–phonon interaction and the electron thermal motion in an acoustic medium
could be determined. It is well known that the constrained potential of a polar coordinate
system, that is, the triangular confined potential, is a parabolic confined potential which
is closest to the real confined potential of a crystal in quantum dots, quantum wires and
quantum wells. Compared with the simple parabolic potential, the triangular potential is
closer to reality. It can be clearly seen from Figure 6 that the absolute value of the GSBE of
strongly coupled magnetopolarons changed periodically with the polar angle and increased
with an increase in the limiting potential of the polar coordinate system. The reason for this
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phenomenon was consistent with that for the effect of the TCP on the GSE. It is obvious
from Figure 7 that the absolute value of the VF of strongly coupled magnetopolarons
changed periodically with the polar angle. Moreover, it was enhanced with an increase
in the polar coordinate system’s confinement potential. The reason for this phenomenon
was the same as that for the effect of the TCP on the GSE. As can be observed in Figure 8,
the LO-phonon mean number of strongly coupled magnetopolarons changed periodically
with the polar angle and was enhanced with an increase in the polar coordinate system’s
confinement potential. The reason for this phenomenon was the same as that for the effect
of the TCP on the GSE.
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Figure 5. Ground-state energy E0 versus (a) polar angle θ and (b) confinement strength ω0 of a polar
coordinate system.

Coatings 2022, 12, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 5. Ground-state energy E଴ versus (a) polar angle θ and (b) confinement strength ω଴of a 
polar coordinate system. 

 
Figure 6. Ground-state binding energy Eୠ versus (a) polar angle θ and (b) confinement strength 
ω଴ of a polar coordinate system. 

 
Figure 7. Vibrational frequency λ versus (a) polar angle θ and (b) confinement strength ω଴of a 
polar coordinate system. 

0 2 4 6

-8

-4

0

4

8

E 0
(m

eV
)

θ(π rad)

 V0=5meV
 V0=8meV
 V0=10meV

(a)

6 7 8 9 10

10

20

30

40

E 0(m
eV

)

ω0(1013Hz)

 V0=5meV
 V0=8meV
 V0=10meV

(b)

0 2 4 6

172

176

180

184

188

192

196

E b
(m

eV
)

θ(π rad)

 V0=5meV
 V0=8meV
 V0=10meV

(a)

6 7 8 9 10
185

190

195

200

205

210

215

E b
(m

eV
)

ω0(1013Hz)

 V0=5meV
 V0=8meV
 V0=10meV

(b)

0 2 4 6

13.6

14.4

15.2

16.0

16.8

17.6

18.4

19.2

λ(
10

13
H

z)

θ(π rad)

 V0=5meV
 V0=8meV
 V0=10meV

(a)

6 7 8 9 10

18.0

19.5

21.0

22.5

24.0

λ(
10

13
H

z)

ω0(1013Hz)

 V0=5meV
 V0=8meV
 V0=10meV

(b)

Figure 6. Ground-state binding energy Eb versus (a) polar angle θ and (b) confinement strengthω0

of a polar coordinate system.
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Figure 7. Vibrational frequency λ versus (a) polar angle θ and (b) confinement strength ω0 of a polar
coordinate system.
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Figure 8. LO−phonon mean number N versus (a) polar angle θ and (b) confinement strengthω0 of
a polar coordinate system.

Figures 9–12 describe the relationship between the GSE, GSBE, VF, LO-phonon mean
number and the influence of the magnetic field and temperature, respectively. Moreover,
as can be observed in Figure 9, the GSE of the polaron increased with the temperature
and cyclotron frequency. The reason for this phenomenon was that the increase in the
temperature led to the greater intensification of the thermal movement of the electrons in
the polaron and that the application of a magnetic field to the system introduced additional
energy to it. However, considering the magnetic field as another confinement for the
electrons led to a higher electron wave function overlap. Hence, the electron–phonon
interaction was enhanced, which led to the physical quantities being elevated. Figure 10
describes that the GSBE of the polaron increased with the temperature and cyclotron
frequency. This occurred because an increase in the temperature resulted in stronger
coupling between the electrons and phonons, which, in turn, resulted in an equally strong
coupling between the electrons and phonons due to the magnetic field. For this reason, the
GSBE of the polaron was enhanced. Figure 11 displays that the VF of the polaron increased
with the temperature and cyclotron frequency. This was consistent with the cause of the
GBE change. Figure 12 represents that the VF of the polaron increased with the temperature
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and cyclotron frequency. The intriguing phenomenon in the figure was caused by stronger
coupling of phonons to polarons, which was brought on by the temperature and cyclotron
frequency. At a finite temperature, there was an influence of the polaron on the electrons
and LO phonons in an external magnetic field, which agreed well with the experimental
evidence [51]. In order to investigate the temperature effects on the GSE, GSBE, VF and
LO-phonon mean number, the effects are shown in Figures 9a, 10a, 11a and 12a on strongly
coupled magnetopolarons in RbCl AGCPQWs in terms of temperature. It was seen that
the GSE decreased with an increase in the temperature, and the GSBE, VF and LO-phonon
mean number absolute values increased with an increase in the temperature. The reason for
this was that, when the system was exposed to heat, extra energy was introduced into the
system. Hence, the physical quantities increased. Nonetheless, Figures 10b, 11b and 12b
show that the GSE, GSBE, VF and LO-phonon mean number enhanced with an increase in
the magnetic field’s cyclotron frequency. This was because the application of a magnetic
field to the system introduced additional energy to it. However, considering the magnetic
field as another confinement of the electrons led to a higher electron wave function overlap.
Consequently, the electron–phonon interaction was enhanced, which led to the physical
quantities being elevated.
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Figure 9. Ground-state energy E0 (a) versus temperature T and (b) magnetic field’s cyclotron fre-
quencyωc.
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Figure 10. Ground-state binding energy Eb versus (a) temperature T and (b) magnetic field’s cyclotron
frequencyωc.
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Figure 11. Vibrational frequency λ versus (a) temperature T and (b) magnetic field’s cyclotron
frequencyωc.
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Figure 12. LO-phonon mean number N versus (a) temperature T and (b) magnetic field’s cyclotron
frequencyωc.

5. Conclusions

The current electron systems in RbCl AGCPQWs under external magnetic fields were
studied. The electronic temperature characteristics of the GSE, GSBE, VF and LO-phonon
mean number in strongly coupled magnetopolarons were determined. For this purpose,
the GSE, GSBE, VF and LO-phonon mean number were obtained based on the quantum
statistics theory, LLP unitary transformation and linear combination operation methods.
An expression was derived for the GSE, GSBE, VF and LO-phonon mean number of
magnetopolarons as functions of the temperature, AGCP barrier height, AGCP range,
magnetic field’s cyclotron frequency, polar coordinate system’s polar angle and polar
coordinate system’s confinement strength. According to the obtained results, the average
phonon’s GSE, GSBE, VF and LO-phonon mean number were decreasing functions of
the AGCP range, while they all increased with an increase in the barrier height of the
AGCP. The periodic change in the polar angle and the increase in the confined intensity
of the polar coordinate systems were also studied. Finally, the changes in the GSE, GSBE,
VF and LO-phonon mean number with the temperature and cyclotron frequency were



Coatings 2022, 12, 1900 11 of 13

studied. Not all quantum systems are fully applicable to our theoretical model, but, for the
quantum well that was constructed in this paper, the origin of the strange phenomenon
of polarons subjected to a triangular confined potential and an asymmetric Gaussian
confined potential was theoretically studied, which provided theoretical guidance for
further research on polarons.
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Abbreviations

QW Quantum Well
AGCP Asymmetrical Gaussian Confinement Potential
TCPQW Triangular Confinement Potential Quantum Well
LO Longitudinal Optical
LLP Lee–Low–Pines
QST Quantum Statistical Theory
GSE Ground-State Energy
GSBE Ground-State Binding Energy
VF Vibrational Frequency
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