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Abstract: The film flexible sensors can convert tiny changes in size or force into electrical signals.
They are key components of intelligent devices and wearable devices, and are widely used in human-
computer interaction, electronic skin, health monitoring, implantable diagnosis, and other fields.
This kind of sensor is generally composed of polymer matrix and conductive components, while
carbon nanotubes (CNT) and graphene (GN), as typical one-dimensional and two-dimensional
conductive carbon nano-materials, respectively, have been used to build film flexible sensors. In order
to explore the relationship between the GN size and thickness, and the performance of film sensors,
the GN-CNT/PU composite film sensors were prepared by in situ polymerization of polyurethane
(PU) in the presence of GN and CNT. A highly sensitive GN-CNT/PU flexible film sensor was
prepared with a high gauge factor (GF) up to 13.15 in a strain range of 0–20%; an exceptionally low
percolation threshold of GN is about 0.04 vol% when the CNT content is fixed at 0.2 vol%, which is
below the percolation threshold of CNT/PU nanocomposites. The size of the GN layer affects the
GFs of the flexible film sensors; a GN with a smaller size can achieve a greater GF. This study paves
the way for the better application of different qualities of GN in flexible sensors.

Keywords: carbon nanotubes; graphene; film sensors; composite materials; polyurethane

1. Introduction

The emergence of film sensors has completely changed human life. The flexible sen-
sors are continuously improved and innovated, which play a vital role in environmental
monitoring [1], liquid detection [2], food detection [3], and other fields. The most important
application is monitoring human health, collecting real-time characteristics of life param-
eters changes to understand human behavior better. Connecting the flexible sensor to
the human skin can monitor pulse, heartbeat, blood pressure, finger bending, tiny facial
muscle movements, vocal cord vibration, and so on [4–9], to complete multi-directional
accurate monitoring of human life and health. In addition to applications in the medical
and health field, flexible strain sensors can also be integrated into the intelligent robot arm,
endowing the robotic arm with a human-like sense of touch, perceiving the size and spatial
distribution of pressure [10].

Carbon materials have a broad prospect as conductive fillers for film sensors, especially
graphene (GN) and carbon nanotubes (CNT), which have excellent electrical conductivity
among carbon materials; these have attracted the extensive attention of researchers. The
combination of GN or CNT with polymers in a specific way can form an electron transport
channel in the polymer, while maintaining the flexibility of the polymer [11–15]. Vertuc-
cio et al. [16] used simple film casting technology to produce CNT/epoxy resin composites
for preparing strain sensors with GFs between 0.67 and 4.45. In order to increase the strain
range of the sensor, using 3D printing technology, Christ et al. [17] prepared a multi-walled
carbon nanotube/polyurethane highly elastic deformation sensor with a high GF.

Polyurethane (PU) elastomers have been proven to be used as substrates for film
flexible sensors [18–21]. GN and CNT can be regularly and directionally arranged in
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polyurethane through the CVD method [19], the biological stretching process [20], and
3D spraying [21]. The physicochemical properties of GN prepared by different methods
are much different and they show different conductivities when doped into film sensors;
however, there are few reports on the effects of GN prepared with different methods on the
performance of film sensors.

In this paper, we prepared three kinds of graphene with different sheet sizes and
thicknesses by the ultrasonic-assisted electrochemical method and chemical redox method.
Different types of GN and CNT were dropped into PU to prepare PU-based composite
films. The dispersion state of carbon nanomaterials in PU was characterized by SEM and
XRD; the volume conductivity of PU composite flexible films was deeply analyzed; the GFs
of PU flexible sensors were tested and calculated so that different qualities of GN can be
better used in flexible sensors.

2. Materials and Methods
2.1. Materials

Graphite foils were provided by Jinglong Special Carbon Co., Ltd. (Beijing, China).
NaOH and (NH4)2SO4 were purchased from Tianjin Kemiou Chemical Reagent Co., Ltd.
(Tianjin, China). Isophorone diisocyanate (IPDI) was purchased from Macklin Biochemical
Technology Co., Ltd. (Shanghai, China). Polyether polyols were purchased from SINOPEC
Tianjin Branch. Dibutyltin dilaurate (DBTDL) and L-ascorbic acid (L-AA, 99%) were
purchased from Heowns Chemical Co., Ltd. (Tianjin, China). N, N-Dimethylformamide
(DMF, AR, 99.5%) was provided by Bohua Chemical Reagent Co., Ltd. (Tianjin, China).
Multi-walled carbon nanotubes (CNT, 99 wt%, OD = 5–15 nm, length = 10–30 um) were
provided by Chengdu Organic Chemicals Co. Ltd (Chengdu, China).

2.2. Preparation of GNs

Three kinds of GN samples were prepared, one of which was prepared by the chemical
redox method. Graphene oxide was prepared by the modified Hummers’ process reported
by the previous work of our team [22]; then, reduced graphene oxide (rGO) was obtained
after being reduced with environmentally friendly L-AA at 25 ◦C for 24 h.

Another two GN samples were prepared by the ultrasonic-assisted electrochemical
method in different electrolyte solutions (1.0 mol/L NaOH solution or 0.1 mol/L (NH4)2SO4
solution). Graphite foils were used as the active electrodes; the insert electrode was plat-
inum electrode (15 mm × 10 mm). The electrolysis time was 2 h. The black dispersion
obtained by electrolysis was filtered under reduced pressure with a 0.22 µm polytetrafluo-
roethylene microporous filter membrane, and the solid was washed with distilled water
until the pH of the filtrate was about 7. After drying, GN samples were obtained. The two
GN samples prepared in 1.0 mol/L NaOH electrolyte solution and 0.1 mol/L (NH4)2SO4
electrolyte solution were named G1 and G2, respectively.

2.3. Fabrication of PU-Based Films and Film Strain Sensors

A certain amount of GN and CNT powder were added into 100 mL of dewatered DMF,
ultrasonically dispersed for 1 h. GN-CNT/DMF solution was mixed into polyurethane
monomers with a certain ratio; then, the catalyst DBTDL was dripped. The polymerization
was carried out at 85 ◦C for 3 h. To obtain GN-CNT/PU films, the GN-CNT/PU solutions
were finally cured in PTFE mold at 60 ◦C for 4 h, and at 80 ◦C for 2 h to obtain films with
a length of 4 cm, a width of 1 cm, and a thickness of 0.5–1.0 mm. Copper foil and silver
wire were assembled on both ends of the film to obtain strain sensors. The film sample was
named as Graphenevolume fraction-CNTvolume fraction/PU; for example, G10.01-CNT0.2/PU
means graphene G1-CNT/PU composite film, and the volume fraction of G1 and CNT are
0.01 vol% and 0.20 vol%, respectively. The schematic diagram of the preparation process of
GN-CNT/PU film strain sensors is shown in Figure 1.
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Figure 1. Schematic diagram of preparing GN-CNT/PU film strain sensors.

2.4. Characterizations

The surface morphology of graphene was observed by an atomic force microscope
(AFM, Dimension Icon, Bruker, Karlsruhe, Germany) and field-emission scanning elec-
tron microscope (FESEM; Gemini 300, Carl Zeiss, Oberkochen, Germany). The chemical
characteristics of prepared carbon materials was conducted by an X-ray photoelectron
spectrometer (XPS; ESCALAB-250Xi, Thermo Fisher Scientific, Waltham, MA, USA). The
dispersion of GN and CNT in PU films was characterized by XRD (MiniFlex600, Rigaku Cor-
poration, Tokyo, Japan). The sensitivities of the film flexible strain sensors were tested by a
universal testing machine (WDW-05L, Jinan Spai Technology Co., Ltd., Jinan, China), and
the electrical conductivities were synchronously and automatically recorded by an electro-
chemical workstation (VERTEX V16407, Ivium Technologies, Eindhoven, The Netherlands)
with a data acquisition frequency of 50 Hz.

3. Results and Discussion
3.1. Morphologies of GN

It can be seen from Figure 2a,d,g that the horizontal size of G1 is about 1 µm; the thick-
ness is about 1.76 nm, around 3 to 4 layers of graphene; and the thickness of the graphene
sheets is uniform, with the edges of G1 being relatively smooth. From Figure 2b,e,h, the
horizontal size of G2 is about 0.7 µm and the sheets size is relatively uniform. The thickness
of G2 is about 1.20 nm, with 2~3 layers of graphene. G2 has a smaller sheet size and fewer
graphene layers than G1. The horizontal size of rGO sheets reduced with L-AA is about
1.5–2 µm and the thickness is about 2.00 nm in Figure 2c,f. The sizes of G1 and G2 are
significantly smaller than that of rGO, and the defects of G1 and G2 are fewer; the surfaces
are flatter and the structures are more complete.



Coatings 2022, 12, 1889 4 of 11Coatings 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 

 
Figure 2. AFM 2D images of graphene (a) G1, (b) G2, and (c) rGO; the thickness (height) of graphene 
(d) G1, (e) G2, and (f) rGO; and FESEM images of graphene (g) G1, (h) G2, and (i) rGO. 

3.2. Chemical Characteristics of Prepared GN and GO 
The carbon and oxygen content in carbon material samples is usually obtained by 

XPS. By analyzing C 1s to O 1s peak in the XPS spectra of GO and GN, the atomic ratios 
of C/O were obtained. The precise oxygen content and C/O ratios of four carbon materials 
are listed in Table 1. It can be seen that the oxygen content of samples G1, G2, and rGO is 
increasing. The oxygen content of G1 is only 4.03 atom %, with a high C/O ratio of 23.81. 
The oxygen content of G2 (9.99 atom %) is slightly higher than that of G1. rGO reduced 
by L-AA contains more oxygen than GN prepared by the electrochemical method. 

Figure 3 shows the high-resolution spectra of C 1s of three kinds of graphene and 
GO. The peaks of C-C, C-OH, C=O, and (C=O)-O groups are about 284.6 eV, 285.5 eV, 
287.6 eV, and 288–290 eV, respectively [23–25]. Figure 3c shows that the sample GO con-
tains a large number of oxygen-containing functional groups, with the oxygen content of 
31.96%. The peak intensity of oxygen-containing functional groups in rGO is much 
weaker than that of GO, indicating that some oxygen-containing functional groups in GO 
have been successfully reduced by L-AA. 

Figure 2. AFM 2D images of graphene (a) G1, (b) G2, and (c) rGO; the thickness (height) of graphene
(d) G1, (e) G2, and (f) rGO; and FESEM images of graphene (g) G1, (h) G2, and (i) rGO.

3.2. Chemical Characteristics of Prepared GN and GO

The carbon and oxygen content in carbon material samples is usually obtained by
XPS. By analyzing C 1s to O 1s peak in the XPS spectra of GO and GN, the atomic ratios of
C/O were obtained. The precise oxygen content and C/O ratios of four carbon materials
are listed in Table 1. It can be seen that the oxygen content of samples G1, G2, and rGO is
increasing. The oxygen content of G1 is only 4.03 atom %, with a high C/O ratio of 23.81.
The oxygen content of G2 (9.99 atom %) is slightly higher than that of G1. rGO reduced by
L-AA contains more oxygen than GN prepared by the electrochemical method.

Table 1. XPS compositions of prepared GN and GO.

C Content (Atomic %) O Content (Atomic %) C/O Ratios

G1 95.97 4.03 23.81
G2 90.01 9.99 9.01
GO 68.04 31.96 2.12
rGO 89.44 10.56 8.47

Figure 3 shows the high-resolution spectra of C 1s of three kinds of graphene and
GO. The peaks of C-C, C-OH, C=O, and (C=O)-O groups are about 284.6 eV, 285.5 eV,
287.6 eV, and 288–290 eV, respectively [23–25]. Figure 3c shows that the sample GO contains
a large number of oxygen-containing functional groups, with the oxygen content of 31.96%.
The peak intensity of oxygen-containing functional groups in rGO is much weaker than
that of GO, indicating that some oxygen-containing functional groups in GO have been
successfully reduced by L-AA.
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3.3. Dispersion of GN and CNT in PU Films

Figure 4a–d are FESEM images of the cross section in thickness direction of PU and
CNT0.2/PU films, respectively. The cross section of the PU film is relatively clean; only
brittle fracture lines can be observed. The cross section of the sample CNT0.2/PU exposes a
lot of carbon nanotubes (bright spots and lines), indicating that the carbon nanotubes can
be uniformly mixed in the PU through ultrasonic and mechanical stirring. From Figure 4c–j,
it can be observed that many carbon nanotubes are randomly dispersed around GN sheets
with a light yarn-like structure, which is the connection between the sheet-shaped GN and
the linear carbon nanotubes to form a conductive path. The addition of graphene prevents
CNT from agglomeration in PU to varying degrees. By comparing with Figure 4e,i,j the
agglomeration of CNT in G2-doped composite film is significantly less than that in G1- and
rGO-doped films.

The dispersion degree of graphene and carbon nanotubes in PU films can be explained
laterally by XRD patterns in Figure 5. As expected, it is observed that the carbon nanotubes
exhibit broad diffraction peaks at 25.8◦ and 43.1◦; the former is the diffraction peak of the
(002) crystal plane perpendicular to the diameter of the carbon nanotube, and the latter is
the characteristic diffraction peak of the (100) crystal plane parallel to the diameter of the
carbon nanotube. Graphene G1 and G2 have obvious diffraction peaks at 2θ = 26.5◦, and
rGO has characteristic peaks at 2θ = 23.6◦. The diffraction peak of pure PU film appears
near 2θ = 19.1◦, which is mainly related to the short-range orderly and regular structure
of the hard and soft segments of PU, and the existence of the disordered structure of the
PU amorphous phase. After CNT and GN are doped in PU film, the XRD patterns of the
composites show the characteristic peak of PU at 19.1◦, while the characteristic peaks of
CNT and GN disappear. It can be explained that when GN and CNT are doped in PU, the
stacked GN sheets and agglomerated CNT will disperse under the action of Van der Waals
force. Therefore, the crystal lattice of GN and CNT will be distorted, the XRD peaks will
broaden, and the peaks intensity will decrease. When crystallite size become smaller with
the increase of crystal lattice distortion, carbon material will be an amorphous structure,
completely disordered, and the diffraction peaks of GN and CNT disappear. Therefore,
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it can be said that the graphene and carbon nanotubes can be well dispersed in PU film
through ultrasonic dispersion and mechanical dispersion.
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3.4. Electrical Properties of GN-CNT/PU Composite Films and Flexible Sensors

According to the percolation theory, the electrical conductivity of the composite and
the volume fraction of the filler usually satisfy the following equation:

σ = σ0(V − Vc)
t

where σ and σ0 are the volume conductivities of composites and the fillers (S/cm); V and
Vc are the volume fraction and volume percolation threshold of the fillers (%); and t is a
constant, relating to the dimension of conductivity path.

It can be seen from Figure 6a that when the content of CNT increased from 0.127 vol% to
0.255 vol%, the volume conductivities of the composites increased from 5.13 × 10−12 S/cm to
5.12 × 10−7 S/cm, having a 5-order magnitude improvement. According to the percolation
theory, the volume percolation threshold of the fillers (Vc, %) of CNT doped in PU film is
about 0.296 vol%. The constant t of CNT/PU flexible films is 1.16, calculated by percolation
theory from Figure 6b. It can be said that CNT forms a good 2D conductive network in PU
substrate and has a low percolation threshold.

The experiments set the doping content of CNT as 0.200 vol%, far less than that
of its percolation threshold. The volume conductivity of the sample CNT0.2/PU film is
2.19 × 10−11 S/cm. As shown in Figure 7a, the volume conductivity of the GN-CNT0.2/PU
film increased with the addition of GN. When the addition amount of G1, G2, and rGO was
0.020 vol% (1/10 of CNT content), the volume conductivities of GN0.02-CNT0.2/PU films
were 5.77 × 10−7 S/cm, 1.41 × 10−7 S/cm, and 1.70 × 10−6 S/cm, for G1, G2, and rGo,
respectively. Compared with CNT0.2/PU, doping a minute amount of GN in CNT0.2/PU
can make the volume conductivities of flexible films increased by 4 to 5 orders of magnitude,
and the effect of enhancing the conductivity is obvious. With the further increase of the
addition of GN, the conductivities of composites increase linearly. It can be seen from
Figure 7b that the constant t (slopes of the lines in Figure 7b) of G1, G2, and rGO in the
CNT0.2/PU system are 2.06, 1.31, and 1.36, respectively, which are higher than the t value
of the CNT/PU film. It can confirm the role of graphene in CNT/PU composite film, as
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expected, forming a stronger 2D and 3D hybrid conductive network, or 3D conductive
network with CNT. Compared with the need to dope about 0.100 vol% CNT to obtain a
decent volume conductivity, adding less than 0.020 vol% of graphene can obtain the same
conductive effect. This phenomenon may be caused by the smaller graphene flakes; this
not only can assist in forming a more complete conductive path, but also prevent CNT
entanglement or formation of CNT bundles, making the dispersion of CNT more uniform.

Coatings 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 

theory from Figure 6b. It can be said that CNT forms a good 2D conductive network in 
PU substrate and has a low percolation threshold. 

 
Figure 6. (a) Volume conductivity plotted as a function of CNT content; (b) log(σ) plotted as a func-
tion of log(V-Vc). 

The experiments set the doping content of CNT as 0.200 vol%, far less than that of its 
percolation threshold. The volume conductivity of the sample CNT0.2/PU film is 2.19 × 
10−11 S/cm. As shown in Figure 7a, the volume conductivity of the GN-CNT0.2/PU film in-
creased with the addition of GN. When the addition amount of G1, G2, and rGO was 0.020 
vol% (1/10 of CNT content), the volume conductivities of GN0.02-CNT0.2/PU films were 5.77 
× 10−7 S/cm, 1.41 × 10−7 S/cm, and 1.70 × 10−6 S/cm, for G1, G2, and rGo, respectively. Com-
pared with CNT0.2/PU, doping a minute amount of GN in CNT0.2/PU can make the volume 
conductivities of flexible films increased by 4 to 5 orders of magnitude, and the effect of 
enhancing the conductivity is obvious. With the further increase of the addition of GN, 
the conductivities of composites increase linearly. It can be seen from Figure 7b that the 
constant t (slopes of the lines in Figure 7b) of G1, G2, and rGO in the CNT0.2/PU system 
are 2.06, 1.31, and 1.36, respectively, which are higher than the t value of the CNT/PU film. 
It can confirm the role of graphene in CNT/PU composite film, as expected, forming a 
stronger 2D and 3D hybrid conductive network, or 3D conductive network with CNT. 
Compared with the need to dope about 0.100 vol% CNT to obtain a decent volume con-
ductivity, adding less than 0.020 vol% of graphene can obtain the same conductive effect. 
This phenomenon may be caused by the smaller graphene flakes; this not only can assist 
in forming a more complete conductive path, but also prevent CNT entanglement or for-
mation of CNT bundles, making the dispersion of CNT more uniform. 

 
Figure 7. (a) Volume conductivity of GN-CNT0.2/PU composite film as a function of the volume 
fraction of GN; (b) log(σ)-log(V-Vc) curves of CNT0.2/PU composite film doped with different kinds 
of graphene. 

Figure 6. (a) Volume conductivity plotted as a function of CNT content; (b) log(σ) plotted as a
function of log(V-Vc).

Coatings 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 

theory from Figure 6b. It can be said that CNT forms a good 2D conductive network in 
PU substrate and has a low percolation threshold. 

 
Figure 6. (a) Volume conductivity plotted as a function of CNT content; (b) log(σ) plotted as a func-
tion of log(V-Vc). 

The experiments set the doping content of CNT as 0.200 vol%, far less than that of its 
percolation threshold. The volume conductivity of the sample CNT0.2/PU film is 2.19 × 
10−11 S/cm. As shown in Figure 7a, the volume conductivity of the GN-CNT0.2/PU film in-
creased with the addition of GN. When the addition amount of G1, G2, and rGO was 0.020 
vol% (1/10 of CNT content), the volume conductivities of GN0.02-CNT0.2/PU films were 5.77 
× 10−7 S/cm, 1.41 × 10−7 S/cm, and 1.70 × 10−6 S/cm, for G1, G2, and rGo, respectively. Com-
pared with CNT0.2/PU, doping a minute amount of GN in CNT0.2/PU can make the volume 
conductivities of flexible films increased by 4 to 5 orders of magnitude, and the effect of 
enhancing the conductivity is obvious. With the further increase of the addition of GN, 
the conductivities of composites increase linearly. It can be seen from Figure 7b that the 
constant t (slopes of the lines in Figure 7b) of G1, G2, and rGO in the CNT0.2/PU system 
are 2.06, 1.31, and 1.36, respectively, which are higher than the t value of the CNT/PU film. 
It can confirm the role of graphene in CNT/PU composite film, as expected, forming a 
stronger 2D and 3D hybrid conductive network, or 3D conductive network with CNT. 
Compared with the need to dope about 0.100 vol% CNT to obtain a decent volume con-
ductivity, adding less than 0.020 vol% of graphene can obtain the same conductive effect. 
This phenomenon may be caused by the smaller graphene flakes; this not only can assist 
in forming a more complete conductive path, but also prevent CNT entanglement or for-
mation of CNT bundles, making the dispersion of CNT more uniform. 

 
Figure 7. (a) Volume conductivity of GN-CNT0.2/PU composite film as a function of the volume 
fraction of GN; (b) log(σ)-log(V-Vc) curves of CNT0.2/PU composite film doped with different kinds 
of graphene. 
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From Figure 8a, the GFs of G1x-CNT0.2/PU sensors (x = 0.01, 0.02, 0.04, 0.06) are 1.14,
4.18, 13.15, and 1.88, respectively, showing a trend of increasing firstly and then, decreasing.
To explore the influence of graphene prepared by different methods on the GFs of the
flexible sensors, the current change of the GN0.06-CNT0.2/PU sensors were tested within a
strain of 20%, and the results are shown in Figure 8b. The GFs of G10.06-CNT0.2/PU, G20.06-
CNT0.2/PU, and rGO0.06-CNT0.2/PU are 1.88, 3.47, and 1.41, respectively. The G2-doped
film flexible sensor has the highest GF. From the AFM results of GN, G2 has the smallest
sheet size, followed by G1, and rGO has the largest size. It is assumed that CNTs in PU are
untwisted, oriented, and without overlapping distribution. In an ideal state, according to
the outside diameter and length of carbon nanotubes, when the volume fraction of CNT
in PU film is 0.2 vol%, the estimated gap between carbon nanotubes is about 200–500 nm.
The smaller the graphene sheet, the greater the probability of graphene being inserted into
the gap between the CNT. The greater the overlap density with the CNT, the more obvious
the resistance change during stretching; and therefore, the greater the GF. When the GN
layer is large, according to estimated gap between CNT, the smaller the probability of GN
inserting into the gap, the less the hybrid conductive network formed between GN and
CNT; thus, GF will also be smaller.
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The performance comparison between the flexible sensors assembled in this work and
the PU-based sensors previously reported are shown in Table 2. It is found that, compared
to others’ works that use PU as substrate, and the combination of conductive fillers and
PU in a simple and uniform mixture, the flexible sensors of this work can reach the GF at a
higher level when the content of the added conductive fillers is very small.

Table 2. Performance of flexible sensors based on PU matrix.

Conductive Fills Content Strain (%) GF References

Carbon black 3 wt% 30% 3.5 [26]
GN 0.6 wt% 30% 0.78 [13]

CNT 2 wt% 5% 20 [27]
rGO/Fe3O4 1 wt% 12% 6.2 [18]

G1/CNT 0.04 vol%/0.2 vol% 20% 13.15 This work

Cyclic tensile tests (strain from 15% to 50% and circulated 100 times) were carried out
on the G10.06-CNT0.2/PU sensor. It can be seen from the Figure 9a that after the sample is
stretched for dozens of times, the curve tends to be flat; however, there are still fluctuations.
∆R/R0-time and the corresponding elongation–time curves of the sample after 21–25 cycles
and 91–95 cycles are shown in Figure 9b. It can be observed that the normalized resistance
of the sample increases with the elongation of the G10.06-CNT0.2/PU film sensor. When the
sensor elongation is 50%, the change in resistance value reaches the maximum; that is, a
higher peak in the curve. As the elongation of the sample decreases, the value of ∆R/R0
decreases first and then, increases; in addition, a secondary peak appears when the strain
recovers to 15%. The sensors made of G2- and rGO-doped CNT/PU films showed almost
the same secondary peak phenomenon in the cycle tests; however, the G1-CNT/PU film
sensor showed better stability during the long cyclic tensile tests. Therefore, the cyclic test
results of the G1-CNT/PU film sensor were reported. The main reason for the secondary
peak is that during the rebound process of the composite, although the conductive network
reconstruction in the sample mainly occurs as the strain decreases, the conductive network
of the carbon material will be subjected to secondary damage due to residual stress and
creep. When the residual stress is greater than the reconstruction of the conductive network
in the PU itself, the resistance will increase again, and the secondary peak appears.
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4. Conclusions

Three kinds of GN samples with different sheet sizes and thicknesses were prepared
and composited with CNT and PU to manufacture film flexible sensors. The size of the
GN layers affected the GF of the flexible sensors; that means the appropriate size of a GN
sheet is essential to obtain a flexible sensor with an excellent GF. With the same amount of
graphene added, a higher GF of sensors can be obtained by reducing graphene size. These
results have an excellent reference for the application of graphene with different sheet sizes
in flexible sensors.
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