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Abstract: Fin is an efficient and straightforward way to enhance heat transfer rate. When the heat
source varies dramatically in a very short time, non-Fourier heat conduction should be considered.
In the paper, taking advantage of numerical stability and no integral and easy-to-implement features
of an element differential method, a numerical model is developed to evaluate the fin efficiency of
the convective-radiative fin within non-Fourier heat conduction. In this fin, heat is generated by
an internal heat source and dissipated by convection and radiation. Both periodic and adiabatic
boundary conditions are considered. The accuracy and efficiency of the element differential method
is validated by several numerical examples with analytical solutions. The results indicate that the
element differential method has high precision and flexibility to solve non-Fourier heat conduc-
tion in convective-radiative fin. Besides, the effects of Vernotte number, dimensionless periodicity,
thermal conductivity coefficient, and emissivity coefficient on dimensionless fin tip temperature,
instantaneous fin efficiency, and average fin efficiency are comprehensively analyzed.

Keywords: element differential method; non-Fourier heat conduction; periodic boundary condition;
adiabatic boundary condition; convective-radiative fin

1. Introduction

Many machines widely use the fin as an efficient and straightforward heat exchanger,
such as jet engines, microelectronic components, oil pipelines, etc. Fin exchanges heat
with the environment through radiation and convection. Generally, when the working
conditions are stable and the time is long enough, the Fourier law can describe conductive
heat transfer in the steady-state fin. However, when the heat source changes dramatically or
the time of the transient problem is too short, the Fourier model is not suitable. For example,
for heat dissipation in microelectronic elements, heat flux density is close to that produced
by nuclear fusion, and Fourier’s law is unsuitable in this situation [1]. Cattaneo [2] and
Vernotte [3] introduced a hyperbolic heat conduction model with a finite propagation
speed. This is the well-known non-Fourier heat conduction model, which can be expressed
as follows,

τ
∂q
∂t

+ q = −k∇T (1)

where τ = α/v2 represents relaxation time, α is the thermal diffusivity, and v is the velocity
of the heatwave. When the velocity of the heatwave is finite, the relaxation time τ is not
equal to zero [4]. As early as the 1980s, Lin [5] used the Laplace transform technique to
study the periodic heat fin and pointed out that the Fourier model brings a significant
error when the thermal relaxation time is greater than the period of oscillation. Das
et al. [6] used the genetic algorithm to retrieve parameters in non-Fourier conduction and
radiation heat transfer and convective-radiative fin with temperature-dependent thermal
conductivity. Zahra et al. [7] used the spectral-finite volume method to analyze non-Fourier
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heat transfer in convective fin. In this paper, sinusoidal, triangular, and square periodic
base temperatures were both considered.

In recent years, with the increasing application of fin in various fields, the working
condition of the fin is becoming more and more complex, such as porous fin [8], irregular
fins [9,10], and transient wet fin [11]. Das and Kundu [12] adopted an inverse approach to
solving conductive heat transfer of the wet fin. Mehraban et al. [13] developed the θ method
to predict the thermal performance of the convective-radiative porous fin with periodic
thermal conditions. Gireesha et al. [14] used the finite element method (FEM) to study the
temperature performance of porous fin within the fully wet condition. Prakash et al. [15]
investigated the effect of thermal radiation on nanofluid flow [16,17].

Unlike the above numerical methods, the element differential method (EDM) [18]
is a strong-form technique to solve ordinary or partial differential equations. The most
important feature of the EDM is that the derived spatial derivatives can be directly sub-
stituted into the governing equation and boundary conditions to form the final system of
algebraic equations [19]. Therefore, the EDM does not require any mathematical principles
or integrations and is very easy to code. Cui et al. [20] proved that the EDM was a high-
efficiency method to solve nonlinear heat transfer with the internal heat source by solving
the two-dimensional and three-dimensional fins.

In this paper, the EDM is first developed to solve nonlinear heat transfer of convective-
radiative fin with mixed boundary conditions in Fourier and non-Fourier models. At the
same time, the effects of radiation and a nonlinear internal heat source are considered. In
practice, these fin parameters, such as the surface emissivity, thermal conductivity, heat
transfer coefficient, and internal heat source, are the functions of temperature instead of
constants. The effects of the parameters mentioned above on the instantaneous fin tip
temperature and fin efficiency are comprehensively analyzed.

This paper is organized as follows. The physical and mathematical models are pre-
sented in Section 2. The principle of EDM and the discretized scheme of the nonlinear
heat transfer equation of convective-radiative fin are described in Section 3. The validation
of this method is verified from the analytical solution in Section 4. Then, the results and
discussions are stated in Section 5. Finally, conclusions are summarized in Section 6.

2. Physical and Mathematical Models

As shown in Figure 1, a longitudinal rectangular fin with the cross-sectional area Ac,
thickness δ, length L, and perimeter P is considered. The thickness is minimal compared
with the length of the fin. There is convection and radiation in the heat exchange between
the fin surface and ambient fluid, and the internal heat source of the fin is also considered.
The following assumptions are made to obtain the governing equation,

• The ambient temperature T∞ remains unchanged and is not affected by fin heat dissipation.
• The non-Fourier heat conduction is considered in one dimension.
• The radiation between the fin and fin base is ignored.
• The fin base temperature is maintained at periodic oscillation, and the fin tip is adiabatic.
• Similar as Ref. [21], thermal conductivity, surface emissivity, heat transfer coefficient,

and internal heat generation rate are both assumed as temperature dependent and
expressed as follows,

k(T) = k∞

[
1 + µ

(
T − T∞

Tb,m − T∞

)]
(2a)

ε(T) = ε∞

[
1 + ξ

(
T − T∞

Tb,m − T∞

)]
(2b)

h(T) = h∞

(
T − T∞

Tb,m − T∞

)b
(2c)
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q∗(T) = c1 + c2

(
T − T∞

Tb,m − T∞

)
+ c3

(
T − T∞

Tb,m − T∞

)2
+ c4

(
T − T∞

Tb,m − T∞

)3
(2d)

where k∞, ε∞ are thermal conductivity and surface emissivity at ambient temperature T∞,
µ, and ξ are coefficients of thermal conductivity and surface emissivity, Tb,m is the mean
base temperature, h∞ is heat transfer coefficient at fin base, b is the power index of the
convective heat transfer coefficient, which depends on the mechanism of convective heat
transfer [22]. For example, b = 2 is nucleate boiling heat transfer. c1, c2, c3, and c4 are the
coefficients of internal heat generation rate.

Figure 1. Physical model of the convective-radiative fin with mixed boundary conditions.

Based on those assumptions, the transient non-Fourier fin heat transfer equation is
expressed as [23],

ρcp
∂T
∂t + h(T)pτ

Ac
∂T
∂t + ε(T)σpτ

Ac
∂T4

∂t − τ
∂q∗(T)

∂t + ρcpτ ∂2T
∂t2

= ∂
∂x

[
k(T) ∂T

∂x

]
− h(T)p

Ac
(T − T∞)− ε(T)σp

Ac
(T4 − T4

∞) + q∗(T)
(3)

where cp is the specific heat capacity of fin; ρ is the density; σ is the Stefan–Boltzmann
constant; τ is the relaxation time.

The initial conditions are,
T(x, 0) = T∞ (4)

The fin base is maintained at a periodic temperature oscillation, and the fin tip is
adiabatic. The corresponding boundary conditions are,

∂T(L, t)
∂x

= 0 (5a)

T(0, t) = Tb,m + B(Tb,m − T∞) cos(ωt) (5b)

For the convenience of analysis, the following dimensionless variable and similarity
criteria are introduced,

Θ = T−T∞
Tb,m−T∞

, Θ0 = T∞
Tb,m−T∞

, t∗ = k∞t
ρcp L2 , X = x

L , Ω = L2ω
ρcp
k∞

,

Nrc =
pε∞σL2

Ack∞
(Tb,m − T∞)3, Nc =

√
h∞ pL2

Ack∞
, Ve =

√
τk∞

ρcp L2 ,

C1 = L2c1
(Tb,m−T∞)k∞

, C2 = L2c2
(Tb,m−T∞)k∞

, C3 = L2c3
(Tb,m−T∞)k∞

, C4 = L2c4
(Tb,m−T∞)k∞

(6)

where the Vernotte number Ve is the order of dimensionless relaxation time.
Using Equation (6), Equation (3) can be rewritten in dimensionless form as,[

1 + N2
c V2

e Θb + 4(1 + ξΘ)NrcV2
e

(
Θ3 + 3Θ2Θ0 + 3ΘΘ2

0 + Θ3
0

)
−V2

e

(
C2 + 2C3Θ + 3C4Θ2

)]
∂Θ
∂t∗

+V2
e

∂2Θ
∂t∗2 = (1 + µΘ) ∂2Θ

∂X2 + µ
(

∂Θ
∂X

)2
− N2

c Θb+1 − (1 + ξΘ)Nrc

(
Θ4 + 4Θ3Θ0 + 6Θ2Θ2

0 + 4ΘΘ3
0

)
+C1 + C2Θ + C3Θ2 + C4Θ3

(7)
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Using the implicit scheme to discretize the transient term, Equation (7) can be rewritten as,

A
Θk −Θk−1

∆t∗
+ V2

e
Θk − 2Θk−1 + Θk−2

(∆t∗)2 = B
∂2Θk

∂X2 + µ

(
∂Θk

∂X

)2

+ F (8)

where,

A = 1 + N2
c V2

e

(
Θk

old

)b
+ 4(1 + ξΘk

old)NrcV2
e

[(
Θk

old

)3
+ 3
(

Θk
old

)2
Θ0 + 3Θk

oldΘ2
0 + Θ3

0

]
−V2

e

[
C2 + 2C3Θk

old + 3C4

(
Θk

old

)2
] (9a)

B = 1 + µΘk
old (9b)

F = −N2
c

(
Θk

old

)b+1
− (1 + ξΘk

old)Nrc

[(
Θk

old

)4
+ 4
(

Θk
old

)3
Θ0 + 6

(
Θk

old

)2
Θ2

0 + 4Θk
oldΘ3

0

]
+C1 + C2Θk

old + C3

(
Θk

old

)2
+ C4

(
Θk

old

)3 (9c)

where, the subscript “k = 1, 2, · · · , Nt” represents the result of the k-time layer, Nt is the
number of discretized time steps, and the subscript “old” means the last iterative value.

Similarly, the dimensionless forms of initial and boundary conditions are,

Θ(X, 0) = 0 (10a)

∂Θ(1, t∗)
∂X

= 0 (10b)

Θ(0, t∗) = 1 + B cos(Ωt∗) (10c)

The instantaneous fin efficiency and the average fin efficiency are,

η =
1

N2
c Θb+1 + (1 + ξ)NrcΘ4

(
−dΘ

dX

)∣∣∣∣
X=0

(11a)

ηave =
1
pe

∫ dt∗+pe

dt∗
ηdt∗ (11b)

where pe = 2π/Ω is the heat source vibration period.

3. Principle of Element Differential Method

Using iso-parametric elements, we can express the shape function as the Lagrange
interpolation formulation,

Ln
i (χ) =

n
∏

j=1,j 6=i

χ−χj
χi−χj (12)

where n is the number of interpolation points in each element and χ is the iso-parametric
coordinate.

Variables can be approximated by the node values of the iso-parametric element. Thus,
the dimensionless temperature can be expressed as,

Θ =
Ne

∑
j=1

L(χj)Θj (13)

where, Ne is the number of nodes in the isoparametric element, and Θj is dimensionless
temperature at the node. Based on Equations (12) and (13), the first and second-order
derivatives can be expressed as,

∂Θ
∂X

=
Ne

∑
j=1

∂L
∂X

Θj (14a)



Coatings 2022, 12, 1862 5 of 17

∂2Θ
∂X2 =

Ne

∑
j=1

∂2L
∂X2 Θj (14b)

As shown in Figure 2, the computational domain is discretized by isoparametric
elements. The nodes are divided into internal, interface, and boundary nodes.

Figure 2. Three kinds of nodes of isoparametric elements.

For internal nodes, substituting Equations (13) and (14), Equation (8) can be discretized as,[
A∆t∗ + V2

e − (∆t∗)2B∑ ∂2L
∂X2 − (∆t∗)2µ

(
∑ ∂L

∂X

)2
Θold

]
Θk

= (A∆t∗ + 2V2
e )Θ

k−1 −V2
e Θk−2 + (∆t∗)2F

(15)

For interface nodes, the sum of heat flux is zero.

N f

∑
f=1

k
∂Θ
∂X
· n f = 0 (16)

where, N f is the number of shared surfaces, superscript f indicates the shared plane, and
n f is the normal surface vector.

After substituting Equation (13a), Equation (16) can be rewritten as,

N f

∑
f=1

Ne

∑
j=1

k
∂L(χj)

∂X
Θj · n f = 0 (17)

Using the EDM, the Neumann boundary condition is also be discretized as,

N f

∑
f=1

Ne

∑
j=1

k
∂L
(
χj
)

∂X
Θj · n f = Qin (18)

where Qin is input heat flux at the boundary. If the boundary is adiabatic, Qin = 0.
Assembling Equations (15), (17) and (18), the system of discrete equations can be

written as,
AΘ = d (19)

where A is the coefficient matrix assembled by the internal, interface, and boundary nodes;
d is the known vector determined by the source term.

The implementation of EDM for solving non-Fourier heat conduction in convective-
radiative fin can be executed by the following steps:
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(1) Discretize the computational domain by isoparametric elements, and determine the
number of nodes in each isoparametric element Ne.

(2) Initialize dimensionless temperature according to the initial condition.
(3) Loop at each time step, k = 1, 2, · · · , Nt.
(4) For each time step, assemble the coefficient matrix A, impose the boundary condition,

and assemble the vector d.
(5) Directly solve the matrix equation (Equation (19)) to obtain the new dimensionless temperature.

(6) If the convergence criterion (
∣∣∣Θk −Θk

old

∣∣∣/∣∣∣Θk
old

∣∣∣ < 10−6) is satisfied, terminate the
iterative, and go to step (7). Otherwise, go back to step (4).

(7) If the number of time steps is not reached, go to step (3). Otherwise, calculate fin
efficiency η.

4. Verification of Element Differential Method Solution

To validate the EDM solution, a test case of steady-state Fourier heat transfer was
adopted. In this case, the radiative-conductive parameter and an internal heat source are
assumed to be zero. Accordingly, the governing equation is simplified as,

∂2Θ
∂X2 = Nc

2Θ (20)

The analytical solution of Equation (20) is,

Θ(X) =
cos h(NcX− Nc)

cos h(Nc)
(21)

Figure 3 shows the temperature distribution for three convective parameters
Nc = 1, 5, 15. For comparisons, the EDM results and analytical solutions are simul-
taneously plotted in Figure 3. Compared with analytical solutions, the maximum relative
error of the EDM results is 0.17%.

Figure 3. Comparison of dimensionless temperature by the EDM and analytical solution.
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Secondly, to further evaluate the accuracy of the EDM, more comparisons are made.
The dimensionless fin tip temperature by the EDM is shown in Figure 4. Figure 4 indicates
that the agreement between θ method [13] and EDM results is excellent, and the maximum
relative difference is less than 1.36%. Therefore, it can be demonstrated that the EDM can
provide an adequately accurate solution for non-Fourier heat conduction in the convective-
radiative fin.

Figure 4. Comparison of dimensionless fin tip temperature by the EDM and the θ method [13].

5. Results and Discussions

To predict the thermal process of non-Fourier heat conduction in convective-radiative
fin, the effects of Vernotte number Ve, dimensionless periodicity Ω, coefficient of thermal
conductivity µ, and coefficient of emissivity ξ on temperature and fin efficiency are com-
prehensively analyzed. In this section, except for special note, these parameters are fixed
as: C1 = C2 = C3 = C4 = 2, b = 1, µ = −0.1, ξ = 0.1, Ve = 1, Nc = 2, Nrc = 2, Θ0 = 0.2,
Ω = 2, B = 0.5.

5.1. The Effect of Vernotte Number

The Vernotte number Ve is the order of dimensionless relaxation time. In the case of
Ve = 0, the nonlinear heat transfer in the convective-radiative fin is Fourier heat conduction.
Figure 5 depicts the variation of dimensionless temperature with position and time in
convective-radiative fin for different Vernotte numbers Ve = 0, 0.3, 1.0, and 2.0. At the
initial stage, the dimensionless fin temperature excepted at the fin base is constant as
Θ0 = 0.2. When F > 0, the periodic fluctuation in temperature is imposed at the base.
When the value of F is small, the dimensionless temperature increases sharply, and this
phenomenon becomes more apparent in the case of lager Ve. When the value of F is
significant, the wave amplitude of temperature becomes smaller as the distance from the
fin base increases. This trend becomes more evident as Ve increases. Otherwise, with the
passage of dimensionless time, the wave of dimensionless temperature tends to stable, and
the stable time is postponed with the increase of Ve.
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Figure 5. Dimensionless temperature for different values of Ve.

Figure 6 shows the effect of Ve on fin tip temperature. As time goes on, the fin tip
temperature reaches its first peak. Then, the perturbation of the fin tip temperature tends
to a quasi-steady state. Otherwise, it also exists the lag phenomena. With the increase of
Ve, the lag phenomena tend to be more prominent, and the temperature variation range
becomes smaller. The reason is that, with the increase of Ve, the speed of heat propagation
becomes slow, and the heat exchange between the fin surface and ambient fluid becomes
more efficient.

Figure 6. The variation of instantaneous fin tip temperature for different values of Ve.
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The effect of Ve on the instantaneous fin efficiency is presented in Figure 7. With
the increase of Ve, the dimensionless time at which efficiency reaches the first peak is
postponed, and the wave amplitude of efficiency becomes smaller.

Figure 7. The variation of instantaneous fin efficiency at different values of Ve.

5.2. The Effect of Dimensionless Periodicity

As expressed in Equation (6), dimensionless periodicity Ω = L2ω/α is the frequency
of periodic boundary conditions. The effect of dimensionless periodicity Ω on dimension-
less fin tip temperature is illustrated in Figure 8. Before the heatwave reaches the fin tip
(the temperature of the fin tip suddenly rises), the effect of Ω on dimensionless fin tip tem-
perature can be omitted, and the increasing values of dimensionless fin tip temperature for
different values of Ω are the same. As time goes on, the dimensionless fin tip temperature
decreases rapidly. With the further passage of time, the variation of dimensionless fin tip
temperature tends to be stable and is not influenced by the initial condition. The variation
range of dimensionless fin tip temperature becomes smaller as Ω increases.

Figure 9 shows the effect of Ω on instantaneous fin efficiency. Before the heatwave
reaches the fin tip, the increasing gradients of instantaneous fin efficiency are consistent
for different values of Ω. With the passage of time, the value of instantaneous fin effi-
ciency is fixed for the Fourier model (Ω = 0). However, the value of instantaneous fin
efficiency tends to fluctuate for the non-Fourier model (Ω 6= 0). When Ω increases, the first
peak value of instantaneous fin efficiency decreases, and amplitude becomes smaller and
frequency increases.
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Figure 8. The variation of fin tip temperature at different values of Ω.

Figure 9. The variation of instantaneous fin efficiency at different values of Ω.
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5.3. The Effect of Coefficient of Thermal Conductivity

To understand the influence of the coefficient of thermal conductivity on transient
heat transfer in convective-radiative fin, an assessment is made in Figures 10–12. Figure 10
exhibits the variation of dimensionless fin tip temperature with three values of coefficient
of thermal conductivity (namely µ = −0.1, 0.0, 1.0). It is seen that the higher value
of µ depicts the larger wave amplitude for the Fourier model. When the first heat wave
arrives, the higher value of µ obtains the lower dimensionless fin tip temperature for the
non-Fourier model. However, when the temperature fluctuation tends to be stable, the
higher value of µ can obtain the larger wave amplitude of dimensionless fin tip temperature
for the non-Fourier model. A similar change trend of instantaneous fin efficiency is also
found in Figure 11.

Figure 10. The variation of fin tip temperature at different values of µ.

Figure 12 presents the variation of average fin efficiency with different values of µ.
The average fin efficiency increases with the increase of µ. Furthermore, the average fin
efficiency of the Fourier model is higher than that of the non-Fourier model.

5.4. The Effect of Coefficient of Emissivity

Figures 13 and 14 illustrate the effect of ξ on transient thermal behaviors of dimen-
sionless fin tip temperature and fin efficiency. As shown in Figure 13, there is a negative
correlation between the wave amplitude of dimensionless fin tip temperature and ξ. Both
Fourier and non-Fourier models have the same change tendency. As shown in Figure 14,
the wave amplitude of instantaneous fin efficiency becomes smaller when ξ increases from
−0.3 to 0.3.
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Figure 11. The variation of instantaneous fin efficiency at different values of µ.

Figure 12. The variation of average fin efficiency with different values of µ.
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Figure 13. The variation of fin tip temperature at different values of ξ.

Figure 14. The variation of instantaneous fin efficiency at different values of ξ.

Figure 15 exhibits the variation of average fin efficiency with ξ for both Fourier and
non-Fourier models. It is noted that average fin efficiency decreases with the increase of ξ.
The relaxation time of the non-Fourier model is not zero. However, for the Fourier model,
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the relation time is zero. The Fourier model has a rapid temperature response speed and
more heat dissipation through the fin. Thus, for the same emissivity, the fin efficiency of
the Fourier model is higher than that of the non-Fourier model.

Figure 15. The variation of average fin efficiency with different values of ξ.

6. Conclusions

The element differential method was firstly developed to analyze non-Fourier heat
conduction in convective-radiative fin with mixed boundary conditions. In the solving
process, the derived spatial derivatives can be directly substituted into governing equations
to form algebraic equations, and no mathematical principles or integration are required. The
effects of various thermophysical parameters on dimensionless temperature, instantaneous
fin efficiency, and average fin efficiency are also investigated. Based on the present study,
the following conclusions can be drawn:

• Comparison with analytical results and numerical method results in the literature
shows that the element differential method is a convenient and straightforward
method for solving nonlinear heat transfer of convective-radiative fin under the Fourier
and non-Fourier models.

• At the initial stage, the distribution of dimensionless temperature is very steep, and
this phenomenon becomes more evident with the increase of Ve. As the dimensionless
time goes on, the fluctuation of dimensionless temperature tends to stable, and the
stable time is delayed as Ve increases.

• The transient distribution of dimensionless fin tip temperature for the non-Fourier
model has lag phenomena compared with that for the Fourier model. With the increase
of Ve, the lag phenomena tend to be more obvious.

• The wave amplitudes of dimensionless fin tip temperature and instantaneous fin
efficiency become smaller when Ve, Ω, and ξ increase. In contrast, these opposite
trends are found as b, µ, C1, C2, C3, and C4.

• Average fin efficiency increases with the increase of µ, C1, C2, C3, and C4. However,
average fin efficiency decreases with the increase of ξ. Otherwise, the fin efficiency of
the Fourier model is higher than that of the non-Fourier model.
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Nomenclature
Ac the cross-section area of the fin, m2

A coefficient matrix
B amplitude of the input temperature
b power index of convective heat transfer coefficient
C1, C2, C3, C4 dimensionless coefficients of internal heat generation
c1, c2, c3, c3 coefficients of internal heat generation
cp specific heat capacity, J·kg−1·K−1

d vectors in Equation (19)
F Fourier number
∆F dimensionless time step
h convective heat transfer coefficient, W·m−2·K−1

k thermal conductivity, W·m−1·K−1

Ln
i Lagrange interpolation polynomials

L length of the fin, m
m iteration times
N number of collocation points
Nc coefficient of fin
Nrc radiative-conductive parameter
nF number of shared surfaces
nint number of interpolations
n f normal vector
p perimeter of longitudinal fin, m
pe heat source vibration period, s
q heat transfer rate, W·m−2

Qc convective heat transfer rate, W·m−2

q′ volumetric heat generation rate, W·m−3

qin the input of heat on the boundary, W·m−2

t time, s
T temperature, K
v speed of heat wave, m·s−1

Ve Vernotte number
X dimensionless axial coordinate
x coordinate in the x-direction, m

Greek Symbols
α thermal diffusivity, m·s−1

δ thickness of the fin, m
ε surface emissivity
η instantaneous fin efficiency
ηave average fin efficiency
µ coefficient of thermal conductivity
Θ dimensionless temperature
ξ coefficient of emissivity
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ρ density, Kg·m−3

σ Stefan-Boltzmann constant, W·m−2·K−4

τ relaxation time, s
χ dimensionless coordinate
Ω dimensionless periodicity
ω periodicity, s−1

Subscripts
i iteration times
∞ value at ambient temperature
b value at fin base
i, j solution node indexes
t value at the fin tip
Superscripts
m time level
f shared plane
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