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Abstract: A titanium protective layer was deposited onto Al7075 substrate (Al7075/Ti) by a cold
spray method (CS) with different standoff distances (SoD) of the nozzle from the specimen surface.
The aim of this research was to study the influence on the mechanical properties and corrosion
resistance of the Ti coating on Al7075 substrate. The surface and microstructure of Al7075/Ti was
observed by a scanning electron microscope (SEM). The corrosion test of the materials was carried
out by using the electrochemical method. The SoD had a significant effect on the microstructure of the
coatings and their adhesion onto Al7075 substrate. The highest level of microhardness (248 HV0.3)
value was achieved for deposits obtained with the SoD of 70 mm. The corrosion tests showed that the
mechanism of electrochemical corrosion of titanium coatings is a multi-stage process, and the main
product of the corrosion process was (TiO2)ads. However, the polarization resistance (Rp = 49 kΩ cm2)
of the Al7075/Ti coatings was the highest, while the corrosion rate (υcorr = 13.90 mm y−1) was the
lowest, for SoD of 70 mm.

Keywords: Al7075 substrate; standoff distance; cold spray; titanium coating; microstructure;
corrosion rate

1. Introduction

Cold spraying (CS) is a coating technology based on aerodynamics and high-speed
impact dynamics. In this process, spray particles (5–50 µm) are accelerated to a high velocity
(300–1200 m/s) by a high-speed gas flow that is generated through a convergent–divergent
de Laval type nozzle [1–3]. Pressurized gas (N2 or He) is heated, typically by electric energy,
to temperatures in the range of 300 ◦C to 800 ◦C and then directed to a nozzle to produce
a supersonic inert gas stream [4]. Obtaining supersonic velocity by spray particles is a
prerequisite for obtaining a coating that adheres well to the substrate, which ensures that
it obtains the appropriate mechanical properties [5,6]. When the particles exit the nozzle
and impinge on the target surface, they undergo significant plastic deformations resulting
from collisions and bond to the substrate. Thus, there is a clear change in particle size [7].
A coating is formed through the intensive plastic deformation of particles impacting on a
substrate at a temperature well below the melting point of the spray material. The main
result is that CS can minimize effects of oxidation, melting, evaporation and other common
problems suffered in thermal spraying [8]. Therefore, CS is used for the production and
repair of metal coatings to increase mechanical properties and improve corrosion resistance
of various metal components. However, it has been found that the particle size of the
powder used to produce the coating has little effect on the deformation of the entire particle
as it hits the substrate at high speed. It turned out that the particle flattening coefficient
increases very markedly with the increase in the velocity of impact of the metal powder
particles on the substrate surface. In contrast, the temperature at the localized contact
surfaces increases significantly due to the possible adiabatic shearing process. The critical
speed for particle deposition could be estimated with appropriate material properties [9,10].
The distance between the nozzle and the surface to which a new coating is applied has a
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significant impact on the mechanical properties of metallic coatings. On the other hand,
for cold spray deposition, increasing of the standoff distance (SoD) was generally thought
to result in a lower particle speed due to the drag force exerted on the particle. Therefore,
the protective coatings obtained did not have high mechanical parameters. On the other
hand, too small a distance of the nozzle from the surface of the substrate results in lower
quality coatings with low mechanical parameters. Therefore, a small SoD will reduce
the particle velocity and deposition efficiency, which slows down the particle velocity
before impact [11–19]. In order for the layer to be effectively formed on the surface of the
substrate, the metal particles to be deposited must move at a supersonic speed clearly
greater than the critical speed. It is worth adding that if the metal particle velocity is
lower than the critical speed, the substrate may be significantly damaged as a result of its
abrasion. Importantly, by increasing the powder feed rate in the nozzle, the velocity of the
deposited metal particles is reduced due to gas–particle interactions as the particles move
away from the nozzle outlet [20–22]. On the other hand, the production of metallic coatings
is a multi-step process. Initially, a thin layer of material is deposited on the substrate. This
stage is characterized by the direct interaction of the particles with the substrate and largely
depends on the degree of preparation and the properties of the substrate. Subsequent
layers are formed as a result of multiple overlapping coating material particles [23].

The aluminium–zinc–magnesium (i.e., Al7075) alloys have a greater response to
heat treatment than the binary aluminium–zinc alloys, resulting in higher strengths. The
additions of zinc and magnesium, however, decrease the corrosion resistance. Thus, the
alloy Al7075 must be protected against corrosion, most often by means of metallic coatings
resistant to corrosion. A possible approach to increase the corrosion resistance of this
alloy is the deposition of a pure titanium coated layer. The titanium standard potential
is ETi

2+
/Ti = −1.75 V, so titanium is a non-noble metal. Titanium is a metal with high

hardness and mechanical strength. Moreover, under natural conditions, the Ti surface
undergoes a passivation, and therefore titanium is classified as a corrosion-resistant metal.
However, the lower content of oxides is due to the cold spray being carried out at much
lower temperature, and the reaction between the metal and the oxygen in the ambient
spray can be greatly reduced or eliminated [24].

There is no reliable information in the literature so far concerning the influence of the
distance between the nozzle and the substrate surface on the mechanical and anti-corrosion
properties of metal coatings produced by the cold spray method.

The aim of this research was to check the impact influence of the different standoff
distances of the nozzle from the specimen surface on the microhardness and corrosion
resistance of the Ti coating onto Al7075 substrate. The titanium protective layer was
produced by the cold spray method. The corrosion test was carried out by electrochemical
method in an acidic chloride solution.

2. Experimental Details
2.1. Materials and Methods

The titanium coatings were deposited onto Al7075 substrate (Al7075/Ti) by the cold
spray method (CS). Pure titanium powder (99.8 wt.% Ti) was used as feedstock. This
powder was manufactured using the hydrite–dehydrite process and supplied by Kamb
Import-Export (Warsaw, Poland). On the basis of the analysis of the powder’s particle size
distribution, it was found that was characterized by the d10 = 18.0 µm, d50 = 35.0 µm, and
d90 = 60.0 µm [25], Figure 1.

The cold spray deposition was performed with an Impact Innovations 5/8 System
(Impact-Innovations GmbH, Rattenkirchen, Germany). Nitrogen was applied as the process
gas to the deposit titanium coatings. The maximum parameters used were a temperature
of 800 ◦C and a pressure of nitrogen of 40 bar [25]. The cold spray equipment is shown in
Figure 2.
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Figure 2. Typical cold spray equipment with a marked distance of the nozzle from the sample 
surface. 

Before applying the Ti coating, the surface of the substrate, i.e., Al7075 was 
mechanically cleaned with 600, 1200, and 2000 grit sandpaper. Coatings were sprayed 
maintaining the distance (d) of the nozzle from the specimen surface in the range from 20 
to 100 mm, which was systematically increased by 10 mm. The nozzle traverse speed was 
400 mm/s. In order to obtain the planned thickness of the titanium coating, i.e., 1.5 mm–2 
mm onto Al7075 surface, we made 2 or 3 runs with a cold spray gun [25]. The Al7075/Ti 
samples were cooled (in about 24 h) to room temperature under a nitrogen atmosphere. 
The basic parameters of the materials are listed in Table 1. 

Table 1. Sample name, and distance of nozzle from sample surface. 

Sample 
Distance 

d, mm 
Al7075/Ti-20 20 
Al7075/Ti-70 70 

Al7075/Ti-100 100 

Figure 1. Particle size distribution of titanium powder [25].
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Figure 2. Typical cold spray equipment with a marked distance of the nozzle from the sample surface.

Before applying the Ti coating, the surface of the substrate, i.e., Al7075 was mechani-
cally cleaned with 600, 1200, and 2000 grit sandpaper. Coatings were sprayed maintaining
the distance (d) of the nozzle from the specimen surface in the range from 20 to 100 mm,
which was systematically increased by 10 mm. The nozzle traverse speed was 400 mm/s.
In order to obtain the planned thickness of the titanium coating, i.e., 1.5 mm–2 mm onto
Al7075 surface, we made 2 or 3 runs with a cold spray gun [25]. The Al7075/Ti samples
were cooled (in about 24 h) to room temperature under a nitrogen atmosphere. The basic
parameters of the materials are listed in Table 1.

Table 1. Sample name, and distance of nozzle from sample surface.

Sample Distance
d, mm

Al7075/Ti-20 20

Al7075/Ti-70 70

Al7075/Ti-100 100

Three of the Al7075/Ti samples were selected for the characterization of microstruc-
tures and corrosion test (Table 1).

2.2. Solutions

The following reagents were used to make the solutions: FLUKA analytical grade
sodium chloride (NaCl) and POCH analytical grade hydrochloric acid (HCl). The concen-
tration of Cl− ions was 1.2 M, and the pH was 1.5. The electrolyte was not deoxygenated.
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2.3. Electrodes

The working electrode (W) was made of Al7075 alloy, which was covered with titanium
coating (Al7075/Ti), which was produced by a cold spraying method. The geometric surface
area of the W electrode was 1.0 cm2. The saturated calomel electrode (SCE) was used as
the reference. It was connected with the solution using a Luggin capillary. The counter
electrode (9 cm2) was made from platinum foil (99.9% Pt).

2.4. Electrochemical Measurements

The electrochemical experiments were carried out in a conventional three-electrode
cell. All electrochemical measurements were made using a potentiostat/galvanostat PG-
STAT 128N, (AutoLab, Amsterdam, The Netherlands) with NOVA 1.7 software from the
same company.

The potentiodynamic polarization (LSV) curves were recorded. All measurements
were carried out under a potential range from −900 mV to −100 mV vs. SCE, whereas the
potential change rate was 1 mV s−1, with holding time of 30 s at −900 mV.

The LSV curves were used to designate of the corrosion electrochemical parameters.
However, the Stern–Geary equation was used for the calculation of the polarization resis-
tance of the materials. The corrosion rate of materials were appointed using the following
equation [26–29]:

νcorr = 3.268 × jcorr M
n ρ

(1)

where jcorr is the corrosion current density, M is the molecular weight of the substrate, n is
the number of electrons exchanged, and ρ is the density of the material.

The chronoamperometric curves (ChA) were obtained for the potential values which
were selected for the characteristic points on the LSV curves.

2.5. Surface Morphologies and Microstructure

The surface morphologies and microstructure were observed by using a scanning
electron microscope (SEM, JSM-5400, Joel, Tokyo, Japan). The accelerating voltage of SEM
was 20 kV. Prior to the cross-sectional analysis, the coating samples were polished with
increasingly fine, (3 µm, 1 µm, and 0.25 µm) diamond suspensions. The X-ray diffraction
(XRD) was applied to characterize the phase composition of the coatings using a Bruker
D8 Discover diffractometer (Bruker Ltd., Malvern, UK), with Co Kα radiation was of
λ = 1.7889 Å.

2.6. Microhardness

The measurement of microhardness of the Al7075/Ti was made by the Vickers method
(HV) using a Falcon 500 hardness tester from INNOVATEST (Maastricht, The Netherlands).
An indenter was used in the form of a diamond pyramid, whose load varied from 0.02 N
to 20 N.

All measurements were carried out at a temperature of 25 ± 0.5 ◦C which were
maintained using an air thermostat.

3. Results and Discussion
3.1. Surface Morphologies

The surface morphologies of the Ti coatings onto Al7075 substrate are presented in
Figure 3.

Titanium coatings adhere well onto Al7075 alloy. As shown in Figure 3, along with the
change in SoD, a change in the surface structure of the Ti coating onto Al7075 substrate
was observed. The most homogeneous and smooth surface of the Ti coating was obtained
when the nozzle distance from the sample surface was 70 mm (Figure 3b).
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Figure 3. Surface morphologies of cold sprayed titanium coatings onto Al7075 substrate deposited at
SoD of: (a) 20 mm, (b) 70 mm, and (c) 100 mm.

Figure 4 presents the X-ray diffraction patterns recorded for the Ti powder and cold
sprayed coating deposited onto Al7075 substrate at SoD of 70 mm.

It can be seen that the SoD of 70 mm and high gas temperature of 800 ◦C do not cause
the formation of oxides onto the Al7075/Ti surface. However, similar results were obtained
for other samples (Table 1), but they are not cited in this work.
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70 mm.

3.2. Microhardness

In Table 2 shows how the SoD affects the microhardness of the Ti coatings onto Al7075
substrate. Similar observations were reported by [25].

Table 2. Microhardness of titanium coatings onto Al7075 substrate.

Sample Microhardness
HV0.3

Al7075/Ti-20 200 ± 2

Al7075/Ti-70 248 ± 1

Al7075/Ti-100 218 ± 3

The highest HV0.3 value was recorded for the titanium coating that was produced
when the SoD was 70 mm (Table 2). The measurement results show a large deviation of
the HV0.3 value, which is related to the different degree of deformation of the titanium
particles on the Al7075 surface.

3.3. Corrosion Test

The corrosion tests of the Al7075/Ti coatings were carried out by the electrochemical
method in 1.2 M Cl− solution (pH 1.5). The potentiodynamic polarization curves (LSV)
of the titanium coatings onto the Al7075 alloy, depending on the nozzle distance from the
sample surface, are shown in Figure 5.

The cathode branches (Figure 5) correspond to the simplified reduction reaction of
hydrogen ions [26–28]:

Ti + 2 H+ → Ti + H2 − 2 e− (2)

When the electrode potential is changed in the anode direction, the surface of the Ti
electrode was oxidized:

Ti→ Ti2+ + 2 e− (3)

Moreover, subsequently, an adsorbed oxide layer was formed on the surface of the
electrode according to the reaction:

Ti2+ + 2 H+ + 3/2O2 → (TiO2)ads + H2O + 8 e− (4)
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SoD of: (a) 20 mm, (b) 70 mm, and (c) 100 mm. Solutions contained 1.2 M Cl−, pH 1.5, dE/dt 1 mV s−1.

The Al7075/Ti surface was covered with a white layer of titanium (IV) oxide. Therefore,
on the potentiodynamic polarization curves (Figure 5), peaks are observed for the electrode
potentials of: −510 mV (curve (a)), −360 mV (curve (b)), and −230 mV (curve (c)) vs.
SCE, respectively. Adsorbed titanium (IV) oxide (Equation (4)) clearly limits the effects
of electrochemical corrosion on the titanium surface, especially for Al7075/Ti, which was
produced when the nozzle distance from the sample surface was 70 mm (Figure 5, curve (b)).
In this case, the protective oxide layer (reaction (4)) is tight and adheres well to the substrate,
protecting the Al7075 substrate against contact with a corrosive chloride environment.

Under the conditions of the experiment in the acidic environment, the adsorbed oxide
layer dissolves according to a simple chemical reaction:

(TiO2)ads + 4H+ → Ti4+ + 2H2O (5)

However, for more positive electrode potentials, the current density increases (Figure 5),
hence a further dissolution of the titanium surfaces that have been deposited onto
Al7075 substrate.

3.3.1. Corrosion Electrochemical Parameters

The LSV curves (Figure 5) were used to designate the corrosion electrochemical
parameters of the Al7075/Ti coatings, i.e., corrosion potential (Ecorr), corrosion current
density (jcorr), and cathodic (bc) and anodic (ba) Tafel slopes (Figure 6).

The corrosion electrochemical parameters of the titanium coatings onto Al7075 sub-
strate in aggressive chloride solution are listed in Table 3.
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1.2 M Cl−, pH 1.5, dE/dt 1 mV s−1.

Table 3. Corrosion electrochemical parameters of titanium coatings onto Al7075 substrate.

Sample
Ecorr
mV

vs. SCE

jcorr
mA cm−2

−bc ba

mV dec−1

Al7075/Ti-20 −670 2.80 350 250

Al7075/Ti-70 −643 1.60 340 380

Al7075/Ti-100 −652 1.90 380 300

It turned out that with the increase in the distance of the nozzle from the surface of
the samples, the values of the corrosion potential shift towards positive values. Moreover,
the most positive value of the corrosion potential was noted for the Al7075/Ti-70 coating
(Table 3). Thus, if the distance between the nozzle and the surface of the sample was
70 mm, the Ti coating exhibits the best anti-corrosion properties. This is also evidenced
by the lowest value of the corrosion current density (i.e., 1.60 mA cm−2). The slopes of
the Tafel’s cathode fragments of polarization curves are slightly different between each
other (Table 3). Therefore, the mechanism of cathodic hydrogen reduction (Equation (2)) is
identical for the tested electrodes. However, the Tafel slopes of the anode segments of the
polarization curves are different for each electrode material (Table 3). This suggests that the
mechanism of electrochemical corrosion (Equations (3)–(5)) of the tested coatings depends
on the method of Ti coating production onto Al7075 alloy (in this case, from the distance of
the nozzle from the surface of the substrate).

3.3.2. Polarization Resistance and Corrosion Rate

The polarization resistance (Rp) of the titanium coatings were determined on the basis
of the slope of the LSV curves (Figure 5). The corrosion rates (vcorr) of the materials were
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calculated on the basis of Equation (1) [27–29]. The Rp and vcorr values of the titanium
coatings cold sprayed onto Al7075 alloy are collected in Table 4.

Table 4. Polarization resistance and corrosion rate of titanium coatings onto Al7075 substrate.

Sample
Rp

kΩ cm2
vcorr

mm y−1

Al7075/Ti-20 23 24.30

Al7075/Ti-70 49 13.90

Al7075/Ti-100 38 16.50

The highest in the electrode’s polarization resistance value was noted of the Ti coating,
which was obtained when the nozzle distance from the surface of the substrate was 70 mm.
Moreover, the electrochemical corrosion rate of this coating is also the smallest compared to
Ti coatings that were produced by a different nozzle position (Table 4). It seems clear that
metallographic structures of titanium coatings onto Al7075 alloy are completely different.

3.3.3. Chronoamperometric Measurements

Figure 7 shows the ChA curves in 1.2 M Cl− solution (pH 1.5) of the Ti coating onto
Al7075 substrate deposited at SoD of 20 mm, 70 mm, and 100 mm. The electrode potential
of the anode process was –150 mV vs. SCE, and was selected on basis of the LSV curves
(Figure 5). It was found that, in the conditions of the experiment, the current density values
depended on the distance of the nozzle from the surface of the substrate (Figure 7). For
each nozzle distance from the Al7075 surface, the current density systematically decreases
during electrolysis. Thus, the adsorbed oxide layer i.e., TiO2 (reaction (4)) protects the
Al7075 substrate against contact with an aggressive chloride solution.
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It seems that, under these conditions, the adsorbed oxide layer can be additionally
sealed by adsorption of Cl− ions [29]:

MeO + Cl− + H+ → (MeClOH−)ads (6)

and
(MeClOH−)ads → (MeClOH)ads + m e− (7)

Unfortunately, the (MeClOH)ads layer in the acidic chloride solution was dissolved in
accordance with a chemical reaction:

(MeClOH)ads + H+ →Men+ + Cl− + H2O (8)

Thus, a further sharp increase in the current intensity was observed due to the oxida-
tion of the electrode surface (Figure 5).

In addition, a clear fluctuation of the current density was observed (especially for the
distance of 20 mm), which were associated with the oxidation of the surface of the test
materials (Figure 7, curve (a)). Thus, in this case, the oxide surface is not homogeneous and
does not effectively protect the substrate against corrosion.

Figure 8 shows a scheme of the formation of the protective titanium layer onto Al7075
substrate depending on the distance of the nozzle from the substrate surface.
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During the production of the metal layer by the cold spray method, the particle
impact speed must exceed the threshold value so that plastic deformation of the metal
particles occurs, which causes them to adhere to the surface of the substrate. Moreover,
nozzle geometry, powder characteristics and nozzle distance from the sample surface are
of fundamental importance with respect to the microstructure, physical, and mechanical
properties of the coatings.

If the distance of the nozzle from the substrate was 20 mm, the Ti particles were
subjected to excessive deformation, which resulted in a leaky Ti coating onto Al7075
substrate (Figure 8a). It seems that the most compact and tight Ti coating was obtained
when the distance of the nozzle from the substrate Al7075 was placed 70 mm. In this
case, tightly adhering Ti coating was obtained (Figure 8b). However, during Ti coating
production cold spray method when the distance of the nozzle from the substrate was
increased to 100 mm, the Ti particles did not deform sufficiently and a leaky porous coating
was obtained (Figure 8c). The aggressive chloride electrolyte easily penetrates deep into
the structure of the Ti coating, causing corrosion of the substrate.

On the other hand, an important aspect of the powder morphology is that the particle
shape of the coating material has a significant influence on the mechanical properties of
the newly formed coating. It turns out that irregularly shaped metal particles hitting the
substrate cause high internal stresses in the new coating. Ajdelsztajn et al. [30] showed
that when the shell metal particles hit the substrate, a localized shear deformation occurs
at the particle boundaries. In this way, the shape of the metal particles is changed to
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be more regular, which favors close contact between the particles and helps to form a
metallurgical particle/particle bond. In addition, the irregular morphology of the metal
particles will increase the concentration of internal stresses in the coating due to the fact
that the load cannot be evenly distributed. Thus, the regular morphology of the coating
material particles promotes an even distribution of internal stresses, and thus significantly
improves the mechanical properties of the new coatings [28]. Moreover, the concentration
of stresses on the surface of the deposited metal particles may facilitate the occurrence
of a localized shear deformation that can cause microcracks on the surface of the newly
produced metallic coating.

3.4. Microstructure Titanium Coatings

The SEM microstructure of the cross-section of the titanium coatings onto Al7075
substrate (for the of SoD of 20 mm, 70 mm, and 100 mm) before and after exposure in 1.2 M
Cl− solution (pH 1.5) are shown in Figure 9. The exposure time was 4 h.
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Figure 9. SEM of cross-section of titanium deposited onto Al7075 substrate at the SoD of: (a) 20 mm,
(c) 70 mm, and (e) 100 mm, and after exposure at 1.2 M Cl− (pH 1.5) at SoD of: (b) 20 mm, (d) 70 mm,
and (f) 100 mm. Exposure time was 4 h.

Significant changes in the microstructure of the Al7075/Ti coatings, together with
increasing of the SoD in the range of 20 mm to 100 mm, are visible. Spraying at short
distances (20 mm) produces porous of Ti coatings which adhere well to the Al7075 alloy
substrate (Figure 9a). The reason for such increased porosity of the coatings in these cases
may be the lower speed of larger particles of the titanium powder. After leaving the nozzle,
the velocity of the Ti powder grains increases depending on their size, reaching the highest
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value at a distance of 70 mm or 100 mm [25]. A close SoD is sufficient for large particles to
form good adhesion with the substrate, with no pores visible at the interface. Extending
the distance of the nozzle from the substrate leads to a noticeable reduction in the porosity,
which reaches the minimum value at 70 mm, which is clearly visible in Figure 9c. However,
this coating is characterized by a small number of very fine pores that appear evenly over
the entire cross-sectional area.

Further increasing the distance of the nozzle from the substrate material, i.e., 100 mm,
resulted in a significant increase in the porosity of the Ti coating onto Al7075 substrate
(Figure 9e). The large distance of the nozzle from the substrate resulted in a decrease in the
velocity of all the grains of the Ti powder, which resulted in an increase in the porosity of
the Al7075/Ti coating. The most significant decrease in velocity concerned fine Ti powder
grains, which deformed slightly, contributing to a significant increase in the porosity of the
coating [31]. The kinetic energy of the largest Ti grains was so high that after impact with
the previously applied layer of titanium, the coating deformation process took place. Such
changes in the porosity of the coatings sprayed with cold gas result from the course of the
coating forming process, where the last layer is not subjected to penning as intensively as
the layers previously deposited [32,33].

The cross-section of the titanium coatings onto Al7075 substrate (for the SoD of 20 mm,
70 mm, and 100 mm) after exposure (4 h) in chloride solution are shown in Figure 9b–f. As
a result of the corrosive action of the environment, the greatest destruction of the Ti layer
was observed in the case of Al7075/Ti-20 and Al7075/Ti-100 samples (Table 1). It is clearly
visible that the inhomogeneous, porous structure of the Ti coatings on the aluminum alloy
substrate (Figure 9b,f) were degraded as a result of the reaction of the coating with the
corrosive environment. The numerous pores on the titanium surface cause the electrolyte
to penetrate deep into the Ti layer, which causes intense electrochemical corrosion of the
aluminum substrate (reactions (6)–(8)). However, in the case of the SoD of 70 mm, a fairly
smooth, compact structure of the Al7075/Ti coating was obtained. Therefore, the titanium
surface was slightly damaged (Figure 9d), still protecting the Al7075 substrate from the
corrosive action of the acid chloride solution.

4. Conclusions

The work carried out presents experimental studies of the titanium deposition onto
Al7075 substrate by cold spraying at different distances between the nozzle and the sub-
strate. The microstructure and anti-corrosion properties of the Ti onto Al7075 alloy in
an acid chloride solution were investigated. The conducted research allowed for the
formulation of the following conclusions:

1. The different standoff distance of the nozzle from the specimen surface (i.e., 20 mm,
70 mm, and 100 mm) in the cold spray process has a significant influence on the
properties of the Al7075/Ti coating.

2. Titanium coatings adhere well onto Al7075 alloy, and the most homogeneous and
smooth surface of the Ti coating was obtained when the nozzle distance from the
sample surface was 70 mm.

3. The microhardness (HV0.3) of the deposit depend significantly on the nozzle distance.
The highest level of HV0.3 value was achieved for deposits obtained with the SoD of
70 mm.

4. There were no phase changes in the phase composition of the titanium deposits due
to the increased of SoD.

5. Corrosion test (electrochemical method) of the titanium coatings onto Al7075 substrate
were carried out in acidic chloride solutions.

6. The mechanism of electrochemical corrosion of titanium coatings is a multi-stage
process, and the main product of the corrosion process was (TiO2)ads. The oxide layer
did not protect the materials against the penetration of the aggressive solution.

7. The polarization resistance (Rp) of the Ti coatings was the highest, while the corrosion
rate (υcorr) was the lowest, for the SoD of 70 mm. Thus, in this case, the exchange
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of mass and electrical charge between the electrode and the electrolyte solution is
significantly impeded.

8. The titanium surface on the Al7075 substrate was slightly damaged when exposed
to an acid chloride solution, while still protecting the aluminum substrate from the
corrosive effects of the environment.
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