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Abstract: Composite fillers are often used to improve the protective properties of coatings. To obtain
a high protective performance of epoxy coatings for magnesium alloys, polyaniline (PANI) and
graphene oxide (GO) composite powders were selected because of their corrosion inhibition and
barrier performance, respectively. The paper mainly focuses on the effect of the preparation methods
of the composite powders on the protective performance. PANI and GO composite powders were
prepared by in situ polymerization and blending, respectively. First, the composite powder was
characterized by X-ray diffractometer, Fourier transform infrared spectroscopy, and scanning electron
microscopy. Then, the different composite powders and pure PANI powder were dispersed uniformly
in epoxy resin, and the coating was prepared on the surface of the AZ91D magnesium alloy and
studied by an electrochemical impedance test, adhesion strength test and physical properties test.
The results show that the impedance value of the coating with the added PANI and GO composite
powders by in situ polymerization was 4 × 109 Ω·cm2 and higher than that with the added pure
PANI (4 × 109 Ω·cm2) and PANI and GO mixed powders (1 × 109 Ω·cm2) after 2400 h immersion
in a 3.5% NaCl solution; the former also had better flexibility, ss impact resistance, and adhesion
strength. Compared with the direct blending method, the PANI and GO polymerization powders can
exert the shielding effect of GO and PANI corrosion inhibition better and achieve a better protective
effect on the magnesium alloy.

Keywords: magnesium alloy; polyaniline; graphene oxide; corrosion protection

1. Introduction

As the lightest metal material (65% of aluminum’s density and 25% of iron’s density)
in engineering applications at present, magnesium alloys have the advantages of high
specific strength, specific stiffness, and strong electromagnetic shielding ability. They also
have broad application prospects in aerospace and other fields. However, their relatively
high corrosion susceptibility and low potential (−2.37 V vs. SHE) limit their application in
many transport applications [1–4]. Some surface treatments, such as anodizing, microarc
oxidation, and chemical conversion film, are used to improve the corrosion resistance of
magnesium alloys successfully [5–7]. However, the thickness or compactness is limited
because the protection performance of the film is still dissatisfying.

Organic coating is a commonly used method in most metal protection methods because
of its simple process, convenient construction, and excellent protection performance [8].
However, the long-term protection of magnesium alloys is difficult to achieve because of
their high activity. One of the most common ways is to add different functional fillers to
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increase the protective properties of the coating. The fillers can be divided into three main
categories according to their mechanism of action. (1) Increased barrier performance of
coating. Generally, some layered materials, such as montmorillonite [9], hydrotalcites [10],
glass [11], and graphene [12], have attracted intense research interest because their lamellar
elements increase the lengths of the diffusion pathways of oxygen, water, and aggressive
ions [13]. In recent years, two-dimensional graphene oxide (GO) has attracted extensive
attention because of its high specific surface area, nanosheet layer, and excellent barrier
ability [14,15]. (2) Corrosion inhibition effect. The adding of some corrosion inhibition
functional fillers into the coating is an approach. However, the high activity of magnesium
alloys causes the selectivity of the fillers to be insufficient. Polyaniline (PANI) has been
studied most widely because of its good stability, low cost, and unique doping mecha-
nism [16–18]. In our previous works, the PANI coating achieved better protection against
magnesium alloys because of its unique corrosion mechanism [19]. (3) Sacrificial anode
protection. Some low-potential metals, such as Zn and Al, are used as sacrificial anodic
protective fillers. However, it is difficult for the magnesium alloy matrix because of its
lower potential.

In order to obtain the protective coating with an excellent comprehensive performance,
composite fillers with the different functions mentioned above are added at the same time.
In this paper, GO and PANI were added into the coating at the same time to improve the
corrosion resistance for magnesium alloys by a combined effect. Some research found that
the synthesized PANI/GO composite powders could improve the corrosion protection
performance of coatings for steel [15,16,20], but there is not as much research on composite
powder blending. Meanwhile, studies on magnesium alloys are limited. Therefore, this
paper focuses on the effect of the coating prepared by added in situ polymerization and the
direct blending compounding of PANI and GO on the protective properties of magnesium
alloys.

2. Materials and Methods
2.1. Experimental Materials

Ammonium persulfate, aniline, sodium dodecylbenzene sulfonate, hydrochloric acid,
and acetone were all analytically pure. The epoxy resin was E44 (purchased from Nan-
tong Star Synthetic Materials Co., Ltd., Nantong, China), the curing agent was Cardolite
LITE3100 (purchased from Caderai Chemical Co., Ltd., Zhuhai, China), and the commercial
GO powder was produced by Suzhou Tanfeng Graphene Technology (Suzhou, China)
Co., Ltd. The selected metal substrate was AZ91D magnesium alloy (with a chemical
composition of Al 9.14%, Zn 0.86%, Mn 0.30%, Cu 0.09%, Si 0.08%, Fe 0.01%, and Ni 0.01%,
and the rest was Mg, Dongguan Jiejin Metal Materials Co., Ltd, Dongguan, China). The
magnesium alloy was surface-treated with 200 and 400 sandpapers in turn, washed with
deionized water and acetone, and dried for later use.

2.2. Preparation of Composite Powder

A total of 0.1 g of sodium dodecylbenzene sulfonate was dissolved in 20 g deionized
water in a three-necked flask by stirring. Then, we added 1 g of GO, dispersed at a high
speed of 800 r/min for 1 h, named GO slurry. In addition, 10 g aniline was weighed into
a three-necked flask, and hydrochloric acid was added dropwise at a speed of 400 r/min
to control the pH within the range of 1 to 1.5 and stirred for 1 h. The dispersed GO slurry
was added to a three-necked flask, and stirring continued for 1 h. After the stirring was
completed, 24.5 g ammonium persulfate solution was added dropwise. After reacting for
12 h, the solution was washed with deionized water, filtered with suction until the filtrate
was colorless, and dried to obtain PAGO. At the same time, pure PANI was prepared by
the same synthesis process without GO, and PMGO also was prepared by blending PANI
and GO directly according to the same ratio (PANI:GO = 10:1).
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2.3. Preparation of Coating

The PANI, PAGO, and PMGO powders were added to the epoxy resin at 6% of the
mass of the epoxy resin and dispersed at a high speed of 2000 r/min for 2 h. Then, the
curing agent was added according to the mass ratio of 1:1.3 (epoxy: curing agent), stirred
evenly, and then we coated it on the surface of the treated magnesium alloy. The cured
thickness of the coating was (120 ± 15) µm, and a free film was prepared on the silica gel
plate simultaneously.

2.4. Powder Characterization

The four kinds of powders were sputtered with gold before determined via scanning
electron microscopy (SEM, VEGA3SBU, Tesken, Brno, The Czech Republic). Frontier near-
infrared spectrometer (FT-IR, FT 9700, PerkinElmer, Waltham, Mass, USA) was used to
identify whether the synthesized powder was indeed PANI and to find out the difference of
the different compound powder at 400~4000 wavenumber region. The KBr pellet method
was used to prepare FT-IR samples. X-ray Diffractometer (Bruker/D2 PHASER, XRD,
Bruker, Karlsruhe, Germany) was conducted with a copper Kα X-ray source.

2.5. Performance Test of Coating

Adhesion test was carried out using the BGD500 digital display pull-off adhesion
tester produced by Biuged Laboratory Instruments (Guangzhou, China) Co., Ltd.

Autolab electrochemical workstation was used to test the performance of the coating
in 3.5 wt.% NaCl solution. The 1 cm2 platinum sheet and Ag/AgCl (saturated KCl, Huayu
Instrument Co.,Ltd., Shanghai, China) were the counter and reference electrodes, respec-
tively. The coated magnesium alloy sample was a working electrode with a test area of
9 cm2. The test frequency was 10−2 to 105 Hz, and the disturbance signal was a 30 mV sine
wave.

According to the requirements of the ISO or Chinese standards (Table 1), the hardness,
impact resistance, and flexibility of the coating were tested. All the test instruments were
produced by Shanghai Modern Environmental Engineering Technology (Shanghai, China)
Co., Ltd.

Table 1. Test standards and instructions of the physical properties of the coating.

Test Property
Description Standards Instructions Instruments

Film hardness ISO 15184 [21] Pencil test PPH-1 pencil hardness
tester

Flexibility GB/T 1731-93 [22] Bend test QTX film
flexibility tester

Impact resistance GB/T 1732-93 [23] Falling-weight test QCJ impact tester

3. Results
3.1. Analytical Characterization of Powder

Figure 1 shows the micromorphology of the synthesized PANI, GO, PAGO, and
PMGO powders. PANI is an irregular globular and large agglomeration (Figure 1a). GO is
distributed with an irregular flaky structure, and its surface is smooth. The accumulated
lamellae may be due to the strong interaction between the surfactant groups after long-term
storage (Figure 1b). Compared with GO, PAGO shows a smaller and thicker lamellar
structure, and the GO sheet is surrounded by PANI particles (Figure 1c). The PANI particles
are deposited uniformly on the GO surface. The particle size of PANI-deposited GO is
smaller than that of pure PANI. With the adsorption and polymerization of aniline, GO
was exfoliated into sheets and in steady state. Figure 1d shows the GO and PANI randomly
scattered in the PMGO powder.
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Figure 1. SEM of (a) PANI, (b) GO, (c) PAGO, and (d) PMGO powders.

Figure 2 shows the infrared test results of the PANI, GO, and PAGO powders. Ac-
cording to the literature [24–27], the characteristic absorption peaks that appear at 1572
and 1465 cm−1 in the infrared spectrum of PANI are the C=C bending vibration of the
quinone ring and the C=C bending vibration of the benzene ring, respectively. The peaks
at 1298 cm−1 correspond to the C–N stretching of a secondary aromatic amine; the peaks at
1104 cm−1 are assigned to vibrations associated with the C–H of the quinone ring. For GO,
the characteristic absorption peaks at 1043, 1224, and 1718 cm−1 are the C–O–C stretching
vibration of the GO surface, the C–O stretching vibration of the carboxyl group, and the
C=O stretching vibration of the carboxylic acid, respectively [28]. The characteristic absorp-
tion peaks of the PMGO powders included PANI and GO and did not significantly change,
which indicated that there was no reaction between them. However, compared with PANI
and GO, all the characteristic absorption peaks of PANI appeared in the infrared spectrum
of the synthesized PAGO powder, but some characteristic absorption peaks of GO, such as
the C=O stretching vibration of the carboxylic acid (1718 cm−1), disappeared owing to a
partial peak overlap and coverage, indicating that PANI was successfully polymerized on
the GO surface.
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Figure 2. Infrared spectrum of synthetic powder.

Figure 3 shows the XRD test results of the PANI, GO, PAGO, and PMGO powders.
The PANI synthesized in the figure has characteristic diffraction peaks at 2θ of 20.3◦ and
25.0◦, and its diffraction peaks are relatively broad, indicating that the state is partially
crystalline [29]. GO has a strong diffraction peak at 2θ of 11.0◦, indicating an increased
degree of oxidation and disorder of the graphite sheet [30]. The characteristic diffraction
peaks that appeared in the synthesized PAGO are consistent with those of PANI, and the
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diffraction peak that corresponded to GO almost disappears, suggesting that GO is com-
pletely surrounded by PANI. However, the XRD pattern of the PMGO powder contained
the diffraction peaks of PANI and GO, indicating the separate situation between the PANI
and GO powders. But compare to the strong diffraction peak of GO, the diffraction peak
of PANI is inconspicuous. In addition, these results confirm that PANI was successfully
polymerized on the GO surface.
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Figure 3. XRD of the synthesized powders.

3.2. Coating Performance Analysis
3.2.1. Analysis of the Physical Properties of Coatings

Table 2 shows the test results of the physical properties of the PANI, PAGO, and PMGO
coatings. Compared with the PANI coating, the hardness, flexibility, and impact resistance
of the PMGO coating are improved when GO is added through blending, whereas the
impact resistance is further improved and the flexibility is also enhanced for the PAGO
coating when GO is introduced by polymerization, because the GO lamellar structure
can disperse the stress applied on the coating. When PANI is blended with GO, granular
PANI and lamellar GO are randomly distributed in the coating. When PANI and GO are
polymerized in situ, PANI is uniformly distributed in the coating after PANI is deposited on
the GO surface (Figure 1c). Thus, it can play a more effective role in toughening graphene.

Table 2. Test results of the physical properties of the coating.

Coating
Property Hardness Flexibility Impact Resistance (1 kg)

PANI 3H Diameter Φ4 mm 24 cm

PAGO 4H Radius of curvature
0.5 ± 0.1 mm 35 cm

PMGO 4H Radius of curvature
1.5 ± 0.1 mm 28 cm

Figure 4 shows the water absorption (marked as Q) of PANI, PAGO, and PMGO free
film. Q can be determined using the following formula.

Q =
wt − w0

w0
,
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where wt (g) is the amount of absorbed water at t (s) time, and w0 (g) is the initial weight
before immersion. Changes in Q of different coatings are roughly similar in Figure 4. That
is, they all rise rapidly at the beginning and reach a stable state with the increase in time,
and the saturated water absorption (Q-saturation) of the three kinds of coatings are all
maintained at a low level, of which the Q-saturation of the PANI coating is the highest at
1.48%, whereas that of the PAGO coating is the lowest at 1.12%. The GO lamellar structure
can disperse the shrinkage stress during the curing period, which is helpful for forming a
denser coating. Therefore, the defects of the coating are reduced, and the Q-saturation of
the coating is low.
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3.2.2. Analysis of Adhesion Strength of Coatings

Figure 5 shows the adhesion strength value and surface morphologies of the dry and
wet adhesions of different coatings (gray column chart shows the test results of the wet
adhesion strength of different coatings after 1200 h immersion). The dry adhesion strength
of the PANI, PAGO, and PMGO coatings are 9.6, 11.5, and 10.7 MPa, respectively. After the
test, only part of the metal matrix observed all three kinds of coatings, which also indicates
high adhesion strength. Compared with the pure PANI coating, the adhesion strength of
the PAGO and PMGO coatings was enhanced by the addition of GO. The main reason may
be that the lamellar structure of GO can reduce the stress concentration of the coating. The
adhesion strength of the PAGO coating is higher than that of the PMGO coating because
GO was dispersed better by in situ polymerization than by direct mixing, and GO can play
a better role.

Meanwhile, the PANI, PMGO, and PAGO coatings could also be defined as composite
material, epoxy resin as the matrix (continuous phase), and different kinds of fillers as the
reinforced (dispersed) phase. Therefore, the fracture of the coating during the adhesion
test could refer to the idea of the mechanics of composite materials. Some novel and strong
models, such as the “Tsai-Wu”and “Checkerboard” models, have been recently proposed
to estimate the strength of epoxy-reinforced glass or graphene specimens. According to the
literature, a very little volume of graphene nanoplatelets would double the critical buckling
load of the transverse-oriented fiber composite by calculation, which can be attributed to
the significant increment of the matrix modulus of elasticity [31,32].
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The wet adhesion strength of the PANI coating is 5.2 MPa, and almost all of the
coatings are stripped, and some gray product film is formed. The wet adhesion of the
PAGO coating is 8.4 MPa, and only a small portion of the coating was removed. The wet
adhesion of the PMGO coating is 7.3 MPa, and about half of the coating was stripped.
The wet adhesion strength of the PMGO and PAGO coatings is higher than that of the
PANI coating, because the labyrinth effect caused by the GO lamellar structure delays the
infiltration of the corrosion medium. Thus, the adhesion strength is enhanced. Compared
with the PMGO coating, the wet adhesion strength is higher, and the stripping area of the
PAGO coating is smaller because the dispersion effect of GO by in situ polymerization is
better than that by direct mixing, and the shielding effect is stronger.

3.2.3. Analysis of Coating Protection Performance

Figure 6 presents the Nyquist and Bode diagrams of the EIS of the PANI, PAGO, and
PMGO coatings in different time periods. The low-frequency impedance modulus of the
coating can be used to characterize the protective performance of the coating. In this study,
the impedance value of the coating was taken when the frequency was 0.01 Hz. Figure 7
shows that the three kinds of coatings all show a rapid decrease at first and then a relatively
stable state. The reason is that at the initial stage of immersion, with the increase in time
and the penetration of the solution, the shielding property of the coating decreases rapidly
when the water absorption reaches saturation. The performance of the coating tends to be
stable. The high modulus of the PAGO coating in the early stage of immersion is due to the
lamellar shielding effect of GO. In addition, in the process of soaking for 2400 h, the values
of the three kinds of coatings are all higher than 108Ω·cm2, indicating that the coatings
have a protective effect on the magnesium alloy, and the values of the coatings with the
PAGO powder coating are higher than those of the others, indicating that the coatings have
a better protective performance.
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Figure 7. Low-frequency impedance value of the three coatings versus time.

The equivalent circuit diagram of Figure 8 was selected to fit the data. Figure 8a
was selected for data fitting during the immersion process, when there is a time constant
in the impedance spectrum of the coating; that is, there is only one capacitive arc in the
Nyquist diagram, and there is no platform in the Bode curve in the low-frequency region.
This indicates that the corrosive species penetrated into the coating but did not reach
the coating/substrate interface. Meanwhile, Figure 8b was selected for data fitting when
the platform appears in the low-frequency region, suggesting that the corrosive agent
has penetrated the coating and reached the coating/substrate interface. Rs represents the
solution resistance; Qc represents the coating capacitance; Rcoating represents the coating
resistance; Qdl represents the electric double layer capacitance at the coating–metal interface,
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and Rt represents the charge transfer resistance. The red solid line in Figure 6 is the result
of data fitting.
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3.2.4. Analysis of Coating Protection Mechanism

(1) Shielding Effect of the Coating
Figure 9 shows the variation curve of the coating resistance (Rcoating of the PANI

coating, PAGO coating, and PMGO coating during 2400 h immersion after equivalent
circuit fitting. Rcoating reflects the barrier property of the coating [33], which is an important
factor for characterizing the protective performance of the coating. The Rcoating values of
the three coatings decreased rapidly at first and then tended to be stable with the increase
in immersion time. The rapid decrease in the early stage was mainly caused by water
absorption in the process of coating soaking, and the later stage tended to be stable because
the water absorption reached the saturation state. The PAGO coating and the PMGO
coating were higher than the PANI coating because the GO coating had better shielding
performance, whereas the PAGO and PMGO coatings had a larger difference because of
their different dispersion degrees in the coating, which affected the compactness of the
coating. At the same time, the compatibility between the powder and coating in the PMGO
coating was poor, thereby resulting in the lower Rcoating value of the PMGO coating than
that of the PAGO coating. Such a result is consistent with the Q-saturation of the coating
(Figure 4). The results show that the coating with PAGO powder had better resistance to
solution penetration. Thus, the PAGO coating had a better protective effect on the AZ91D
magnesium alloy than other coatings.
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(2) Corrosion inhibition effect of coating
Figure 10 shows the variation curve of the Rt values of the PANI, PAGO, and PMGO

coatings during 2400 h immersion. The higher the Rt value is, the smaller the corrosion rate
of the metal substrate will be [34]. Therefore, Rt is inversely proportional to the corrosion
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rate of the metal. During the whole immersion process of the coating, the Rt values of
the PANI, PAGO, and PMGO coatings showed a fluctuation of decrease-increase-decrease,
which is the result of the joint action of corrosion of the magnesium alloy and the corrosion
inhibition of PANI. Among them, the Rt value of PAGO and PMGO coating is higher than
that of the PANI coating, which is mainly due to the shielding effect of GO, which ensures
that PANI can inhibit the corrosion of the magnesium alloy effectively. The Rt value of
the PAGO coating is higher than that of the PMGO coating because the coating has better
shielding properties (Figure 9). Therefore, compared with the other coatings, the addition
of the PAGO powder coating has a better protective effect on the AZ91D magnesium alloy.
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(3) Protection mechanism of coatings
Figure 11 shows the protection mechanism of different coatings. For the PANI coating,

some defects were formed during hardening because of the solvent’s volatility, PANI
particle agglomeration, and shrinkage stress. These defects provide the initial channel
for solution penetration. With the increase in soaking time, some new diffusion channels
formed because of water polarization and osmosis. When the aqueous solution reached
the magnesium alloy surface, the oxidation-reduction action of PANI formed a protective
product film [19]. For the PAGO coating, shrinkage stress would be reduced because of
the excellent flexibility of the GO sheets, and the PAGO particles would be dispersed
more uniformly, thereby making coatings with fewer defects on the diffusion channel.
Therefore, the PAGO coating had an excellent shielding performance. Similarly, PANI
formed a protective product film when the aqueous solution reached the magnesium alloy
surface. For the PAGO coating, shrinkage stress would be reduced because of the excellent
flexibility of the GO sheets, and the PAGO particles would be more uniformly dispersed,
therefore making a coating with fewer defects on the diffusion channel. Therefore, the
PAGO coating had an excellent shielding performance. Similarly, PANI formed a protective
product film when the aqueous solution reached the magnesium alloy surface. For the
PMGO coating, the PANI particles and GO sheets dispersed unevenly in the coating, which
would influence the shielding performance of the coating, though shrinkage stress would
be reduced because of the excellent flexibility of the GO sheets.
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4. Conclusions

In this study, the physical and corrosion protective performances of epoxy coatings
containing three kinds of fillers (PANI, PMGO, and PAGO) were compared. GO/PANI
were prepared and applied on mild steel. The results of various tests show that (1) the
composite powder containing GO could improve the performance of the PANI coating
whether it was prepared by blending or the polymerization method; (2) compared with the
blending method, the composite powder prepared by the polymerization method had a
better physical performance and corrosion protective effect on the magnesium alloy; (3)
the PAGO coating had a better shielding performance because of its fewer defects, and it
was more uniformly dispersed. Similarly, PANI formed a protective product film when the
aqueous solution reached the magnesium alloy surface.

The EIS results indicate that the PAGO coating had outstanding corrosion protective
performance for the magnesium alloy after 2400 h. This was an exciting result because it is
difficult to protect magnesium alloys from corrosion. However, the influence of the type
and ratio of PANI and GO on the properties of the coatings will be discussed further.
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