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Abstract: The synthesis of Eu3+-doped MgAl oxide coatings containing MgO and MgAl2O4 was
accomplished through plasma electrolytic oxidation of AZ31 magnesium alloy in aluminate electrolyte
with the addition of Eu2O3 particles in various concentrations. Their morphological, structural, and
above all, photoluminescent (PL) and photocatalytic activity (PA) were thoroughly investigated. PL
emission spectra of MgAl oxide coatings feature characteristic emission peaks, which are ascribed
to f–f transitions of Eu3+ ions from excited level 5D0 to lower levels 7FJ. The charge transfer state
of Eu3+ or direct excitation of the Eu3+ ground state 7F0 into higher levels of the 4f-manifold are
both attributed to the PL peaks that appear in the excitation PL spectra of the obtained coatings. The
fact that the transition 5D0 → 7F2 (electrical dipole transition) in Eu3+-doped MgAl oxide coatings
is considerably stronger than the transition 5D0 → 7F1 (magnetic dipole transition) indicates that
Eu3+ ions occupied sites with non-inversion symmetry. Because of oxygen vacancy formation, the
Eu3+-doped MgAl oxide coatings had a higher PA in the degradation of methyl orange than the pure
MgAl oxide coating. The highest PA was found in Eu3+-doped MgAl oxide coating formed in an
aluminate electrolyte with 4 g/L of Eu2O3 particles. The PA, morphology, and phase of Eu3+-doped
MgAl oxide coatings did not change after several consecutive runs, indicating outstanding stability
of these photocatalysts.

Keywords: plasma electrolytic oxidation; photocatalysis; photoluminescence; MgO; MgAl2O4; Eu3+

1. Introduction

Magnesium alloys are commonly used in the aircraft, automotive, military, medical,
and electronic industries [1–3]. However, because of their high chemical reactivity, mag-
nesium alloys are prone to corrosion, limiting their use in corrosive environments [4,5].
Surface modification is widely recognized as the most prevalent method for improving a
magnesium alloy’s surface properties. A coating layer can enhance the corrosion resistance
of the metallic substrate by acting as a barrier between the substrate and the environ-
ment [6–8]. Recently, many research groups have been investigating the plasma electrolytic
oxidation (PEO) process as a surface-protective treatment for magnesium alloys [9–14].

PEO is a high-efficiency, low-priced, and environmentally friendly process for pro-
ducing multicomponent oxide coatings with numerous functions on lightweight metals or
metallic alloys [15–17]. The incidence of micro-discharging on the metal surface, which is
complemented by gas evolution, indicates that the PEO process is connected with plasma
creation [18–20]. Many processes such as light and heat emission and electrochemical and
plasma-chemical reactions occur at the micro-discharge sites as a result of the elevated
local temperature and pressure. These processes are responsible for altering the structure,
content, and morphology of the oxide coatings that are produced.
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Despite numerous articles investigating PEO of magnesium alloys [21–24], there
is a lack of data describing the formation of PEO coatings on magnesium alloys with
intended application as photocatalytic or as photoluminescent materials [25]. In this study,
we showed that MgO and MgAl2O4 phases are present in coatings formed by PEO of
AZ31 magnesium alloy in aluminate electrolyte. MgAl2O4 has been identified as a matrix
component for the preparation of very efficient photoluminescent materials [26,27], whereas
both MgO and MgAl2O4 have been recognized as efficient materials in the photocatalytic
degradation of organic pollutants due to high concentration of surface vacancies and other
defects [28,29]. MgO- and MgAl2O4-photoluminescent and photocatalytic active materials
have previously been synthesized in powder form, limiting their practical applications,
particularly in the field of photocatalysis, due to the high cost of photocatalyst separation
and recovery from suspension. Additionally, the easy aggregation of photocatalyst particles
renders them unsuitable for use in flow systems.

The main goal of presented research was to synthesize Eu3+-incorporated oxide coat-
ings by PEO on AZ31 magnesium alloy in an aluminate electrolyte with the addition of
Eu2O3 particles and to examine their photoluminescent and photocatalytic capabilities.
Our recent investigation has showed that Eu3+-doped PEO-based coatings on different
substrates (Ti, Zr, Nb, Hf, Gd, Y, Zn) can be formed in electrolyte containing Eu2O3 [30–35].
Among various trivalent rare earth ions, the Eu3+ ion is most promising among light-
emitting materials, exhibiting intense PL red emission under UV excitation due to the
5D0 → 7F2 transition [36]. In addition, positive effects of Eu3+ ion doping on the photocat-
alytic capabilities of several materials have been described in the literature [37–39]. The
only partially populated 4f orbital structure of Eu3+ ions is favorable for electron trapping,
which boosts photocatalytic activity by decreasing charge carrier recombination.

2. Materials and Methods

In this research, an AZ31 magnesium alloy (96% Mg, 3% Al, 1% Zn, Alfa Aesar) plate
was used as a substrate. The substrates were cut in rectangular pieces with dimensions
of 25 mm × 10 mm × 0.81 mm and then ultrasonically cleaned with acetone, warm air
stream dried, and covered with insulating resin, leaving only the 15 mm × 10 mm active
surface exposed to the electrolyte. More details about the experimental setup can be found
in [40]. PEO coatings were formed in an aluminate electrolyte (5 g/L NaAlO2) with Eu2O3
particles added in concentrations up to 8 g/L. PEO was done for 10 min at 150 mA/cm2

constant current density. The electrolyte was kept at a constant temperature of 20 ± 1 ◦C.
Following the PEO procedure, the samples were rinsed with distilled water and air dried.

The structural and elemental analyses of the PEO coatings were carried out utilizing
scanning electron microscope (SEM, JEOL 840A, Tokyo, Japan) with energy-dispersive
X-ray spectroscopy (EDS, Oxford INCA, Abingdon, UK). A Rigaku Ultima IV diffrac-
tometer (XRD, Tokyo, Japan) equipped with a CuKα radiation source was used for phase
identification of PEO coatings. The ultraviolet–visible diffusion reflectance spectra (DRS)
were collected by a Shimadzu UV-3600 spectrophotometer (Tokyo, Japan) coupled with an
integrating sphere. The spectrofluorometer (Horiba Jobin-Yvon Fluorolog FL3-22, Edison,
NJ, USA) using a xenon lamp as radiation source was used to measure excitation and
emission photoluminescence (PL) spectra at room temperature.

Under simulated solar radiation, photodegradation of methyl orange (MO) was inves-
tigated to probe the photocatalytic activity (PA) of formed coatings. In a 6.8 cm diameter
open cylindrical thermostated pyrex glass reactor, a solution containing 8 mg/L of MO
was kept in the dark for one hour to achieve absorption–desorption equilibrium. The con-
centration of MO remained nearly constant, indicating that MO adsorption was negligible.
Following that, samples were exposed to the light of a 300 W incandescent lamp (Solimed
BH Quarzlampen, Leipzig, Germany) placed 25 cm above the top surface of the solution.
On the steel wire holder, the samples were placed 5 mm above the reactor bottom. PA was
estimated by monitoring MO decomposition in selected time intervals after exposure to
irradiation. A spectrophotometer (UV-Vis Thermo Electron Nicolet Evolution 500, Sitting-
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bourne, England) was used to measure the MO concentration using the maximum MO
absorption peak at 464 nm.

Free hydroxyl radicals (•OH) have high potential rate to photodegrade MO and other
organic pollutants. To identify possible creation of •OH on irradiated PEO coatings, PL
measurements were carried out using terephthalic acid, because it is observed that it
reacts with •OH, thus producing extremely fluorescent 2-hydroxyterephthalic acid with
a PL maximum positioned at 425 nm [41]. The PEO coatings were placed in reactor
with 10 mL of 5 × 10−4 mol/L terephthalic acid, which was diluted in aqueous solution
of 2 × 10−3 mol/L NaOH. After the irradiation, PL spectra of the solution in which the
reaction took place were collected utilizing the spectrofluorometer under the excitation
wavelength of 315 nm.

3. Results and Discussion
3.1. Morphology, Chemical, and Phase Composition of Eu-Doped MgAl Oxide Coatings

Figure 1 shows the top-surface morphology of coatings made in aluminate electrolyte
with the addition of Eu2O3 particles. Obtained coatings are laced with a number of micro-
discharging canals of changing diameter and areas formed by the freezing of molten
materials between them. It can be also observed that the addition of Eu2O3 particles to
aluminate electrolyte does not influence the surface morphology.
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tions of Eu2O3: (a) 0 g/L; (b) 2 g/L; (c) 4 g/L; (d) 6 g/L; (e) 8 g/L. 

High temperatures which are inherent to PEO processing cause the melting of mag-
nesium substrate, which enters the micro-discharging channels where it reacts with pen-
etrated electrolyte. Products of these reactions, formed inside of micro-discharges, are 

Figure 1. SEM micrographs of coatings obtained in aluminate electrolyte containing various additions
of Eu2O3: (a) 0 g/L; (b) 2 g/L; (c) 4 g/L; (d) 6 g/L; (e) 8 g/L.

High temperatures which are inherent to PEO processing cause the melting of magne-
sium substrate, which enters the micro-discharging channels where it reacts with penetrated
electrolyte. Products of these reactions, formed inside of micro-discharges, are ejected to-
wards the oxide/electrolyte surface, where they promptly solidify upon contacting colder
electrolyte. The repetition of these steps on a vast number of discrete locations where
micro-discharging occurs results in thickening of the oxide coating. After 10 min of PEO,
the formed coatings are roughly 22 µm thick and weakly dependent on the Eu2O3 particles’
concentration in the aluminate electrolyte (Figure 2).
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Figure 2. Cross-sections of coatings obtained in: (a) aluminate electrolyte; (b) aluminate electrolyte
with 8 g/L of Eu2O3.

Table 1 presents the elemental composition of the coatings in Figure 1. The dominant el-
ements in the coatings are Mg, Al, O, and Eu. The observed amount of Eu in coatings surges
as the concentration of Eu2O3 in electrolyte increases. EDS elemental mapping reveals that
observed elements are rather uniformly distributed in obtained coatings (Figure 3).

Table 1. EDS analysis of coatings in Figure 1.

Sample Eu2O3 (g/L)
Atomic (%)

O Mg Al Eu

Figure 1a 0 65.98 15.78 18.24
Figure 1b 2 65.22 15.76 18.85 0.18
Figure 1c 4 65.35 16.02 18.21 0.41
Figure 1d 6 65.43 15.67 18.17 0.74
Figure 1e 8 64.96 16.44 17.67 0.92
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Figure 3. EDS maps of coating made in aluminate electrolyte with 8 g/L of Eu2O3.

The XRD patterns of pure Eu2O3 particles, AZ31 magnesium substrate, and formed
coatings displayed in Figure 4. Observed diffraction patterns are characterized by XRD
peaks that correspond to cubic phases of MgO (JCPDS card No. 79-0612) and MgAl2O4
(JCPDS card No. 77-0435). Diffraction peaks from the substrate are significant due to X-ray
penetration through oxide coating and its reflection off the substrate. Despite the fact that
elemental analysis confirmed the presence of Eu in the coatings, XRD analysis revealed no
XRD maxima which can be attributed to Eu-containing crystalline phases.
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The melting point of the Eu2O3 particles is around 2400 ◦C, which is considerably
less than the estimated local temperature at the micro-discharging sites during PEO of
AZ31 magnesium alloy [42]. Inside the micro-discharge channels, molten Eu2O3 particles
can react with other components (originating either from substrate or from electrolyte)
and participate in the formation of mixed-oxide coatings. The lack of diffraction peaks
associated with Eu is most likely due to the uniform distribution of Eu throughout the
surface coatings. It can also be observed that low Eu content in obtained coatings does not
considerably change the crystalline structure of MgO and MgAl2O4.

3.2. PL of Eu3+-Doped MgAl Oxide Coatings

The PL of MgAl oxide coatings with incorporated Eu is a combination of PL inherent
to MgAl and Eu ions. PL excitation and emission spectra of MgAl oxide coating obtained
in aluminate electrolyte are presented in Figure 5. The emission spectrum shows three
dominant PL bands under ultraviolet excitation. The PL emission band centered at around
325 nm can be attributed to F+ centers in MgO [40], while the PL band from 360 nm to
600 nm can be attributed to structural defects in the coating, such as Mg vacancies and
interstitials [43,44]. The band with a maximum near 725 nm can be related to F+ centers in
MgAl2O4 [45].

Coatings 2022, 12, 1830 5 of 12 
 

 

that elemental analysis confirmed the presence of Eu in the coatings, XRD analysis re-
vealed no XRD maxima which can be attributed to Eu-containing crystalline phases. 

 
Figure 4. XRD patterns of: (i) Eu2O3 particles; (ii) AZ31 magnesium alloy; coatings formed in alumi-
nate electrolyte with addition of: (iii) 0 g/L Eu2O3; (iv) 2 g/L Eu2O3; (v) 4 g/L Eu2O3; (vi) 6 g/L Eu2O3; 
(vii) 8 g/L Eu2O3. 

The melting point of the Eu2O3 particles is around 2400 °C, which is considerably less 
than the estimated local temperature at the micro-discharging sites during PEO of AZ31 
magnesium alloy [42]. Inside the micro-discharge channels, molten Eu2O3 particles can 
react with other components (originating either from substrate or from electrolyte) and 
participate in the formation of mixed-oxide coatings. The lack of diffraction peaks associ-
ated with Eu is most likely due to the uniform distribution of Eu throughout the surface 
coatings. It can also be observed that low Eu content in obtained coatings does not con-
siderably change the crystalline structure of MgO and MgAl2O4. 

3.2. PL of Eu3+-Doped MgAl Oxide Coatings 
The PL of MgAl oxide coatings with incorporated Eu is a combination of PL inherent 

to MgAl and Eu ions. PL excitation and emission spectra of MgAl oxide coating obtained 
in aluminate electrolyte are presented in Figure 5. The emission spectrum shows three 
dominant PL bands under ultraviolet excitation. The PL emission band centered at around 
325 nm can be attributed to F+ centers in MgO [40], while the PL band from 360 nm to 600 
nm can be attributed to structural defects in the coating, such as Mg vacancies and inter-
stitials [43,44]. The band with a maximum near 725 nm can be related to F+ centers in 
MgAl2O4 [45]. 

 
Figure 5. PL spectra of MgAl oxide coating formed in aluminate electrolyte. Figure 5. PL spectra of MgAl oxide coating formed in aluminate electrolyte.

The PL emission spectra of oxide coatings formed in aluminate electrolyte with vary-
ing concentration of Eu2O3 is presented in Figure 6a. Obviously, PL emission spectra
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show two discrete regions: the first one contains a typical broad PL band of MgAl oxide
coatings, whereas the second one contains well-defined PL emission bands intrinsic to
Eu3+ 4f–4f transitions from the excited 5D0 level to the lower 7FJ levels (J = 0, 1, 2, 3, and 4)
superimposed on PL of MgAl oxide coatings [36]. The PL bands are positioned at about
580 nm (5D0 → 7F0), 592 nm (5D0 → 7F1), 614 nm (5D0 → 7F2), 659 nm (5D0 → 7F3), and
708 nm (5D0 → 7F4). The intensity of the PL emission of 4f–4f transitions of Eu3+ increases
as the concentration of Eu3+ in MgAl oxide coatings rises, indicating that the concentration
of Eu3+ which is necessary for concentration quenching has not yet been reached.
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614 nm; (c) High-resolution PL excitation spectra monitored at 614 nm; (d) PL emission spectra with
469 nm excitation.

When PL excitation spectra are monitored at 614 nm (this wavelength corresponds
to the most intense observed Eu3+ transition), an intense wide-ranging PL band in the
region from 250 nm to 350 nm is observed (Figure 6b), which is followed by a series of
narrow low-intensity bands (Figure 6c). Because the contribution of PL caused by optical
transitions of MgAl oxide coatings is negligible, the broad PL band appears as a result
of electron transfer between the fully occupied 2p orbital of O2− and the incompletely
occupied 4f orbital of the Eu3+ [46]. Sharp bands, as shown in Figure 6c, mostly correspond
to direct excitation of the Eu3+ ground state 7F0 into higher levels of the 4f-manifold [47].
The 7F0 → 5D2 transition at 469 nm is the most intense of these excitation transitions and is
used to record the PL emission spectra (Figure 6d).

When PL emission spectra are monitored under 469 nm excitation, typical narrow
bands corresponding to the intra-configurational 4f–4f transitions of Eu3+ are observed.
The intensity of the observed narrow band increases when the concentration of Eu3+ in
MgAl oxide coatings increases, but the peak positions remain constant. Another interesting
observation is the very high intensity of hypersensitive electric dipole transition 5D0 → 7F2
at 614 nm compared to magnetic dipole transition 5D0 → 7F1 at 592 nm. The electric dipole
transition 5D0→ 7F2 (∆J =±2) is strongly dependent on changes in the environment around
Eu3+ ions, while the magnetic dipole transition 5D0 → 7F1 (∆J = ±1) does not depend on



Coatings 2022, 12, 1830 7 of 12

the surrounding environment [36]. In other words, when Eu3+ ions are incorporated into
non-inversion symmetry lattice sites, then 5D0 → 7F2 electric dipole transition becomes
dominant. In contrast, if Eu3+ ions are positioned at the inversion symmetry sites then the
5D0 → 7F1 magnetic dipole transition becomes most prominent. In MgAl oxide coatings,
the observed intensity of magnetic dipole transition is much lower than the corresponding
intensity of electric dipole transition, suggesting that Eu3+ ions are positioned at non-
inversion symmetry lattice sites.

The asymmetric ratio R between the transitions 5D0 → 7F2 and 5D0 → 7F1 provides
information about the surroundings of incorporated Eu3+ ions. R values were calculated
employing the equation [48]:

R =
I
(5D0 → 7F2

)
I(5D0 → 7F1)

(1)

where I(5D0 → 7F2) and I(5D0 → 7F1) are the integrated intensities for the transitions
5D0 → 7F2 (600 nm to 635 nm) and 5D0 → 7F1 (585 nm to 600 nm), respectively. In MgAl
oxide coatings, a high R value indicates an environment with a low degree of symmetry
around the Eu3+ ions. Figure 7 clearly shows that an increase in Eu3+ concentration in
the coatings results in higher R values, implying that increased concentration of Eu3+ in
oxide coating results in lattice distortion and decreased symmetry around the Eu3+ ions.
Because of differences in ionic radii between Eu3+ (95 pm), Mg2+ (66 pm), and Al3+ (51 pm),
after replacing the Mg2+ or Al3+ ions, Eu3+ ions will create oxygen vacancies and cause the
lattice distortion due to the size mismatch [49–51].
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3.3. PA of Eu3+-Doped MgAl Oxide Coatings

PA and optical absorption properties of pristine and Eu3+ doped MgAl oxide coatings
formed by PEO processing of AZ31 in aluminate electrolyte with varying concentration of
Eu2O3 are presented in Figure 8. As a result of the large bandgap between MgO [43] and
MgAl2O4 [52], the broad absorption band in the mid-UV region is observed for MgAl oxide
coatings. Although the MgAl coating’s absorption band is detrimental for photocatalytic
applications utilizing sunlight as the irradiation source, a high concentration of different
types of oxygen vacancies and other defects generated in MgAl during the PEO processing
results in good PA of MgAl coating. Because of the high concentration of surface vacancies,
the PA of pure MgAl coating in MO degradation is considerably higher than that of
commonly used TiO2 [30], MgO [25], ZrO2 [53], and Nb2O5 [54] coatings formed by PEO on
titanium, AZ31 magnesium alloy, zirconium, and niobium substrates, respectively. Surface
vacancies, which determine electron transfer between reactants and photocatalysts, were
found to be closely related to active centers of heterogeneous photocatalytic reactions [55].
The PA of Eu3+-doped MgAl oxide coatings is significant in comparison with pristine
MgAl oxide coating (Figure 8a). Because the incorporation of Eu3+ ions into MgAl oxide
coatings has no effect on their optical absorption in comparison to pristine MgAl oxide
coating (Figure 8b), increased PA can be related to the interaction of Eu3+ ions and MgAl
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oxide coatings. The incorporation of Eu3+ ions into MgAl oxide coatings during the PEO
result in the formation of oxygen vacancy charge-trapping centers, which can lower the
recombination rate of electrons and holes. As a result, Eu3+-doped MgAl oxide coatings
have higher PA than pure MgAl oxide coatings.
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It can be clearly seen that PA is dependent on the concentration of Eu2O3 particles
which are added to aluminate electrolyte, i.e., Eu3+ in MgAl oxide coatings. The PA of
the Eu3+-doped MgAl oxide coating formed in aluminate electrolyte with the addition of
4 g/L Eu2O3 is the highest, and it begins to decrease as the concentration of Eu2O3 particles
increases. As a result, the most likely cause of PA decrease is that higher concentration of
Eu3+ ions in MgAl oxide coatings increases the concentration of recombination centers for
electron–hole pairs. Tests in the dark show that MO self-degradation is negligible.

Photo-generated electron–hole pairs formed on photocatalytic surfaces produce vari-
ous active oxygen species such as the superoxide anion radical (•O2−), hydrogen peroxide
(H2O2), singlet oxygen (1O2), and the hydroxyl radical (•OH) [56]. •OH radicals are pri-
marily responsible for organic pollutants’ degradation [57]. PL measurements performed
in terephthalic acid on the surface of coatings formed in aluminate electrolyte with and
without the addition of 4 g/L Eu2O3 particles are employed to test the formation of •OH
radicals. The quantity of produced •OH radicals directly correlates with the intensity of
PL [41]. Longer illumination times increase the PL intensity of both MgAl and Eu3+-doped
MgAl coatings, but the latter exhibits higher PL intensity at 425 nm emission (Figure 9).
This observation is not surprising, since Eu3+-doped MgAl coating shows higher PA.
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One of the most important requirements for the photocatalyst’s applicability is its
stability, which regulates the catalyst’s lifetime and operating costs. The PA after five
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consecutive runs using the most photocatalytically active formed coating is shown in
Figure 10a. The sample was rinsed with water and dried between the runs. Figure 10a
demonstrates that the PA did not decrease. Additionally, the morphology (Figure 10b)
and phase structure (Figure 10c) did not change after five runs, proving the reliability and
effectiveness of the Eu3+-doped MgAl oxide coatings formed by PEO as photocatalysts.
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4. Conclusions

In summary, Eu3+-doped MgAl coatings were formed by plasma-electrolytic oxidation
of AZ31 magnesium alloy in aluminate electrolyte which contains Eu2O3 particles. The
coatings are crystallized and composed of MgO and MgAl2O4. DRS spectra of coatings
exhibit a wide absorption band in the mid-UV region.

The emission PL spectra of Eu3+-doped MgAl coatings display narrow emission bands,
which are attributed to Eu3+ ion 5D0 → 7FJ transitions. The excitation PL spectra of MgAl
coatings doped with Eu3+ have a strong broad band which is related to the electron transfer
transition from the 2p orbital of O2− ions to the 4f orbital of Eu3+ ions followed by weak,
well-defined peaks corresponding to direct excitation of the Eu3+ ground state 7F0 into
higher levels of the 4f-manifold. The electrical dipole transition 5D0 → 7F2 is significantly
stronger than the magnetic dipole transition 5D0 → 7F1, indicating the presence of Eu3+

ions in an asymmetric environment.
The PA of MgAl coatings doped with Eu3+ is determined by the concentration of

Eu2O3 particles in aluminate electrolyte, i.e., Eu3+ incorporated into MgAl coatings, with
4 g/L being the optimum Eu2O3 concentration in the aluminate electrolyte. Because
the incorporation of Eu3+ particles into MgAl coatings has no significant effect on the
absorption properties of formed coatings when compared to pure MgAl oxide coating,
the increased PA of Eu3+-doped MgAl coatings is due to the formation of oxygen vacancy
charge-trapping centers, which reduces the recombination rate of electrons and holes.
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