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Abstract: Cu matrix composites reinforced with Ti3AlC2 ceramics can be applied for electrical contact
materials, such as vacuum contact material or a pantograph slide plate. However, Ti3AlC2 particles
substantially decomposed because lattice diffusion is the main way that Al atoms diffused into the Cu
matrix and were uniformly distributed. In order to suppress the decomposition of Ti3AlC2 ceramics
and improve the properties of Ti3AlC2/Cu composites, the surface of Ti3AlC2 was modified by
multi-arc ion plating Ti. The results shows that, with the volume fraction increasing of Ti3AlC2, the
decomposition of Ti3AlC2 is exacerbated and the lattice constant of Cu(Al) solid solution is bigger.
In the meanwhile, the structure of Ti3AlC2 changes from dispersed granules to flakes, then to a
continuous network. Multi-arc ion plating Ti effectively inhibits the diffusion of Al atoms into Cu
matrix. The Ti coating reacts with Cu and generates CuxTi in the interface between the Cu and Ti
coating, which inhibits the diffusion of Al atoms so as to inhibit decomposition., the inhibition of
decomposition of Ti3AlC2 ceramics weakened solid solution strengthening and decreased the content
of hard phase TiCx. Furthermore, the good mutual diffusion between CuxTi layer and Cu effectively
improves the interfacial bonding strength.

Keywords: copper matrix composites; interfacial modification; surface treatment; titanium

1. Introduction

Ceramics-reinforced Cu matrix composites have attracted much attention in the last
decades for their excellent electric and heat conduction ability of the Cu matrix, as well as the
high mechanical properties of ceramics. Compounding with different ceramics, Cu matrix
composites are provided with various abilities and a wide range of applications [1–5].

Cu matrix composites reinforced with MAX ceramics can be applied for electrical
contact materials, such as vacuum contact material or a pantograph slide plate. MAX
are hexagonal structure ceramics consisting of transition metals (M), IIIA or IVA group
elements (A) and carbides or nitrides (X) [6]. MAX phase, which is characterized by its
excellent combination of chemical, physical, electrical and mechanical properties, com-
bines the advantages and characteristics of metals and ceramics in many aspects [7–10].
Attributed to its supreme performance especially for low density and high electrical con-
ductivity, Ti3AlC2 is a classic MAX phases compared with the others [11]. Comparing the
physical properties of Ti3AlC2 with conventional Cu matrix composites’ reinforcement
such as WC, Al2O3, SiC, etc. Ti3AlC2 have the advantages of low density and high elastic
modulus under the condition of little loss of resistivity and thermal conductivity. What is
more, Ti3AlC2 has a unique layered structure providing with the self-lubrication [12,13].
In the ceramic/metal system, it is of great significance to enhance the interface between
the ceramic-strengthening phase and the metal matrix because the material properties
depend on the interface microstructure to a large extent [14]. The improvement in the
properties of the composites is not only up to each reinforcement’s properties itself but
also up to the microstructure such as interface in particular. The structure stability of
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Ti3AlC2 is precarious, which is caused by the diffusion of weakly bonded Al atoms into
Cu matrix during the sintering process [15,16]. The decomposition of Ti3AlC2 have both
advantages and weakness. For one side, it has been studied that the wettability of TiCx,
the decomposition product of Ti3AlC2, and Cu is closely related to the value of x. When
x > 0.7, the wettability angle between TiCx and Cu is more than 90 degrees, while, when
x < 0.7, that is less than 90 degrees, and the wettability between TiCx and Cu is better [17,18].
Therefore, the interface of Ti3AlC2/Cu changes into the interface of TiCx/Cu in a certain
way. Hence, the decomposition of Ti3AlC2 has the advantage of improving the wettabil-
ity and adhesion of the two phases. However, to mark the opposition to the previous
advantage of the decomposition, the loss of Al atoms directly destroys the ternary lay-
ered structure of Ti3AlC2, which results in a decrease of not only self-lubrication but also
electrical conductivity [19]. Therefore, in order to retain the properties of reinforcement
itself and, moreover, to enhance the interfacial bonding, it is important to find a way to
control the decomposition process and improve the wettability simultaneously. Thus, the
solutions for preventing Ti3AlC2 from decomposing and establishing a new interfacial
phase are essential. From now on, some studies on copper- or nickel- coated Ti3AlC2
have been published [20,21], however, the decomposition is still existed. In our previ-
ous study, different metals were attempted to be deposited on the surface of graphite
for the interfacial modification of Cu matrix graphite composites, such as nickel [22],
copper [23], silver [24,25], tin [26] and titanium [27]. These metals enhance the mutual
diffusion of copper and carbon atoms and, accordingly, increase the interface strength.
Additionally, the production costs are nearly same as the existing solutions and show better
application prospects.

The purposes of this work were to explore a practical method to produce Cu rein-
forced with a relatively complete Ti3AlC2 particle, which keeps an effective ternary layered
structure, by multi-arc ion plating titanium. The preparation of Ti3AlC2/Cu composites
is mainly divided into four parts: plating, milling, compressing, and sintering. The char-
acterization of the microstructure, decomposition mechanism and interface modification
mechanism of the composites were investigated. The mechanical properties were also
measured through a micro-Vickers hardness and three-point bending test. It is expected
that the titanium-modified Ti3AlC2/Cu composites show better mechanical properties,
self-lubrication and electrical conductivity with higher Ti3AlC2 content. In the future,
these materials will be the substitutes applied in the field of self-lubrication and electrical
conductivity materials in high-speed railways, automobiles, aerospace and aircraft.

2. Materials and Methods

The pressureless sintering method was used to prepare Cu matrix composites re-
inforced with Ti3AlC2 whose raw materials were Cu powder (from the Tianjiu Metal
Materials Company, Changsha, China) with an average particle size of 12 µm in diameter
and Ti3AlC2 powder (from the Forsman technology company, Beijing, China) with an
average particle size of 22 µm in diameter. Both powders were uniformly mixed in a
planetary ball mill, with an increasing Ti3AlC2/Cu volume ratio of 10:90, 30:70 and 50:50.
An agate-ball-to-powder-weight ratio of 5:1, a rotation speed of 200 rpm and a milling time
of 2 h were applied. The mixed powders were compressed into a round-shaped body under
600 MPa pressure for 180 s by bidirectional metal mold compressing. Then, the round
mixture sample in the graphite mold was sintered in 850 ◦C for 1 h in vacuum.

In order to modify the interface of Ti3AlC2 and Cu phases, multi-arc ion plating
titanium was applied to the starting Ti3AlC2 powder four times, for 30 min each time in
argon atmosphere before ball milling. Then, through milling, compressing, and sintering
processes, titanium-modified Ti3AlC2/Cu composites (Ti@Ti3AlC2/Cu Composites) were
prepared for testing.

The phases of samples were analyzed by XRD (D8 Advance, Bruker, Billerica, MA,
USA) using a step-scanning diffractometer with Cu–Kα radiation at a scanning step of 0.2◦.
To investigate the components of composites and diffusion mechanism of Al atoms, the
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samples were characterized by SEM (Gemini 500, Zeiss, Oberkochen, Germany) and EDS
(X-MAX 80, Zeiss, Oberkochen, Germany) for element distribution.

A microhardness test was employed with a pressing force of 10 gf and a loading speed
of 0.2 mm/s for 10 s to represent the wear-resistance ability in a way. A three-point bending
test was carried out with a strip shape of width 5 mm × height 3 mm and span length of
20 mm, with a loading speed of 0.2 mm/min in order to represent the bonding strength of
the interface to a certain degree.

3. Results and Discussion
3.1. The Microstructure of Ti3AlC2/Cu Composites

As shown in Figure 1, the XRD pattern of different volume fractions of Ti3AlC2/Cu
composites indicate the decomposition reaction between Ti3AlC2 and Cu.

Ti3AlC2 + Cu→ TiCx+ Cu(Al) (1)
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Figure 1. X-ray diffraction patterns of different volume fractions of Ti3AlC2/Cu matrix composites.

There is no new compound emerging between Cu and Al. In theory, the chemical for-
mula of TiCx is TiC0.67. The displacement of the Cu diffraction peak increases significantly
with the growing content of Ti3AlC2 ceramics when the θ angle of the solid solution of
Cu(Al) decreases and the lattice distortion caused by Al atoms’ diffusion [6]. The shift of
Cu reflection is apparent to see when the volume ratio of Ti3AlC2 is only 10 vol.%, which is
largely due to Al atoms’ diffusion mechanism.

Figure 2 shows SEM micrographs of Ti3AlC2/Cu composites with different content
under low magnification. Most of the Ti3AlC2 particles are fine particles and disperse
uniformly in the copper matrix and a small amount of them aggregate in the sintering
process and form massive structure, with no obvious defects on the surface when the
volume fraction of Ti3AlC2 is 10 vol.%, as shown in Figure 2a. Most of the Ti3AlC2 particles
are massive and disperses in the copper matrix, while some of them are continuous and
massive with a countable number of defects that begin to appear on the surface when
the volume fraction of Ti3AlC2 is 30 vol.%, as shown in Figure 2b. Ti3AlC2 ceramics
begin to show the morphological characteristics of network distribution, and part of it is
continuous network distribution. The increasing speed of both defect number and area
becomes quicker simultaneously, accompanied by the growth of Ti3AlC2 particles’ ratio
when the volume fraction of Ti3AlC2 is 50 vol.%, as shown in Figure 2c. These defects
are mainly divided into pores and spalling concentrated at Ti3AlC2 particles and at the
interface between Ti3AlC2 and the Cu matrix. The melting points of Ti3AlC2 and Cu are
at about 3000 ◦C and 1000 ◦C, when the sintering temperature is at 850 ◦C, which means
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that the sintering process is low-temperature solid-state sintering. Because of the weak
deformation ability of solid Ti3AlC2, it is easy to form a gap between Ti3AlC2 particles,
which evolves into difficult-to-eliminate pores and would be aggravated by the increase in
Ti3AlC2 content leading to increases in segregation. The spalling at the interface between
Ti3AlC2 and the Cu matrix, which is easily caused by the external force due to the low
bonding strength at the interface. In Figure 2, for Ti3AlC2/Cu composites with 10, 30 and
50 vol.%, correspondingly, the mass fractions are 4.09 wt.%, 14.13 wt.% and 27.74 wt.%,
respectively. The network fractions are quantitatively calculated by the image software, as
shown in Figure 2d, and the results of threshold concentration is 45.90 vol.%.
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threshold concentration.

Figure 3a shows SEM micrographs of Ti3AlC2/Cu composites when the volume
fraction of Ti3AlC2 is 10 vol.% under high magnification. A gap comes into being between
Ti3AlC2 particles in the agglomeration process, which leads to the result that Ti3AlC2
particles are agglomerate rather than single. The dark black structure is the defect; the
bright gray structure is the Cu matrix; the dark gray structure is Ti3AlC2, and the light
gray structure is TiCx; among these, the light gray structure is far more than the dark gray
structure which means that Ti3AlC2 decomposed in a serious way. Figure 3b–d shows EDS
mapping results of Figure 3a to figure out element distribution, both EDS point scanning
(the results of spots on Figure 3a) and EDS mapping scanning with the whole area (the
results in Figure 3b–d) were tested. Cu mainly distributed the matrix and diffused into
Ti3AlC2 particles in large quantities. Ti were almost all retained in Ti3AlC2, while Al atoms
were not obviously aggregated, which further verifies that the large scale of the diffusion
of Al atoms leads to the serious decomposition of Ti3AlC2 particles in XRD analysis.
Figures 4 and 5 indicate the same phenomenon as above when the volume fraction of
Ti3AlC2 is 30 vol.% and 50 vol.%.
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fraction of Ti3AlC2 is 30 vol.%: (a) SEM micrograph and (b) scanning results of the Cu element,
(c) the Ti element and the (d) Al element.
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Figure 5. Typical morphology and EDS mapping of Ti3AlC2/Cu composites when the volume
fraction of Ti3AlC2 is 50 vol.%: (a) central Ti3AlC2 particle almost decomposed; (b) scanning results
of the Cu element, (c) the Ti element and (d) the Al element.

Table 1 shows the EDS pointing results of Figures 3–5 in order to demonstrate the
phases of different microstructure. Point a is located at the dark gray structure in Ti3AlC2;
point b is located at the light gray structure in Ti3AlC2, and point c, d is in the Cu matrix.
There are high levels of Cu, Ti and Al element in point a, which is judged to be a compound
of Ti3AlC2 and Cu. Some of the Cu atoms diffuse along the channels left by Al atoms’
diffusion and some of them diffuse into Ti3AlC2 crystals after reaching the channels.
Compared with point a, the content of Cu atoms at point b increases, and the content of Al
atoms decreases significantly by nearly 0 because Al atoms in Ti3AlC2 particles diffuses
rapidly and have a high degree of diffusion, which leads to the result that Ti3AlC2 at point
b has basically decomposed into TiCx. At the same time, the content of Cu atoms diffusing
into TiCx is very high because the decomposition product TiCx binds well with Cu. Thus,
point b is judged to be composed of Cu and TiCx compound. Point c and d indicate that
Al atoms almost completely diffused into the Cu matrix. However, Cu matrix did not
completely become a solid solution of Cu(Al), and so the distribution of Cu(Al) is not
uniform when the volume fraction of Ti3AlC2 is low.

A EDS scanning line through the Cu matrix, Ti3AlC2 and TiCx particles of about
11 µm was drawn when the volume fraction of Ti3AlC2 is 50 vol.%, and the law of element
distribution and atomic diffusion could be indicated as shown in Figure 6. It can be seen
that the diffusion distance of copper is long, and it distributes in the whole particle, but
the content of copper in Ti3AlC2 is much lower than that in TiCx, which indicates that the
bonding strength between Ti3AlC2 and Cu is much lower than that between TiCx and Cu,
which corresponds to the results of point scanning. Meanwhile, the diffusion path and the
steps of Cu atoms in the decomposition process are verified. As Ti3AlC2 still exists at the
interface, Ti atoms did not diffuse into the Cu matrix as shown in Figure 6d. The decrease
in Ti peak strength in TiCx and the Cu compound is due to the relative decrease in the
Ti atoms ratio caused by the diffusion of Cu atoms. The distribution characteristics of Al
atoms are Ti3AlC2 > Cu(Al) > TiCx, because Al atoms did not remain in the decomposition
product, TiCx, during the diffusion process, so Al is mainly retained in Ti3AlC2 or diffused
in Cu(Al). The content of Al in the TiCx part mainly comes from Ti3AlC2, which is not
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completely decomposed. The element distribution of C is similar to Ti because there is no
diffusion at the interface between Ti3AlC2 and Cu.

Table 1. EDS pointing results of Ti3AlC2/Cu composites.

Point Volume
Fraction/% Cu/at.% Ti/at.% Al/at.% C/at.% Phases

a
10 31.0 23.3 4.3 41.4

Ti3AlC2 + Cu30 13.7 41.8 6.1 38.4
50 10.2 60.8 6.3 22.7

b
10 43.4 18.2 0.8 37.6

Cu + TiCx30 28.1 32.0 1.6 38.3
50 15.4 41.0 1.8 41.8

c
10 68.5 0 2.3 29.2

Cu(Al)30 64.5 0 3.5 32.0
50 74.1 0 3.6 22.3

d
10 73.3 0 0 26.7

Cu30 68.9 0 3.8 27.3
50 72.7 0 3.9 23.4
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Figure 6. EDS lining of Ti3AlC2/Cu composites when the volume fraction of Ti3AlC2 is 50 vol.%:
(a) the interface between Cu matrix and Ti3AlC2, (b) scanning results of all elements: (c) the Cu
element, (d) the Ti element, (e) the Al element and (f) the C element.

The micro-Vickers hardness and flexural strength of Ti3AlC2/Cu composites with
different volume fractions is shown in Figure 7. The micro-Vickers hardness increases first
and then decreases with the raise of Ti3AlC2 content. First, the hardness of pure copper
is about 0.4 GPa and that of pure Ti3AlC2 is about 4 GPa. Reinforced with Ti3AlC2, the
hardness of the composites is improved in general because Ti3AlC2 plays a second phase-
strengthening role in the matrix of copper. Secondly, with the increase in Ti3AlC2 ceramics’
content, the decomposition reaction and diffusion is aggravated, resulting in the increase of
Al atoms in the Cu(Al) solid solution, which enhances the solid solution strengthening effect
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hindering the movement of dislocations. Finally, the content of TiCx, a hard phase with
hardness up to 30 GPa, also increases along with the increase in the composites’ hardness.
However, when the volume fraction of Ti3AlC2 reaches a high level, the agglomeration
of Ti3AlC2 results in a number of pores in Ti3AlC2 particles. Once the composite material
is subjected to compressive stress, stress concentration easily occurs in the defects. Thus,
the hardness decreases sharply, and the nonuniform structure caused uneven hardness.
The flexural strength of Ti3AlC2/Cu composites, which decreases by about 60% compared
to 30 vol.% Ti3AlC2/Cu composites with 10 vol.% Ti3AlC2/Cu composites, while that of
30 vol.% and higher Ti3AlC2/Cu composites decreases slowly decreases with the increase
in the Ti3AlC2 volume fraction. On the one hand, the fracture behavior of composites
changes from ductile fracture with dimples to mixed fracture of ductile and brittleness, and
then to brittleness. On the other hand, when the volume fraction of Ti3AlC2 is 10 vol.%,
Ti3AlC2 is basically fine particles dispersed in the matrix of Cu, which plays the role of
dispersion reinforcement and maintains the flexural strength to a certain extent. With the
increase in the reinforcement’s content, the shape of particles gradually changes from fine
to slice, then to mesh, the segregation of Ti3AlC2 particles increases, the volume of particles
becomes larger, and the particles become larger. At the same time, lots of pores and defects
of Ti3AlC2 are generated. When exerting stress, cracks easily occur from Ti3AlC2 particles
and rapidly expand, which directly leads to the rapid decrease in the flexural strength of
composite materials.
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The diffusion model is simplified to the mutual diffusion model of Al and Cu,
two kinds of FCC structure metals for rough estimation. According to the diffusion
study of single-crystal silver and polycrystalline silver, it can be seen that, when the melt-
ing point (Tm) of Al is about 770 ◦C and the sintering temperature is much higher than
0.75 Tm, the contribution of lattice diffusion in this grain size is much greater than that
in grain boundary diffusion, and so the degree of decomposition of Ti3AlC2 is high. The
decomposition mechanism of Ti3AlC2 can be divided into four stages as shown in Figure 8.
Figure 8a shows that there is mechanical bonding between Ti3AlC2 and Cu before sintering
in the first stage. Figure 8b shows that, at the beginning of sintering, because of the high
vacancy of Ti3AlC2, the diffusion of Al atoms takes the form of lattice diffusion, grain
boundary diffusion and interfacial diffusion at sintering temperature, and TiCx comes into
being in the second stage. Figure 8c shows that, with further sintering, the diffusion of Al
atoms is mainly lattice diffusion, and so a large number of TiCx produces in the Ti3AlC2
grain, and the TiCx phase aggregates many infiltrated Cu atoms due to the good mutual
diffusion ability of Cu atoms and TiCx in the third stage. Figure 8d shows that part of
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Ti3AlC2 is surrounded by TiCx where Al atoms can not diffuse, and the decomposition
reaction terminates, while part of Ti3AlC2 continues to decompose until it disappears.
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3.2. The Microstructure of Ti@Ti3AlC2/Cu Composites

Figure 9a shows the morphology of Ti3AlC2 powder treated by multi-arc ion plating
Ti. There is a uniform Ti coating of about 1 µm thickness at the edge of the Ti3AlC2 ceramic
powder, as shown in Figure 9b. EDS line scanning of the interface is shown in Figure 9c. By
comparing the element distribution at the interface, Ti and Al elements distribute evenly
in Ti3AlC2 particles. The content of Al element decreases rapidly at the Ti coating, while
the Ti element still maintains a high content. Comparative analysis shows the bright gray
structure is the deposited active Ti coating. Ti3AlC2 ceramics’ surface were successfully
coated with Ti.
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Figure 10a,b shows the morphology of Ti3AlC2/Cu composites coated with Ti when
the volume fraction of Ti3AlC2 is 10 vol.% under low and high magnification. Under
low magnification, most Ti3AlC2 particles are dispersed uniformly in Cu matrix. Under
high-power morphology, Ti3AlC2 particles are relatively complete, without an obvious
decomposition structure to observe. However, there are still small holes at the intersection
of Ti3AlC2 particles and interface between Ti3AlC2 and Cu. The results of EDS mapping for
Cu, Ti, Al and C elements are shown in Figure 10c–f. The content of Cu in Ti3AlC2 particles
decreases compared with that in Ti3AlC2 particles without Ti plating, while the distribution
of Al is still not concentrated in Ti3AlC2 particles.
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Figure 10. Typical morphology and EDS mapping of Ti3AlC2/Cu composites coated with Ti when
the volume fraction of Ti3AlC2 is 10 vol.%: (a) SEM micrograph under low magnification, (b) SEM
micrograph under high magnification, (c) scanning results of the Cu element, (d) the Ti element,
(e) the Al element and (f) the C element.

Figure 11a shows the interface morphology of Ti3AlC2/Cu matrix composites coated
with Ti under high magnification. There is a small amount of decomposition structure in the
particles. The results of EDS line scanning are shown in Figure 11b–f. Cu still diffuses into
Ti3AlC2 particles, and the element curve of Ti drops from an abscissa of 11.5 to 12 µm, while
that of Al and C decline at 10.5 µm with a certain slope. The tendency of Al distribution
means that multi-arc ion plating Ti inhibits the diffusion of Al to a certain extent. It can be
seen from Figure 10e that the diffusion degree of Al remains high. However, the content of
Al on both sides of the interface is significantly different, although Al atoms still diffuse
into the matrix of Cu and the diffusion path is long, which means that the inhibition is still
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not ideal. The difference in the decreasing point of the element indicates the existence of a
Ti coating on MAX ceramics. There is no good mutual diffusion between Ti and Cu, and
the curves of Cu and Ti change in the same section. The above phenomena indicate that
the Cu matrix reacts with the Ti coating and produces a CuxTi compound to inhibit the
diffusion of Al atoms. The high content of Cu in Ti3AlC2 particles indicates that Cu still
diffuses into Ti3AlC2 particles to a large extent.
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The micro-Vickers hardness and flexural strength of Ti3AlC2/Cu composites coated
with Ti is shown in Figure 12. The change in the hardness and flexural strength of
Ti3AlC2/Cu composites maintains the same trend before and after Ti plating, but the
hardness of Ti3AlC2/Cu composites decreases after Ti plating in total. On the one hand,
due to the effect of inhibiting diffusion after Ti plating, the diffusion of Al atoms decreases,
and so the content of Cu(Al) decreases, which weakens the solid solution strengthening. On
the other hand, the content of hard-phase TiCx decreases with the decrease in the decom-
position degree of Ti3AlC2. The flexural strength of Ti3AlC2/Cu composites coated with
Ti is improved, as shown in Figure 12. There is not only diffusion bonding between TiCx
and Cu but also diffusion bonding between CuxTi and Cu after Ti plating. The interface
bonding strength is higher than that before Ti3AlC2 plating, so the flexural strength of the
composites becomes higher.

The interface modification mechanism of Ti3AlC2 coated with Ti can be divided into
four stages as shown in Figure 13. The Figure 13a shows that there’s mechanical bonding
between Ti3AlC2 and Ti coating and Cu before sintering in the first stage. The Figure 13b
shows that at the beginning of sintering, the Ti coating layer near the copper matrix reacts
with Cu to produce CuxTi compounds, which have good mutual diffusion with Cu matrix
in the second stage. The Figure 13c shows that with the further sintering, CuxTi compounds
gradually accumulate to form a certain thickness of residual layer, which hinders the
diffusion of Al atoms. The Figure 13d shows that when the CuxTi layer at the interface
reaches a certain thickness, the diffusion of Al atom will be hindered and the decomposition
reaction will be terminated. The CuxTi layer generated not only inhibits the decomposition
of Ti3AlC2 but also increases bonding strength with Cu matrix.
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Figure 13. Model of the interface modification mechanism of Ti3AlC2: (a) the first stage: before
sintering; (b) the second stage: at the beginning of sintering; (c) The third stage: the Ti coating reacts
with Cu; (d) the fourth stage: the Ti coating reacts completely.

4. Conclusions

With the volume fraction of Ti3AlC2 increasing, the decomposition of Ti3AlC2 is
exacerbated and the lattice constant of Cu(Al) solid solution is bigger. In the meanwhile,
the structure of Ti3AlC2 changes from dispersed granules to flakes, then to a continuous
network. Furthermore, a highly defective morphology of Ti3AlC2 forms when the porosity
becomes higher with the higher content of Ti3AlC2.

Multi-arc ion plating Ti effectively inhibits the diffusion of Al atoms into the Cu matrix.
The Ti coating reacts with Cu and generates CuxTi in the interface between the Cu and the
Ti coating, which inhibits the diffusion of Al atoms so as to inhibit decomposition. The
inhibition of decomposition of Ti3AlC2 ceramics weakened solid solution strengthening
and decreased the content of hard-phase TiCx. Furthermore, the good mutual diffusion
between the CuxTi layer and the Cu effectively improves the interfacial bonding strength.

In the future, the titanium-modified Ti3AlC2/Cu composites will be the focus of
studies on the enhancement of self-lubrication properties and modifying the parameters
of industrial production to decrease the production costs. We hope these materials could
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take the place of the graphite/Cu and C/C composites in the field of self-lubrication and
electrical conductivity materials.
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