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Abstract: The detection of no-service rail surface defects is important in the rail 
manufacturing process. Detection of defects can prevent significant financial losses. However, the 
texture and form of the defects are often very similar to the background, which makes them 
difficult for the human eye to distinguish. How to accurately identify rail surface defects thus 
poses a challenge. We introduce salient object detection through machine vision to deal with 
this challenge. Salient object detection locates the most “significant” areas of an image using 
algorithms, which constitute an integral part of machine vision inspection. However, existing 
saliency detection networks suffer from inaccurate positioning, poor contouring, and incomplete 
detection. Therefore, we propose an innovative deep learning network named Two-Stream Swin 
Transformer Network (TSSTNet) for salient detection of no-service rail surface defects. 
Specifically, we propose a two-stream encoder—one stream for feature extraction and the 
other for edge extraction. TSSTNet also includes a three-stream decoder, consisting of a 
saliency stream, edge stream, and fusion stream. For the problem of incomplete detection, we 
innovatively introduce the Swin Transformer to model global information. For the problem 
of unclear contours, we expect to deepen the understanding of the difference in depth 
between the foreground and background through the learning of contour maps, so the 
contour alignment module (CAM) is created to deal with this problem. Moreover, to make 
the most of multimodal information, we suggest a multi-feature fusion module (MFFM). 
Finally, we conducted comparative experiments with 10 state-of-the-art (SOTA) approaches on 
the NRSD-MN datasets, and our model performed more competitively than others on five metrics. 

Keywords: no-service rail surface defect; salient object detection; two-stream encoder; 
transformer; contour information 

1. Introduction
Rail quality inspection is very important in the rail production process in steel mills, 

and one of the most critical aspects is the detection of rail surface defects. Earlier 
detection of no-service rail surface defects can prevent economic losses and safety 
accidents from occurring in time. 

The rails to be inspected are divided into the in-service and no-service rails, which 
usually have different defect maps. Images of in-service rail defects often have bright 
backgrounds, prominent weaknesses, and distinct contours. However, no-service rail 
defect maps often have dark backgrounds, uneven lighting, and impurities of various 
origins interfering with identification, which can easily cause different shapes of rail 
surface defects during the processing: 
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(1) When the rail is heated, due to unreasonable technology and techniques, thermal 
stresses are created in the rail material, forming cracks on the surface; 

(2) If the billet is not cleaned or is cleaned improperly, the impurities attached to the 
billet remain on the surface of the finished rail after heating and rolling deformation. 
This is known as scarring; 

(3) The presence of linear or curved grooves of varying depths on the surface of the 
rails, either continuously or intermittently distributed on the local surface, is known 
as a scratch. This is usually caused by improper installation of equipment during the 
rolling process. 

The cracks, scarring, and scratches have different contours and defect depths, making the 
detection of no-service rail surface defects much more difficult than detecting in-service 
rail surface defects. Specific comparison pictures [1,2] are shown in Figure 1, where 
defects are marked with a red dotted line. 

(a) (b) (c) (d)  
Figure 1. (a) Surface view of an in-service rail with defects [1]. (b) Surface view of an in-service rail 
[1]. (c) Surface view of a no-service rail with defects [2]. (d) Surface view of a no-service rail [2]. 

Today, more and more researchers from different fields are willing to work in this 
area, and they are proposing various solutions. Xu et al. [3] came up with a 
multi-frequency electromagnetic system to detect surface defects with different 
characteristics using electromagnetic waves of different frequencies. Hao et al. [4] 
proposed a new adaptive Canny algorithm without manually setting the parameters. 
Cao et al. [5] built a machine vision detection system using an improved least-squares 
method. Hao et al. [6] proposed a method to enhance the signal using improved Shannon 
entropy to reduce the noise generated by the track at high speeds. However, these 
methods can only detect superficial features, such as the color and texture of the defect. 

As research into machine vision progresses, neural networks are becoming 
mainstream in the field of image classification and identification. Convolutional neural 
networks (CNNs) learn relationships between pixels using a series of operations such as 
convolution, pooling, etc., and can perceive differences in the depth gradient between the 
foreground and background of the image. As a result, research on CNN-based neural 
networks has become a hot topic. Shakeel et al. [7] proposed an adaptive multiscale 
attention module to align the feature maps. Zhang et al. [2] proposed MCNet using 
pyramid pooling to focus on a variety of contextual information. Baffour et al. [8] 
proposed a self-attention module working on the spatial locations. Among the many 
detection tasks, salient object detection (SOD) [9] locates the most noteworthy areas of a 
picture using vision algorithms such as human visual attention. SOD is important 
because it is often used as the first step of other vision tasks to focus on the most useful 
information in an image. In the current SOD deep learning networks, CNNs are often 
designed as the backbone of the network to abstract characteristics hierarchically. They 
tend to perform well on natural scene datasets because objects in natural scenes often 
have distinct contours, allowing the network to distinguish clearly between the 
foreground and background. At the same time, the network does not need to focus on 
long-range information, which also corresponds to the characteristics of CNNs’ locality. 
However, in the field of rail surface defect detection, complex textures, the irregular 
outlines of defects, along with their blurred and dark edges, make CNNs’ backbone 
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produce incomplete defect recognition. Thus, we attempted to introduce a more 
competitive backbone into the field of rail defects detection—that is, the transformer [10]. 

In the past few years, the proposal of ViT [10] has made transformer a topic of 
interest in computer vision. ViT is famous for its ability to model global long-range 
dependency features. It uses a pure attention mechanism of computation, which reduces 
training time considerably compared to CNNs. Swin Transformer [11] has a CNN-like 
hierarchical feature structure comparable to that of ViT [10], and it calculates 
self-attention in a non-overlapped local window. It suggests connections between 
different local windows through an ingenious shifted window design. Swin Transformer 
[11] absorbs the locality, translation invariance, and hierarchical merits of CNNs, 
allowing it to be competent in visual tasks. 

In view of these advantages of Swin Transformer [11], we introduced it to our 
network as the backbone. However, this does not solve all of the problems. The 
foreground and background textures of the rail surface are very similar, making it 
impossible for a single Swin Transformer [11] to locate defects accurately, and the 
resulting inspection map often has blurred edges. The experimental results are displayed 
in Figure 2. 

(b)

(d)(c)

(a)

 
Figure 2. (a) Rail defect map. (b) Single Swin Transformer saliency map. (c) Ground truth (d) 
TSSTNet saliency map. 

To deal with this problem, the existing network uses the first few stages for auxiliary 
tasks, such as boundary detection, and the last few for the main task, i.e., saliency 
detection [12–15]. However, in the experiments, we found that when multitasking with 
traditional single-stream encoders, the auxiliary tasks interfere with the primary task. 
Meanwhile, different layers for different tasks also result in missing information for the 
main task in the low-level stage. Therefore, we propose a two-stream encoder for two 
tasks and align the saliency maps with the contour maps, using attention mechanisms to 
enhance and refine the contours of the saliency maps. Figure 3 shows the edge maps 
obtained from TSSTNet learning compared with CTDNet [12]. 
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(a) (d)(c)(b)  
Figure 3. (a) No-service rail surface defects. (b) Edge ground truth. (c) Contour maps of TSSTNet. 
(d) Contour maps of CTDNet [12]. 

In summary, the main contributions of this paper are as follows: 
(1) For the SOD of no-service rail surface detection, we propose a supervised deep 

learning network named TSSTNet and innovatively introduce the transformer as the 
backbone of the network; 

(2) A two-stream encoder and a three-stream decoder are proposed to eliminate the 
adverse effects between tasks; 

(3) A contour alignment module is presented to connect multitasking and reduce the 
noise at the edges of the saliency maps; 

(4) A multi-feature fusion module is proposed to converge the feature maps in the three 
different streams of the decoder; 

(5) We conducted a comparison experiment on the NRSD-MN [2] dataset with 10 SOTA 
methods [13,14,16–23]. The results indicate that our network performs better than 
the other networks on five metrics. 

2. Related Works 
2.1. Detection of Rail Defects 

Rail defect detection is an integral part of the rail production process. Conventional 
non-destructive detection methods include magnetic particle detection, radiographic 
detection, eddy current detection, and ultrasonic detection. Antipov et al. [24] performed 
3D computer simulations of magnetic flux leakage around transverse cracks in the rail 
head to detect the main characteristics of defects. Jian et al. [25] came up with an 
AE-signal-based detection system to detect defects by comparing the time intervals of AE 
wavelets. Mehel-Saidi et al. [26] proposed a method using a non-contact eddy current 
sensor to identify the different noises at the defect. Shi et al. [27] proposed a guided wave 
mode selection, which locates defects based on the different sensitivity of different modes 
to defects at various locations. 

Meanwhile, neural-network-based vision algorithms are also popular in the field of 
rail defect detection. Zhang et al. [28] proposed a dual-stream neural network—one 
stream for generating samples and the other for classification. Zhang et al. [29] proposed 
an improved single-shot multibox detector (SSD) and You Only Look Once version 3 
(YOLOv3), implementing the use of two networks to identify three different types of 
defects in parallel. Meng et al. [30] proposed a neural network framework for multitask 
learning to aid in track crack detection through track object detection. 
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2.2. Saliency Detection in RGB Images 
Saliency detection, as the first step of many visual tasks, is growing in importance. It 

uses a computer vision algorithm and neural network learning to locate the most 
“remarkable” areas of the image. It helps people to highlight the areas of the image that 
should receive the most focus. 

U-Net [31] effectively combines multilevel features using its unique U-shaped 
structure and skipping connection, making it the basic structure of most networks. 
EGNet [32] incorporates a model that obtains boundary information using low-level and 
high-level features, and then models the boundary information and target information. 
PiCANet [33] consists of an attention mechanism using pixel-wise contextual messages to 
learn location information for each pixel. Pyramid-Feature-Attention Network [34] 
consists of a context-aware pyramid feature extraction approach. U2Net [35] consists of a 
two-level nested U-structure and a residual U-block to capture more contextual 
information from different scales. ASNet [36] consists of an attention mechanism to 
imitate human visual attention mechanisms. CAGNet [37] consists of a feature guidance 
network to reduce the impacts of “salient like” appearance. PoolNet [38] consists of a 
global guidance module using different-sized pooling kernels to capture local and global 
information. 

2.3. Contour Information Learning 
Contour information as a separator between the foreground and background is 

important in saliency detection. Adding contour information to the network can 
significantly increase the effectiveness of saliency detection. The contour map can also 
refine the pixel distribution between the foreground and background. Contour detection 
is also increasingly being studied as a separate task. 

CTDNet [12] consists of a trilateral decoder with spatial, semantic, and boundary 
paths. C2SNet [13] tries to graft a new branch onto a well-trained contour detection 
network and combines the contour task with the saliency task. PsiNet [14] consists of a 
structure with three parallel encoders, and one of them is used to perform the auxiliary 
tasks of contour detection. ENFNet [39] consists of a novel edge-guided structure to solve 
the problem of blurred edges caused by pooling operations. 

2.4. Transformer 
Bahdanau et al. [39] first applied an attention mechanism to the field of NLP. 

Vaswani et al. [40] first proposed a pure transformer, completely abandoning network 
structures such as traditional RNNs and CNNs. The transformer contains only the 
attention mechanism but achieves good results. After that, ViT [10] was proposed to use 
attention in the field of image processing. This approach splits the input image into 
several patches and sends them to transformer-like word vectors. Today, more and more 
transformers are being proposed to solve image classification, semantic segmentation 
and so on. 

T2T [41] introduced tokens to tokens, enabling it to perform better on small datasets. 
DeiT [42] distills knowledge based on tokens, enabling it to perform better without 
pre-training on large datasets. Swin Transformer [11] consists of a multi-head 
self-attention mechanism based on shifted windows. PVT [43] consists of a shrinking 
pyramid and can contribute to downstream tasks, similar to the ResNet [44] backbone. 
CvT [45] combines the advantages of CNNs and transformers. It has both the dynamic 
attention mechanism and global modelling capabilities of transformers and the local 
capture capabilities of CNNs. 
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3. Methodology 
3.1. Overview of the TSSTNet Framework 

The proposed network TSSTNet is displayed in Figure 4. It comprises a two-stream 
encoder and a three-stream decoder. A contour alignment module (CAM) and a contour 
enhancement module (CEM) are proposed to use contour information learned by the 
edge stream to assist with saliency detection tasks. A feature fusion module (FFM) and a 
multi-feature fusion module (MFFM) are proposed to incorporate multi-model features. 
The details of the above four modules are showcased in Figure 5. 

Specifically, the images are fed into two separately trained encoders after 
preprocessing, i.e., the edge stream and the saliency stream. Afterwards, the obtained 
features are fed into three different decoders—namely, the edge stream, the saliency 
stream, and the fusion stream—and the features from the three decoders are finally fused 
and output by the MFFM. The details are presented below. 
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Figure 4. Structural diagrams of our proposed network TSSTNet. 



Coatings 2022, 12, 1730 7 of 17 
 

 

MFFM

CAM CEM

FFM

CMax

CAvg C

Global Max 
Pooling Along 

Channel

Global Average 
Pooling Along 

Channel
Concatenation

Element-wise 
Multiplication

Element-wise 
Addition and 
Multiplication

Con1×1

GMax Global Max
 Pooling GAvg Global Average 

Pooling

Con1×1

Sigmoid

CBR X2

CAM CEM FFM+ +

CMax CAvg

CBR

CBR X2

X2

GMax GAvg

CBR

Sigmoid

CMax CAvg

C

CBR

Sigmoid

Conv1×1 + BN + 
ReLU

Element-wise 
Addtion

SS FS ES

 
Figure 5. Structural diagrams of the contour alignment module (CAM), contour enhancement 
module (CEM), feature fusion module (FFM), and multi-feature fusion module (MFFM). 

3.2. Two-Stream Encoder and Three-Stream Decoder 
In our experiments, we found that when using a single-stream encoder to perform 

multitask learning, the secondary task may interfere with the primary mission. Therefore, 
in our network, we propose a two-stream decoder—one stream for extracting features, 
and the other for boundary information. Separate training parameters are used for the 
two streams. The experimental results prove that the two-stream encoder works better 
than the single-stream encoder. 

We propose a three-stream decoder consisting of a saliency stream (SS), edge stream 
(ES), and fusion stream (FS). It makes full use of the extracted multilevel feature maps. 
Features from stage i can be denoted as {Si}4 

i  in the SS, {Ei}4 
i  in the ES, and {Fi}4 

i  in the FS. 
The features in the SS and ES are then fused hierarchically by upsampling, convolution 
with a 3 × 3 kernel, batch normalization, and the ReLU activation function. At the same 
time, the CAM transfers the edge information learned from the ES to the SS by 
calculating the spatial position relationships, resulting in a precise contour. The 
three-stream decoder can be described as follows: 

1

1

( ( ))
( ( ))

i i i

i i i

S CBR Up S S
E CBR Up E E

−

−

= +
 = +

 (1) 
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1( , )i i i iF CAM S E F−= +  (2) 

4 4 4( , , )Result MFFM S E F=  (3) 

where CBR denotes the 3 × 3 convolution, batch normalization, and ReLU function, while 
Up represents upsampling × 2. 

3.3. Swin Transformer Backbone 
Transformers increasingly perform better than CNNs on a wide range of visual 

tasks. Swin Transformer [11] not only retains the advantages of the ViT [10]—such as 
versatility, the ability to model the global long-range dependency features, and parallel 
processing capability—but also incorporates CNNs’ advantages of translational 
invariance and localization. Meanwhile, Swin Transformer [11] effectively solves the 
problem of heavy calculation caused by the self-attention operation. The contents of the 
Swin Transformer [11] are presented in Figure 4. 

Specifically, Swin Transformer [11] firstly divides the RGB image into some 
non-overlapping patches via a patch partition operation, and then it applies a linear 
embedding layer on the patches, which transforms the data to a specific channel using a 
fully connected layer. After that, the patches are put into two successive Swin 
Transformer [11] blocks to extract multilevel features. The structure of the blocks is 
illustrated in Figure 4. With the network growing deeper, patch merging layers perform 
downsampling operations and reduce the resolution. Finally, we can capture the feature 
maps with the size of H/32, W/32, where H × W is the shape of the defect pictures. We 
chose Swin-B [11] as the pre-trained model in our network. Specifically, the fully 
connected layer converts the number of channels in the input patches to 128, while the 
number of repetitions of Swin Transformer [11] blocks is {2, 2, 18, 2}. 

3.4. Multi-Feature Fusion Module 
At the end of the network, we present a multi-feature fusion module (MFFM) that 

combines the features from the SS, ES, and FS two by two. For the multi-model maps in 
different streams, it contains three different models. These allow the network to learn 
boundary information while retaining the global context learned by the SS. The exact 
structures of the modules are described in more detail below, and the diagram of the 
structure of all modules is shown in Figure 5. 

3.4.1. Contour Alignment Module 
To use edge information to calibrate saliency detection, we propose a contour 

alignment module (CAM). We transform the edge map into probabilities of 
corresponding positions using the sigmoid function. Then, we align the edges of the rail 
defects by multiplying the saliency maps and the contour maps to deepen the image 
edges and reduce the noise between the background and foreground. 

Specifically, we first merge the edge and the saliency maps by addition to form the 
fusion maps, and then we calculate the contour attention using a 1 × 1 convolution and 
sigmoid function. Then, we multiply and add the contour attention and the fusion map. 
Finally, two CBR functions are used to increase the learnability and complexity. Through 
contour attention, we expect the network to be more attentive to the edges of rail defects 
so as to achieve higher accuracy. The overall framework is shown in Figure 5. It can be 
formulized as follows: 

2 ( ) ( ( ))CBR x CBR CBR x=  (4) 

[ ]2( , ) ( 1( )) ( ) ( )i i i i i i iCGM S E CBR Sig Cov E E S E S= ∗ + + +  (5) 
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where Cov1 denotes 1 × 1 convolution, Sig represents the sigmoid function, * denotes 
element-wise multiplication, and CBR2 denotes two consecutive CBR functions. 

3.4.2. Contour Enhancement Module and Feature Fusion Module 
To combine the features in the ES and FS, we propose a contour enhancement 

module. Considering that the CAM aligns the contour maps to the saliency maps, we 
expect to let the edge maps guide the fine-tuning of the fusion maps through channel 
attention. Channel attention can improve the feature presentation of feature maps, while 
simultaneously reducing the noise at the edges of the feature maps due to the blurring of 
the edge maps. CEM can be presented as follows: 

i i if E F= +  (6) 

2 2( ) ( ( ) ( ))i i i iCEM f CBR CBR CMax f CAvg f f = + ∗   (7) 

where CMax represents the global max pooling operation along the channels, CAvg 
represents the global average pooling along the channels, and fi is an intermediate 
feature. In this model, the contour on the feature is enhanced again. 

Inspired by [46], we propose FFM by combining channel attention and spatial 
attention. However, we remove the bottleneck structure of the MLP in order to reduce 
the amount of computation in the network. We expect the fusion maps to pass contour 
information to saliency maps, while the saliency maps can retain semantic context 
information in the fusion maps. FFM can be denoted as follows: 

_ ( ( ( ) ( ))) ( )i i i i i iS A Sig CBR GMax S F GAvg S F S F= + + + ∗ +  (8) 

( ) ( ( ( ( _ ), ( _ )))) _iFFM f Sig CBR Cat CMax S A CAvg S A S A= ∗  (9) 

where GMax denotes the global max pooling operation along the axis, GAvg denotes the 
global average pooling operation along the axis, S_A represents spatial attention, and Cat 
represents concatenation. 

3.5. Training 
We chose the NRSD-MN [2] dataset to train, validate, and test our network. The 

input size was processed to 384 × 384 × 3. This also corresponds to the input size of 
Swin-B. We enhanced the data using random flipping, rotation, and border clipping. 
Swin-B was chosen to initialize the parameters of the network. The batch size was 
programmed to 8, and the training epochs were set at 50. An Adam optimizer was 
introduced to train our network. The learning rate was initialized to 5 × 10−5, and then it 
decayed to 5 × 10−6 when the number of training epochs reached 30. We set the gradient 
clipping margin to 0.5. TSSTNet was trained on a machine with a single NVIDIA RTX 
3090 and 24 GB graphics memory, and the approximate training time was 6 h. All code 
was implemented in the PyTorch framework. 

4. Experimental Section 
4.1. Datasets 

To train TSSTNet, we selected the NSRD-MN [2] dataset. Zhang et al. [2] built a 
filming system consisting of a binocular color line-array camera, two light sources with a 
linear shape, and a motion transmission system. The color line-array camera reduces the 
light requirement to linear, uniform light. We used two linear light sources to provide 
linear uniform light. The camera cannot capture the entire surface of the rail at once, so a 
moving platform located underneath the rail carries the rail in slow motion. The specific 
structure is shown in Figure 6. The binocular line-array camera takes on the task of 
photographing. After the shoot, it manually annotates the images under the guidance of 
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professionals from steel-testing companies. Then, we transform the annotations of the 
training and validation photos into edge annotations using the Canny [47] algorithm. 

Binocular 
Color Line 

Array Camera

Two strip light 
sources

Rail

Transport 
platform

Manual 
Labelling

Canny 
Algorithm

TSSTNet

Training

Supervision

Supervision

Photographing

NSRD-MN dataset image acquisition process

NSRD-MN dataset labelling 
process

 
Figure 6. The process of creating the NSRD-MN dataset. 

In summary, we obtained 3936 craft images of no-service rail surface defects 
(NRSDs), including 2158 images aged by a rust-promoting reagent, 1778 unaged pictures, 
and 165 natural NRSD photos. The natural set includes 115 highly similar and imitative 
images and 50 real images without any processing. They use metal to create scratches on 
the surface of the rails or use rust-promoting reagents on the surface of the metal to cause 
the metal to age and rust, making the manmade dataset look very similar to the natural 
one. The craft images were split into groups of 2086, 885, and 965 for training, validation, 
and testing, respectively, and the natural images were used as the test set. 

4.2. Evaluation Metrics and Loss Function 
To assess the capability of TSSTNet, we used five evaluation metrics commonly 

utilized in the field of SOD. Firstly, we chose the mean absolute error (MAE) [48] as our 
key metric, which visually shows the error between the predicted and true values. The 
formula is shown below: 

1 1

1 | ( , ) ( , ) |
H W

H W

j k
MAE S j k G j k

= =

= −
×   

(10) 

where S is the saliency map, G is the ground truth (GT), j, k is the location of the pixel, and 
H × W is the size of the entry image. 

The mean F-measure (mFβ) [49] was used to demonstrate the performance of the 
model by calculating Precision and Recall. The weighted F-measure (wFβ) was used to 
evaluate the positional accuracy of the salient results. Conventionally, we set β2 to 0.3. 

TPPrecision
TP FP

=
+

 (11) 

TPRecall
TP FN

=
+

 (12) 

2

2
(1 ) Precision RecallF

Precision Recallβ
β

β
+ × ×=

× ×
 (13) 

where TP means the true positive, FP means the false positive, and FN means the false 
negative in the contradiction matrix. 
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Structure-measure (Sα) [50] was used to measure the structural similarities between 
the predicted images and the annotations. There, we set α to 0.5. 

(1 )o rS S Sα α α= ∗ + − ∗  (14) 

Enhanced-alignment measure (Eξ) [51] focuses on the link between image-level data 
and local pixels by combining global pixel averages and local pixels. Finally, we also 
drew precision–recall (PR) and F-measure curves to show all information. 

We choose binary cross-entropy loss (BCELoss) and intersection-over-union loss 
(IouLoss) as our loss functions. For training the edge maps, BCELoss was adopted as the 
edge stream loss (Le). 

[ ]
1 1

1( , ) ( , ) ( ( , )) (1 ( , ) (1 ( , ))
H W

e
j k

L P G G j k log P j k G j k log P j k
H W = =

= − ∗ + − ∗ −
×   

(15) 

where G denotes the ground truth map, P denotes the prediction map, and j, k denotes 
the location of the pixel. 

For training of the saliency maps, an integrated loss function (Ls) was introduced. In 
accordance with CTDNet [12], we set β to 0.6. 
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s e iouL L Lβ= × +  (17) 

As with the F-measure, we also chose PR curves to represent the relationship 
between precision and recall in the network results. Specifically, the precision and recall 
expressions indicate the percentage of true positives in the confusion matrix. The PR 
curve represents the relationship between precision and recall, and it is usually a convex 
curve. The higher the curve is to the right, the more effective the network. If two PR 
curves intersect, the further to the right the point is when P = R, the better the network. 

4.3. Comparison of Method Performance 
We compared the performance of 10 SOTA deep learning neural networks widely 

used in SOD tasks on the NRSD-MN dataset (i.e., BASNet [44], BSANet [45], C2FNet [46], 
CTDNet [12], EGNet [24], F3Net [47], PFPN [48], PiCANet [25], PoolNet+ [49], and 
TRACER [51]). The results are shown in Figure 7, and we have marked the experimental 
results of TSSTNet with a dashed box. It can be clearly seen that the salient detection 
results obtained by our model are more accurate. Meanwhile, we compared the networks 
with similar test results in more detail. The comparative diagram is shown in Figure 8. In 
the diagram, we compare the visualization results in terms of detection completeness and 
edge refinement, using different-colored rectangular boxes to box them out. Benefiting 
from the edge stream, contour alignment module (CAM), and multi-feature fusion 
module (MFFM), we obtained a clearer contour. The code is available at 
https://github.com/VDT-2048/TSSTNet, which is accessed on 1 December 2022. 

In terms of specific evaluation results, our network shows an improved effect 
compared to the latest proposed network TRACER [51], in the following ways: 0.6% 
lower MAE, 2.6% higher mFβ, 2.8% higher wFβ, 2.0% higher Sα, and 0.8% higher Eξ on the 
natural surface defects dataset (Real); and 0.3% lower MAE, 3.7% higher mFβ, 3.6% higher 
wFβ, 1.4% higher Sα, and 1.2% higher for Eξ on the manmade surface defects dataset 
(Craft). Other comparative results are illustrated in Table 1. 

The experimental results show that our network is highly competitive in saliency 
detection. Benefiting from the Swin Transformer [11] backbone and the two-stream 
multitasking encoder, our network is more accurate in feature extraction. At the same 
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time, the CAM helps the network to distinguish between ambiguous foregrounds and 
backgrounds very well. 

We drew PR curves and F-measure curves to show the relationship between 
precision and recall, as shown in Figures 9 and 10, respectively. From the PR curve 
analysis, we can infer that TSSTNet performs much better than the other comparison 
networks on the real dataset. On the craft dataset, several networks achieved similar 
results, but TSSTNet was still superior to the other networks. 

Image GT BASNet BSANet C2FNet CTDNet Edge GT TSSNet 
Edge

TSSTNet EGNet F3Net PFPN PoolNet+ Tracer CTDNet 
Edge

PiCANet

 
Figure 7. Visualized saliency maps of no-service rail surface defect detection compared with 10 
other networks. 

BSANetTSSTNetGT TRACER

Completeness Comparison Edge Comparison

Image

 
Figure 8. Visual comparison of the two networks with the most similar test results from detection 
of completeness and edge refinement. 
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Table 1. Comparison with 10 other common SOD networks; ↑ means the higher the better, ↓ means 
the lower the better. The best two results are tagged in red and green, respectively. MAE is the key 
metric. 

Methods 
NRSD-MN Dataset 

Real Craft 
MAE ↓ mFβ ↑ wFβ ↑ Sα ↑ Eξ ↑ MAE ↓ mFβ ↑ wFβ ↑ Sα ↑ Eξ ↑ 

BASNet 0.065 0.748 0.730 0.797 0.830 0.021 0.802 0.775 0.866 0.944 
BSANet 0.064 0.761 0.740 0.808 0.837 0.017 0.844 0.820 0.884 0.958 
C2FNet 0.063 0.761 0.705 0.805 0.850 0.021 0.817 0.738 0.859 0.949 
CTDNet 0.068 0.734 0.708 0.779 0.828 0.020 0.808 0.779 0.865 0.948 
EGNet 0.063 0.746 0.723 0.798 0.840 0.019 0.814 0.797 0.872 0.948 
F3Net 0.060 0.771 0.754 0.822 0.847 0.018 0.824 0.799 0.879 0.950 
PFPN 0.059 0.759 0.742 0.819 0.857 0.019 0.798 0.793 0.871 0.940 

PiCANet 0.076 0.679 0.633 0.749 0.826 0.031 0.718 0.695 0.819 0.901 
PoolNet+ 0.061 0.760 0.740 0.811 0.839 0.017 0.825 0.805 0.875 0.953 
TRACER 0.058 0.772 0.753 0.819 0.859 0.019 0.825 0.805 0.875 0.953 

Ours 0.052 0.798 0.781 0.839 0.867 0.016 0.841 0.816 0.883 0.958 

 
Figure 9. PR curves for the real NRSD-MN dataset. 

 
Figure 10. PR curves for the craft NRSD-MN dataset. 
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4.4. Ablation Experiments 
To verify our conjecture about the benefits of two-stream networks, and to evaluate 

the advantages and disadvantages of the proposed modules, we conducted several 
ablation experiments. We used upsampling operations and element-wise addition to 
merge the hierarchical features to form a U-shaped structure. We also removed the 
MFFM and the FS separately using the control variable method. In the experiments to 
eliminate the MFFM, we used element-wise addition instead of the MFFM to fuse the ES, 
SS, and FS. The results of the investigation are displayed in Table 2. 

Table 2. Results of the ablation experiments; ↑ means the higher the better, ↓ means the lower the 
better. The best two results are tagged in red and green, respectively. MAE is the key metric. 

 
Swin 

Transformer 
Backbone 

Two-Strea
m 

Encoder 

Three-Stre
am 

Decoder 
MFFM NRSD-M

N Dataset 
MAE ↓ mFβ ↑ wFβ ↑ Sα ↑ Eξ ↑ 

Test1 √    

Real 

0.056 0.787 0.767 0.825 0.856 
Test2 √ √   0.053 0.805 0.776 0.820 0.874 
Test3 √ √ √  0.099 0.705 0.359 0.732 0.835 

TSSTNet √ √ √ √ 0.052 0.798 0.781 0.839 0.867 
Test4 √    

Craft 

0.017 0.831 0.807 0.880 0.955 
Test5 √ √   0.020 0.833 0.810 0.860 0.954 
Test6 √ √ √  0.062 0.761 0.389 0.771 0.921 

TSSTNet √ √ √ √ 0.016 0.841 0.816 0.883 0.958 

The experimental results indicate that the two-stream encoder can indeed solve the 
problem of the auxiliary task interacting with the main task in the single-stream encoder. 
Furthermore, the combination of the three-stream features extracted by the two-stream 
encoder through the MFFM can solve the problem of conflict when different features are 
fused. 

5. Conclusions 
In this paper, we present a multi-stream neural network named Two-Stream Swin 

Transformer Network (TSSTNet) to meet the challenge of blurring the edges of rail 
surface defects and distinguishing the foreground from the background. TSSTNet uses 
two separately trained encoders to extract saliency features and edge features, which is a 
good solution to the problem of inter-task interference when a single-stream encoder is 
working on multiple tasks. This also makes TSSTNet highly capable of edge refinement. 
At the same time, we propose a contour alignment module (CAM) to use spatial attention 
to fuse features from different streams, which calibrates the edges of the saliency 
detection map, reduces noise at the foreground–background junction, and helps the 
network to locate defects. Moreover, a multi-feature fusion module (MFFM) is proposed 
to solve the problem of conflicting features at different levels of the three-stream decoder, 
which is able to reduce the variability in the fusion of features learned from different 
streams. However, a dual-stream decoder with separately trained parameters would 
result in a larger model and more computational effort. In subsequent studies, we will 
remove the less important parts of the network by pruning, compression, and other 
operations to lighten the network. In addition to this, we will commit to the use of 
multimodal information—including RGB-D and RGB-T images [51]—for the detection of 
no-service rail surface defects. 
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