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Abstract: Reliability and durability are two important performance indicators for thermal barrier
coatings (TBCs). The reliability of TBCs usually includes high adhesive strength, low thermal
conductivity and high thermal shock resistance. The high reliability of TBCs ensures basic usage
requirements. Durability demands TBCs have a long service lifetime before their eventual failure.
The lifetimes of TBCs under actual service conditions are strongly dependent on crack initiation and
propagation. Controlling and delaying the dynamic process of crack initiation and propagation is a
direct approach to prolonging the service lifetime of TBCs. Self-healing TBCs usually have the specific
function of inhibiting crack propagation, and thus promote the self-healing process of TBCs. The
research progress of self-healing TBCs was reviewed. Firstly, the concept of self-healing or self-healing
materials is clarified. Secondly, the research progress about some self-healing ceramic materials as
well as self-healing TBCs is reviewed. Based on the review, the micro-structure design, propagation
patterns of the crack and self-healing mechanism are discussed systematically. Additionally, the
future development trend of the self-healing TBCs is also overviewed in this paper.
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1. Introduction

The concept of “thermal barrier coatings (TBCs)” was presented by NASA (National
Aeronautics and Space Administration) in the 1950s and has been used till now. TBCs have
been investigated widely in the industry and the scientific community. This is due to the
fact that heat efficiency or thrust–weight ratio has continuously increased for aero-engines
and land-based engines, and the demand for TBCs is urgent. With the development of
the advanced industry, and the inlet temperature of the engine continuously increasing,
the single-crystal superalloy has not satisfied the development tendency, and advanced
TBCs with excellent performance are becoming more and more important, and they play
an important role in improving the work efficiency of the aero-engine, air-craft engine and
land-based engine [1–5].

TBCs usually exhibit double- and multilayer-structured characteristics; the typical
structured characteristics are usually composed of three layers, i.e., a metallic layer (bond-
coat), thermally grown oxide (TGO) layer and ceramic layer (top-coat). The bond-coat layer
is usually composed of MCrAlY (M = Ni and/or Co); this layer usually ensures that the
metallic substrate (superalloy or heat-resistant steel is generally adopted as the substrate)
and the ceramic layer have a good thermal expansion match, and it will also provide
anti-oxidation protection for the underlying substrate. The TGO layer is usually produced
due to the oxidation of the metallic bond-coat, and it can be usually divided into two layers,
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i.e., porous oxide layer and dense oxide layer; the dense oxide layer is usually located above
the porous TGO. Once the dense TGO has been formed, it will inhibit the diffusion of the
oxygen to the bond-coat, and the growth of the TGO will stop. At the inner of the TGO layer,
large residual stress will be induced, which will accelerate the failure of the TBCs [6–10]. The
ceramic layer is usually composed of 8 wt.%Y2O3-stabilized ZrO2, and this layer can reduce
the heat input to the underlying substrate along the through-thickness direction, and thus
will improve the thermal insulation effect of the TBCs [11–13]. The micro-structure of the
as-sprayed TBCs is varied and is dependent on the different fabrication techniques. Many
techniques which are available in the modern industry have been adopted to prepare the as-
sprayed or as-deposited TBCs, such as atmospheric plasma spraying (APS) [14–18], electron
beam–physical vapor deposition (EB-PVD) [19,20], solution (precursor) plasma spraying
(SPS, SPPS) [21–26], plasma spraying–physical vapor deposition (PS-PVD), etc. [27–31]. The
APS-TBCs usually exhibit lamella structural characteristics, the inner splats are arranged
like laying bricks or stone walls in a building. The micro-pores, voids and micro-cracks
are randomly distributed at the inner of TBCs. The TBCs which are fabricated by EB-PVD
usually exhibit columnar structural characteristics [32–36]. The adjacent columnar grains
are in contact with each other with a certain gap. The surface morphology usually shows
a pebble shape. Pores and cracks can be produced at the inner of the columnar grains or
among the columnar grains. Generally speaking, the APS-TBCs usually has low thermal
conductivity compared with that of the TBCs fabricated by EB-PVD; this is attributed
to the fact that the heat flux direction is vertical to the laminar interface in APS-TBCs,
but the heat flux direction is parallel to the growth direction of the columnar grains and
can easily transfer along the vertical gaps of the adjacent columnar grains. The TBCs
fabricated by EB-PVD usually have higher thermal shock resistance compared with the
TBCs fabricated by APS due to the high strain tolerance of the columnar grains along
the transverse direction of the EB-PVD TBCs. The solutions which contain nanosized
powder are used to fabricate the SPS/SPPS-TBCs; the slurry is very important for the
preparation of this type of coating. The SPPS/SPS-TBCs usually have low porosity and
high bonding strength, and they usually have high thermal shock resistance when they
are applied under the conditions of the burner rig test. The TBCs which are fabricated
by plasma spraying–physical vapor deposition (PS-PVD) have been developed quickly
in recent years. The TBCs fabricated by PS-PVD have the combined merit or advantage
of the APS-TBCs and EB-PVD-TBCs. They usually have a high deposition rate and high
thermal shock resistance. Non-in-sight deposition is a unique advantage compared with
the EB-PVD technique. It can deposit coating on any substrate with a complex geometric
shape. The cross-section morphology usually exhibits featherlike columnar grains, while
the surface view usually shows a cauliflower shape. The differences of the TBCs fabricated
by three different processing techniques are displayed in Table 1.

Whichever process is used to prepare the thermal barrier coatings, cracks are inevitable
in the TBCs. From the point of view of fracture mechanics, the eventual failure of TBCs
under actual service conditions is attributed to crack initiation and propagation. In other
words, their lifetime is dependent on the dynamic process of crack propagation. Controlling
or delaying the dynamic process of crack propagation will be beneficial to prolonging
service lifetime. It can be imagined that if the crack can be healed itself under the actual
service conditions, the crack propagation process will be delayed, and consequently, the
lifetime will be prolonged eventually. So, how to realize the self-healing process and to
control the self-healing process is the key step. In this paper, the self-healing behavior and
the corresponding self-sealing mechanism in TBCs is reviewed systematically.
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Table 1. Difference of the thermal barrier coatings fabricated by three different processing techniques
[11,18,19,28].

Type Plasma Spraying (PS)
[11]

Electron Beam–Physical Vapor
Deposition (EB-PVD) [18,19]

Plasma Spraying–Physical Vapor
Deposition (PS-PVD) [28]

Years Since 1950s Since 1980s Since early 21th century

Schematic illustration
of the apertures
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2. Research Progress of Self-Healing Bulk Ceramics and Thermal Barrier Coatings
2.1. Basic Concept of Self-Healing Materials

Self-healing materials (also called self-repairing materials) are a type of smart material
which has self-healing ability from the aspect of its structure. The material which has this
ability can repair the inner damage itself when it was suffered with long-term thermal
and/or mechanical load or other exterior loads. If the materials have suffered from a certain
degree of damage, they can finish the self-repairing process and resume their original state
which has not endured the damage under a certain condition or stimulation. However, the
materials cannot realize a 100% degree of self-repairing actually. In fact, all the materials
which can realize a certain degree of self-repairing function can be regarded as self-healing
material. The performance of the self-healing materials as a function of service time is
plotted in Figure 1. Generally, there are two types of self-healing, i.e., extrinsic self-healing
and intrinsic self-healing (Figure 2) [37], the arrows indicates the direction of crack healing.
The material that fills the crack is typically different than the matrix material for both the
extrinsic and intrinsic cases.
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The concept of self-healing is a promising route to cement the resistant to damage 
and prolong the service life of materials. Research results show that self-healing mecha-
nisms can be incorporated into the scope of various material categories, such as from pol-
ymers to high-temperature ceramics in the last decade. For example, an extrinsic self-heal-
ing mechanism depends on healing capsules (particles) dispersed in matrix material, 
which are shown in Figure 2a. With the extrinsic self-healing mechanism, the healing pro-
cess is usually activated by cracks that interact with the capsule. Such a capsule-based self-
healing mechanism can ensure that the material has the potential capacity to repair dam-
age. Hollow fibers filled with micro-vascular networks and healing agents, which are ran-
domly distributed in it, can also act as self-healing materials. Among them, the encapsu-
lated particle-based self-healing system has been widely investigated. The encapsulation-
based healing concept can bring ideal autonomous self-healing behavior to the system. If 
enough healing agent can be produced in time, the multiple-time self-healing behavior 
may occur; once the healing agent has been consumed in the location, the self-healing 
behavior may stop in a system which includes the base material and healing agent.  
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The concept of self-healing is a promising route to cement the resistant to damage and
prolong the service life of materials. Research results show that self-healing mechanisms
can be incorporated into the scope of various material categories, such as from polymers
to high-temperature ceramics in the last decade. For example, an extrinsic self-healing
mechanism depends on healing capsules (particles) dispersed in matrix material, which
are shown in Figure 2a. With the extrinsic self-healing mechanism, the healing process
is usually activated by cracks that interact with the capsule. Such a capsule-based self-
healing mechanism can ensure that the material has the potential capacity to repair damage.
Hollow fibers filled with micro-vascular networks and healing agents, which are randomly
distributed in it, can also act as self-healing materials. Among them, the encapsulated
particle-based self-healing system has been widely investigated. The encapsulation-based
healing concept can bring ideal autonomous self-healing behavior to the system. If enough
healing agent can be produced in time, the multiple-time self-healing behavior may occur;
once the healing agent has been consumed in the location, the self-healing behavior may
stop in a system which includes the base material and healing agent.

As for the micro-vascular network-based self-healing systems, they have the function
of multiple healing via the increase in healing agent once the repeated damage has occurred.

Compared with extrinsic self-healing material systems, the healing behavior in in-
trinsic self-healing materials is attributed to the physio-chemical nature of the material
itself, as illustrated in Figure 2b. Such materials have the natural capability of repairing the
damage more than once [37]. The prolongation of service lifetime can be realized via the
self-healing effect. Especially, as for those structural components used in the actual engi-
neering application, once the crack initiates and propagates in the structural components, it
will be disastrous, so to inhibit the crack initiation and propagation will be very important.

2.2. Research Progress of the Self-Healing Ceramics

In the world, the investigation of self-healing materials has been performed since
the early 1970s [38]. Figure 3 shown the crack-healing mechanisms of ceramics, such as
oxidation. In the oxidation process, the volume of oxidation products is larger than that
of the matrix material; the volume will be expanded because of the oxidation products,
which will result in the filling of the cracks effectively. Take SiC-containing composites as
an example, at the temperature above 600 ◦C with PO2 > 1 × 10−5 MPa, SiC will react with
oxygen and produce SiO2 [39]. This reaction will be accompanied with an 80% volume
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expansion which can fill the opening crack completely [40,41]. Healing agents react with
the atmosphere, and subsequently, the oxidation products in composite material. The
formation of a glassy phase can flow into the inner of the opening crack, providing a strong
bond among the intersected crack walls and further increasing healing efficiency. Such
a formation of Y2Si2O7 during the sintering of Si3N4 (containing yttrium oxide) is one
example of ceramics [42].

Diffusion is the other self-healing mechanism which occurs in the process of crack
healing. Diffusion usually exists in all ceramics during sintering at high temperature. So,
in other words, a crack-healing behavior for fine cracks can show in ceramics possibly,
whereas sintering at high temperatures (more than 0.7 Tm; Tm is the material melting point)
for long periods of time needs to be performed to achieve complete crack healing. In UO2,
cracks with a width of 0.06 mm of a specimen can be healed after being sintered at 1400 ◦C
for much more than 600 h. It has been reported that crack-healing phenomena occur due to
the breakup of the cylindrical voids into spherical pores. Subsequently, spherical pores will
disappear when further increasing the holding times at elevated temperatures. The third
mechanism is phase transformation by the crack healing in zirconia. The tetragonal zirconia
phase will transfer to the monoclinic zirconia phase along with large volume expansion at
1170 ◦C. Studies showed that the phase transformation and crack tip rounding in tetragonal
zirconia are impotent factors for crack healing [43–45].
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Based on the application of lightweight composite material components in aero-
engines, the self-healing materials in MoSi2, CrMoSi and CrSi2 have been investigated [46].
S.R. White et al. [47] have investigated the polymer matrix composites; they found that
there is reinforcement which is similar with the “capsule” that exists at the inner of the
composites. When the crack propagates to a position near to the “capsule”, the “capsule”
will break and release the self-healing substance. The substance can be particles of small
size or a glassy substance of high temperature; while these particles or matter fill in the gap
of the cracks, they will produce a self-healing effect on the cracks (Figure 4).
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Figure 4. Schematic of the self-healing system used in the matrix of a woven fiber-reinforced
composite [47].

Jody W.C. Pang et al. [48] have found that the polymer-matrix composites have a
certain self-healing effect by adding hollow fiber reinforcement. When the as-prepared
composites endured a four-point bending test, and when it was near to producing failure
at the fracture and pull of the fiber in the layered stack composites, the matter in the
fiber released and prevented propagation of the crack along the previous path, and thus
improved the fracture toughness of the composites and produced the self-healing effect on
the polymer-matrix composites. G.M. Song [49] et al., who are at the delft University of
Technology (Netherlands), have investigated the Ti3AlC2 ceramic induced by oxidation. A
fine crack was prefabricated in the ceramic bulk via tensile deformation. The crack realized
the completed self-healing when the ceramic bulk was pre-oxidized for 2 h at 1100 ◦C
in air; this is due to the fact that the Al in the Ti3AlC2 grains will firstly react with the
oxygen and produce α-Al2O3. In addition, a little amount of rutile-TiO2 will also be formed;
the oxidation products will fill the gap of the crack with the gap width by about 1µm.
The test result of the indentation mechanical properties indicates that the elastic modulus
and micro-hardness in the self-healing zone is higher than that of the bulk ceramic before
self-healing; the investigation results further indicate that the Ti2AlC has a multi-time crack
self-healing function, and when the applied load was imposed onto the specific positions
for multi-time [50], the crack realized a 7 times self-healing effect, as shown in Figure 5.
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Coatings 2022, 12, 1724 7 of 23

The NiAl-particle-reinforced Al2O3 ceramic–matrix composites have been fabricated
via spark plasma sintering (SPS) by Huang et al. [51]. They have found that a certain degree
of self-healing effect of the composites has appeared during the damage process induced by
the microindentation. Under the observation mode of an Atom Force Microscope (AFM),
when the size of the NiAl particle is about 1µm and the content is 15 wt.%, the composites
reached a 99.2% self-healing effect, and the fracture toughness of the composites after
self-healing improved by about 40% compared with that before self-healing, as shown in
Figure 6.
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Figure 6. The Atom Force Microscope image of the NiAl particle with a size of 1µm and15 wt.%-
reinforced Al2O3 composite content (a) before the heat treatment, (b) at isothermal treatment at
1200 ◦C for 5 h and (c) at isothermal treatment at 1300 ◦C for 5 h. (d) The geometrical image of the
crack fetched from the AFM before the heat treatment and after the heat treatment [51].

Nanostructured TiAlCrSiYN has been fabricated on the TiAl substrate via physical
vapor deposition (PVD) by Dosbaeva, G.K. [52]. A dense (Al, Cr)2O3 protective film was
formed on the surface of the nanostructured TiAlCrSiYN after high-temperature oxidation
aging; this layer of film will have an important self-healing effect on the underlying
coating. The induced nanostructured Ti0.15Al0.60Cr0.20Si0.03Y0.02N has super-anti-wear
and anti-corrosive resistance ability. Nedal Y. Abu-Thabit et al. [53] have discussed the
stimulus response type of polyelectrolyte multi-layer (PEMs) films which can be used to
fabricate self-healing coatings. One method is to add the materials with the PEM core/shell
structure as the self-healing agent on the substrate which was used to deposit the coating,
such as sol–gel or epoxy resin coating. Another method is to adopt the hollow structure
of the PEM capsules, SiO2 nanoparticles, mesoporous SiO2 and halloysite nanotubes as
self-healing agents.

As can be seen from the figure, self-healing occurs in the absence of loading, and the
fracture strength recovers according to the healing temperature (Th) and O2 partial pressure
condition (aO2). Even for ceramic–matrix composites with a large number of elements and
different materials, the proposed constitutive model can be used to reasonably analyze the
damage and healing process. In order to verify the self-healing process, the distribution of
the damage variable D was studied. Figure 7 shows the contour map of damage variable D
during cyclic loading, indicating that the damage area develops from the initial defect point,
while the total stiffness decreases during loading. Self-healing occurs after unloading, and
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the damaged area returns to the initial state, as shown in Figure 7. Therefore, the recovery
of fracture strength and stiffness depends on atmospheric conditions and healing time [54].
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There are many good numerical studies on the cracking and healing motivation/models
of coatings. They are helpful to strengthen the understanding of the cracking and repairing
mechanism of coatings [55–62].

2.3. Research Progress of the Self-Healing Thermal Barrier Coatings

Sloof W.G. et al. [63] have investigated the failure mechanism of self-healing TBCs, as
depicted in Figure 8. Micro-cracks will be produced at the inner of the coating or interfaces
when TBCs endure thermal stress or other stress; if the crack propagates to the capsule
(Case A), the capsule will be broken and release the self-healing agent (here, usually it
will be metal or alloy), then the crack will not further propagate and protect the TBCs
against failure, while if it is just like Case B, the micro-crack will bypass the capsule and
the self-healing will not happen. The design concept of the self-healing TBCs is to make the
case A occur and the Case B not happen.
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Previous investigation results indicate that the TiC is a very good in situ self-generated
phase, it can improve the anti-oxidation resistance of the superalloys [64]. The investigation
results of Jinping Suo’s group in Huazhong University of Science and Technology have
indicate that TiC is a very good self-healing material; it also has good compatibility with
Al2O3. The self-healing effect of TiC can make sure that the porosity of the coating reduces
from 4.43% to 0.46%,resulting in the significant decrease in micro-pores and micro-cracks
and further improving anti-oxidation resistance at high temperatures [65–67]. A coating
which contains the bond-coat layer, SiC and YSZ has been deposited onto the typical
double-layer YSZ TBCs by Ouyang et al. [68]. Their investigation results indicate that
when the temperature is higher than 720 ◦C, the SiC particles which are located outside
of the crack face will react with the exterior oxygen, and the solid reaction product SiO2
will be formed; they will fill the gap of the opening crack, and the self-sealing effect will
occur. In addition, the density of SiO2 is 2.2 g/cm3, which is lower compared with SiC
(3.2 G·cm−3); the volume of coating will expand and will produce compressive stress
around the crack, further producing the closure effect in the micro-cracks and micro-pores.
The partial pressure of the oxygen between the top-coat and bond-coat will decrease due to
the decline in the amounts of micro-pores and micro-cracks, further delaying the growth
rate of the TGO layer, resulting in the increase in anti-oxidation resistance and anti-spalling
resistance. In addition, the TBCs with MoSi2 as self-healing agent also have a certain degree
of self-healing effect. The main reason is that the plasma-sprayed MoSi2 has the following
reaction after being oxidized at 750 ◦C for 1 h:

2MoSi2 + 5O2 = 2MoO3 + 2SiO2 (1)

The generated MoO3 evaporates, the deposited SiO2 repairs the micro-cracks and
the self-healing effect appears. Table 2 summarize the partial research progress of the
self-healing material.
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Table 2. Partial research progress of the self-healing material.

Materials Type Materials System Self-Healing Mechanism References

ceramic

MoSi2, CrMoSi, CrSi2
SiO2 particle induced by high

temperature oxidation fills
the crack

[2]

Ti3AlC2, Ti2AlC

The reaction products of α-Al2O3
and a small amount of

rutile-TiO2fills the crack with a
width less than 1 µm

[5,6]

Composites

Hollow fiber-reinforced
polymer matrix

composites

Fiber fracture and pull-up of the
layered stack composite, It is able
to release the self-healing material

in the fiber, prevents the crack
propagation path, improves the

fracture toughness of the material

[3,4]

NiAl-particle-reinforced
Al2O3 ceramic–matrix

composite

The generation of oxide fills
the crack [7]

Ceramic film/coating

Nanocrystal TiAlCrSiYN
prepared by PVD on the

TiAl substrate

After high-temperature oxidation
aging, a dense (Al, Cr) 2O3
protective film layer will be

generated on the surface of the
as-sprayed film, the induced film

layer will have the self-healing
effect on the underlying

coating layer

[8]

TiC, MoSi2 etc.
reinforced YSZ,

ZrO2-Al/Ni thermal
barrier coatings

The generation of oxide with
relatively low density [10–13]

The in situ acoustic emission technique is a very important and useful tool to examine
the failure behavior of the TBCs during the high-temperature service process dynamically
and non-destructively. The crack initiation, nucleation and propagation can be obtained via
the in situ acoustic emission technique; the parameters of the AE signals usually include
the amplitude, ring down counts, cumulative counts and cumulative energy.

The TiC + YSZ + Al2O3 self-healing TBCs were studied by finite element simulation.
When TBCs undergo high-temperature oxidation, TiC reacts with oxygen in the air to form
TiO2 particles, which fill the gaps in the cracks. In addition, the density of TiO2 particles
formed is 4.26 G·cm−3, which is lower than TiC particles (4.93 G·m−3); the volume around
the crack surface will produce an expansion effect, so there will be a compressive stress
field around the crack surface, and the crack will be closed under the action of compressive
stress. On the other hand, the reaction of titanium and oxygen will reduce the partial
pressure (O) at the interface between the bond layer (BC) and the coating (TC). Additionally,
the growth rate of the TGO layer will be further reduced [69]. All three factors contribute
to the self-healing effect of TBCs at high temperature, as shown in Figure 9, the direction of
the red arrows indicates the direction of the stress.

Ouyang et al. [68] studied the high-temperature oxidation resistance and spallation
resistance of sic-self-healing TBCs and used atmospheric pressure plasma spraying (APS)
technology to prepare SiC–Al2O3–YSZ (SAZ) self-healing coating on classical double-layer
TBCs (YSZ TBCs), which were composed of bond coating (BC) and YSZ coating. The crack
allows SiC particles located on the outer surface of the crack to react with atmospheric
oxygen at temperatures above 720 ◦C, leading to healing. As the oxidation continues, the
crack surface will be covered by the oxides formed. Finally, the spaces between the crack
surfaces are completely or incompletely filled with the oxide formed. The sealing effect
enhances the oxygen diffusion resistance of the SAZ coating, so the oxygen partial pressure
at the BC/YSZ interface of the SAZ coating is lower than that of the YSZ coating. Due to
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the lower partial pressure of oxygen, the growth rate of TGO is slower, which improves the
anti-oxidant and anti-spalling properties of SAZ TBCs.
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Figure 9. Schematic of the self-healing mechanism for TBCs with a 3D model [69]. (a) The
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self-healing phenomenon.

Fan et al. [70] proposed a new effective self-repair method for laser remelting ZrO2-
7 wt%Y2O3 (7YSZ) TBCs’ segmented cracks. Nano-Al2O3/Ni-20 wt.%Al particles were
sintered at 1150 ◦C for 12 h under a certain pressure. After the heat treatment to facilitate
self-healing, a very dense metallurgically bonded, nano-Al2O3-reinforced nickel-based
sealing film is formed in the crack gap. The results of cyclic oxidation show that the
dense sealing film can effectively inhibit the growth of TGO and prevent the formation of
other brittle oxides (namely spinel) at the interface of the coating/bonding layer (TC/BC).
Any aluminum contained in the sealing particles or film is liable to diffuse to the TC/BC
interface. This will facilitate the formation of thin continuous TGO layers through the
pressure sintering effect during the initial oxidation process. This results in the significantly
enhanced titanium oxidation resistance of laser-remelted TBCs.

Z. Derelioglu et al. [71] have reported a crack-healing phenomenon in a type of TBC
which is used in the hot-section components of turbine engines; the occurrence of self-
healing mainly relied on the oxidation of embedded spherical MoSi2 healing particles
(healing agent). The oxidative decomposition of MoSi2 particles will take place in the TBCs
at high temperatures, then the amorphous SiO2 phase will be produced, which diffuses into
the inner of the opening cracks; the direct contact among the crack faces will be established
subsequently. The wetting of the crack faces is followed by a chemical reaction in the
ZrO2-based TBCs, and this will promote the formation of the solid ZrSiO4 phase. The
corresponding chemical reaction will induce a strong bond between the healing agent and
matrix material, resulting in a complete filling and self-healing of the crack. Because of the
oxygen transparency of the ZrO2 matrix, the reaction can take place even in the absence
of cracks, leading to premature decomposition and the accelerated sintering process; this
dynamic process will also fill the micro-pores in the TBCs undesirably. For the actual
application of YPSZ TBCs, the MoSi2 healing particles need to be encapsulated with an
oxygen-impermeable shell in order to avoid premature oxidation (Figure 10).
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section. (b) Enlargement of region indicated in Figure 5a. (c) Zr distribution and (d) Si distribution
(X-ray maps), both corresponding with micro-graph Figure 5b [71].

Many self-healing particles remained intact after enduring long exposure at high
temperature (Figure 11). Consequently, although the composition of the shell is not only
pure α-Al2O3, the shell offers good protection to the core of the particles. Due to the fact
that the particles have good thermal stability, they can ensure the action of the healing
ability of the TBCs. The self-healing ability could not reduce, even after long exposure at
high temperatures under oxidizing conditions. A continuous zircon (gray phase) layer
around the particles can be observed (Figure 11b). In fact, the value for the diffusion
coefficient of oxygen in ZrSiO4 is several orders smaller than that of the oxygen in SiO2–
B2O3 [72–75]. This zircon layer can be regarded as a diffusion barrier layer against oxygen
and improve the oxidation resistance of the particles [76].After experiencing sintering and
short annealing, the Al2O3 shell deposited around the MoSi2 particles is not composed
of pure α-Al2O3 but is a mixture of different oxides; a continuous borosilicate layer will
be formed among these oxides. Since MoSi2 can be oxidized spontaneously, the size of
the particles is expected to decrease drastically as a function of time, even in the absence
of cracks. have developed a classical kinetic model for solid–gas or solid–solid reactions
between spherical particles and gas or fine particles in self-healing TBCs. A mixture of YPSZ
powder and encapsulated MoSi2-based particles has been used to fabricate the self-healing
TBCs via the SPS sintering process, which were deposited onto an MCrAlY layer with the
Ni-based superalloys as the underlying substrate. Micro-cracks were present from the view
of cross-section morphology of the SPS-sintered TBCs, which is attributed to the thermal
stresses induced by the difference of CTE between the MoSi2 particles and YPSZ matrix.
In order to form an α-Al2O3 oxide scale, preoxidation of the MCrAlY-coated substrates is
necessary to prevent the formation of silicides. The formation of brittle and fast-growing
Ni/Co silicides can be realized under the conditions that expose MoSi2-based particles to
contact with or closeness to the MCrAlY layer at high temperature, leading to the early
spallation of ttb. The α-Al2O3 shell initially covering the particle surface is transformed
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into a more complex shell after a short exposure at high temperature. It consists of silicon or
borosilicate oxide, an overlap of γ-Al2O3 and ZrSiO4 crystals and a Si-enriched ZrO2 oxide
scale based on cited work. Although the above-mentioned oxides have higher oxygen
diffusivity compared with α-Al2O3, a good protection against oxidation of the MoSi2-based
healing particles can be offered by the multi-layer and multi-oxide shell.
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encapsulated MoSi2 (B)-based particles after 151 cycles of 1 h at 1100 ◦C and (b) a mixture of YPSZ
powder and 10 vol% encapsulated MoSi2 (B)-based particles sintered on a NiCrAlY-coated substrate
after 1108 cumulated hot hours at 1100 ◦C (31 cycles) [76].

When the protective shell has been produced, the particles oxidize at a very slower
rate than that of unprotected MoSi2-based particles. The self-healing TBCs will exhibit a
good anti-oxidation property when they endure thermal cycling at 1100 ◦C in air. Some
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cracks are partially filled with silicate phase or borosilicate and a zircon phase that connects
both crack surfaces [77].

The composites which were composed of the YSZ matrix (relative density of 84%) and
MoSi2 as the dispersed phase were prepared by SPS [77]. Cyclic oxidation performance of
the as-prepared composites at the temperatures ranging from 1000 ◦C to 1300 ◦C have been
characterized. Parabolic rate constant (kp) values of the composites agreed well with those
obtained in the literature for the oxidation of bulk MoSi2. When the composites endured
oxidation exposure, the formation of Mo5Si3, SiO2 and ZrSiO4 phases was observed. These
observations are consistent with the use of MoSi2 as a self-healing agent in YPSZ TBCs.

Ti3AlC2 was added to YSZ TBCs as a novel self-healing agent [78]. The thick coating
was prepared by atmospheric plasma spraying (APS) with YSZ–Ti3AlC2 mixture powder.
The cracks were prefabricated on the surface of the YSZ–Ti3AlC2 coating under uniform
external loading to observe its oxidation and self-healing behavior. The prepared coating
sample was treated at 1050 ◦C in air. The phase, morphology evolution and self-healing
behavior of the coating were studied by various analytical methods. The results show that a
part of Ti3AlC2 is decomposed into TiC after spraying. After isothermal treatment, a double-
layer structure of TiO2 outer layer and TiO2 + Al2O3 inner layer is formed. The oxidation
of the healing agent in the coating leads to the formation of Al2O3 and low-density TiO2
in the cracks during the self-healing process. These oxides are gradually filled into the
crack as a result of diffusion-controlled oxidation. At the same time, the compressive stress
caused by the volume expansion of TiO2 particles growing in the crack further enhanced
the healing effect. Prefabricated cracks eventually heal themselves.

YPSZ/MoSi2 composites have been designed and prepared to prolong the lifetime of
the matrix by self-healing mechanism during thermal cycling. The self-healing reaction
at high temperatures is based on the decomposition and oxidation of MoSi2 particles,
resulting in the formation of a product via chemical reaction along with volume expansion
which seals the crack. The fracture toughness and coefficient of thermal expansion (CTE)
of composites containing MoSi2 particles as the self-healing agent which were fabricated
by SPS have been compared with conventional YPSZ. The CTE difference between YPSZ
and MoSi2 was found to be small, which indicates that the thermal mismatch stress is
small, and the composite has a CTE similar to conventional YPSZ. Fracture toughness of
the self-healing composites showed similar values to unreinforced YPSZ, which indicated
that it was not affected by the self-healing particles. The cracks can be introduced by the
indentation test, and the kinetics process of the self-healing in a composite system can occur,
and the self-healing composites were capable of autonomously activating the self-healing
reaction under the actual service conditions. Thermodynamic analysis shows that the CTE
mismatch between the YPSZ matrix and pure/alloyed MoSi2 particles is very small. Due
to this reason, the interfacial stress between the MoSi2 and YPSZ will be low, and cracking
will not easily happen during thermal cycling. At the same time, the value of the CTE of the
composite containing up to 20 vol.% of MoSi2 particles is similar to YPSZ TBC. Therefore,
the addition of self-healing MoSi2 particles does not lead to an increase in the thermal
mismatch between the ceramic layer and the nickel-based superalloy. Unsurprisingly, the
interactions between the crack and self-healing particle are more evident in composites
which contain higher volumes of particulates, and the length of segmental cracks will be
reduced due to the occurrence of the self-healing coming from individual particles. The
investigation of the crack–particle interaction indicated that at least 5 vol.% particles should
be present to enable effective high-temperature self-healing for the composite materials
fabricated via SPS [79].

Figure 12 shows a crack through a relatively large and well-defined particle. This
figure shows that a particle consisting of molybdenum and silicon can be detected at
magnification, surrounded by a Zr-rich matrix. It is generally found that the crack tends
to pass through particles located on the crack trajectory, which is neither attracted to nor
deviated from the particle [80].
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Based on the activation of crack self-healing, the fracture properties will be im-
proved, and a new composite-based constitutive model in the crack-healing materials
can be established.

The traction–separation relations for a material which endured damage and self-
healing is illustrated in Figure 13, the features of the model are clearly depicted. The
effective fracture energy of the composite which has endured the self-healing process can
be viewed as the weighted sum of the fracture energies of the original and self-healing
materials [81].
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The model of the traction–separation relation corresponding to the original compos-
ite after self-healing is governed by a modified displacement-based cohesive zone mode
(CZM). This can be explained as follows: The effective displacement for the original com-
posite defined in the conventional CZM is modified by introducing shifts of crack opening
displacements in normal and tangential directions which have considered the effect of
self-healing. These shifts of the crack opening displacements lead to an effective modi-
fied displacement for the original composite. The introduction of the shift can be further
explained as follows: once the self-healing process has been activated, the healing agent
will diffuse/flow into the inner of the existed opening crack, and the crack being fully or
partially filled will reduce the crack opening. The results show that the opening displace-
ment of the crack after self-healing is nominally zero. In order to further simulate this
process, displacement is introduced into the crack opening displacement so that the crack
opening displacement after complete self-healing is zero. In addition, the displacement is
also defined as a variable of the crack opening history, and κ is reset to its initial value.

This is performed to simulate the complete part of the original material point, while
the damaged part of the considered material point is assumed to be self-healing due to the
activation of the self-healing mechanism. The opening displacement of a partially damaged
material crack is non-zero, but it still has the ability to transmit force for CZM. For the
present model, if self-healing is activated on a partially damaged surface, it is assumed that
the process will occur at a constant stress level, provided that the external load does not
change. Due to the introduction of the translation of the crack opening displacement and
the recovery of variable κ, the traction force across the viscous surface is maintained in the
construction of the crack opening displacement [37].

Since the self-healing process is a smart and dynamic process, thermodynamics are
an important evaluation index for the functioning of self-healing TBCs. As for the TBCs
fabricated by APS, the micro-defects (pores and cracks) are distributed at the inner of the
TBCs randomly; a vertical crack with a certain density may be beneficial to the improvement
of the strain tolerance, but too many vertical cracks will satisfy the strength of the coating. In
addition, the heat flux can easily pass through to the vertical crack and reach the substrate,
so it may be harmful to the thermal insulation and anti-corrosion of the substrates, so a
certain vertical crack should be sealed at high temperature. In addition, the horizontal crack
near to the TGO/BC interface will be disastrous, so the healing of this type of crack will
be very vital for the improvement of the service lifetime of the TBCs. Regarding another
aspect, according to our previous simulation results, the intersection between the vertical
crack and horizontal crack is beneficial to the decrease in the effective thermal conductivity
of the TBCs, so the sealing of the vertical crack will be beneficial, while the other places of
the crack cannot be sealed. Then, the sealed TBCs will have high thermal insulation ability
and thermal shock resistance (Figure 14a). As for the TBCs fabricated by EB-PVD, the
cracks are usually distributed in the columnar grains or between the two adjacent columnar
grains. The columnar grains will improve the strain tolerance. However, the heat flux is
usually parallel to the gap of the adjacent columnar grains; the partial sealing of cracks
among the adjacent columnar grains or at the inner of the columnar grains will effectively
improve the thermal insulation effect of the TBCs fabricated by EB-PVD. As for the TBCs
fabricated by PS-PVD, the columnar grains are usually not dense. The cracks also exist at
the inner of the single-columnar grains or sub-grains, and the gap is usually wide between
the adjacent columnar grains, some coarse cracks may exist. Once some fine vertical cracks
are sealed at high temperature, it will be beneficial for the improvement of the thermal
insulation of the TBCs fabricated by PS-PVD (Figure 14d).
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About pre- and post-treatment of TBCs: Considering Drag grinding and droplet
elimination, for example using OTEC machines [82] and micro-polishing, some people
consider that pre- and post-treatment are about 55% of coating performance, but in fact,
the performance of the coatings can be reduced with the minimum level. As for the
atmospheric plasma-sprayed–thermal barrier coatings (APS-TBCs), pores and cracks are
distributed randomly at the inner of the ceramic layer. In order to reduce the number of
introduced cracks, micro-polishing should be performed. Coatings are not only expensive
techniques but a real craft and business. People from companies publishing good papers
only acknowledged those with the surface preparation included. Reasons for good behavior
are good surface finishing after droplet elimination and the high thermal stability of
these protective layers [81]. Results of coating layer performance can be dramatically
different [82]; the best work was from people of Platit, in which the blasting, drag grinding
and other techniques are really explained. A mechanical model of cutting force prediction
is presented. Considering the effect of rounded cutting edges on edge force, a machining
model of a nose radius tool was established. In addition, a series of machining tests were
carried out to obtain the expression of the specific force coefficient of austenitic stainless
steel at high cutting speeds. Taking the force model as the inverse model, the specific
cutting coefficients are obtained. In this paper, the expressions of shear coefficient and
edge cutting coefficient which are suitable for various cutting conditions are given. The
calculated results are verified by comparing the estimated values of the model with the
experimental values.

Coatings evolution has gone from monolayer to nanostructured and/or nanometric-
scale multilayer coatings. These are used because of their high hardness, and good corrosion
and oxidation resistance and thermal stability. Thus, in this particular design with a comb-
like shape, showed in Figure 15, the bending of each stress measurement sheet (marked



Coatings 2022, 12, 1724 18 of 23

in figure with an arrow, a narrow band of cantilever type) was related with its curvature,
thickness and level of stresses after coating by means of the Stoney’s equation taking into
account Poisson and film thickness limits. The production of TiN with PVD (Physical
Vapour Deposition) technology started in 1979, based in the electron beam ion plating
technology. But it was not till the late 1990s when a major step arrived with the production
of TiAlN coatings. Thus, the addition of aluminium to the TiN base composition provided
not only a higher hardness in excess of 3300 HV but a remarkable enhanced behaviour at
high temperatures [83].
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3. Outlook

The basic principle of self-healing TBCs was universally compared with that of self-
healing bulk ceramic. Previous work about how to control the self-healing behavior of
self-healing ceramic or ceramic–matrix composites maybe a vital theory guide to design
and optimize self-healing TBCs; to design self-healing TBCs with high mechanical and
thermal performance as well as long duration time is crucial. Various kinds of self-healing
agents will be adopted in self-healing TBCs, but some elements are harmful to the TBCs,
so the addition of the self-healing agent will have two aspects for self-healing TBCs. For
the first aspect, the self-healing agent will promote the self-healing effect of self-healing
TBCs, and thus prolong the service lifetime of the TBCs; for the other aspect, the element
coming from the self-healing agent will promote the sintering effect of the ceramic coatings,
and then induce the stiffness of the top-coat increase abruptly, and the increase in residual
stress will also promote the failure of the self-healing TBCs. The investigation of the
thermodynamic process of self-healing should be investigated deeply. Especially, the
thermodynamic process of the diffusion and oxidation will be complicated under the
actual service conditions. The self-healing process will be controlled by the diffusion of the
elements and the filling of the cracks. In addition, the self-healing agent will change the
constitution of the TBCs and will further affect the stress distribution. In addition, when the
self-healing agent was added into the coating, the growth behavior of the TGO also changed
due to the partial pressure of the oxygen near the TGO and the stress redistribution around
the TGO layer. All these aspects will be further investigated in the future. In addition, the in
situ acoustic emission technique is a very effective non-destructive method to characterize
the self-healing effect of TBCs, including other materials. The main advantage of in situ
acoustic emission technology in comparison with other non-destructive characterization
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techniques is that it does not require additional excitation and is very sensitive to defects
in the material’s internal motion. The in situ acoustic emission technology is capable of
continuously and dynamically monitoring the deformation damage behavior of the material
without the need for rigorous testing conditions (Figure 16). Combining various acoustic
emission signal analysis and processing technologies (such as filtering technology, cluster
analysis, fast Fourier transform, wavelet analysis, neural network, etc.) can realize the
recognition and distinguish of the actual signals which come from the crack propagation
within the coating [83–87]. Therefore, the in situ acoustic emission technique can be
used to analyze the variation characteristics of the internal crack propagation or self-
healing of TBCs under the coupled effect of external service conditions according to the
variation characteristic of acoustic emission signal parameters, such as relationship graphs,
correlation diagrams and waveform spectrograms. The dynamic information of the crack
propagation or self-healing inside the coatings can be obtained, such as the relationship
between the parameters of acoustic emission signals and information on cracks, such as
crack morphology, crack density, crack length and critical failure time.
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4. Conclusions

In this paper, the research progress of self-healing thermal barrier coatings was re-
viewed, and the following conclusions can be obtained:

(1) The self-sealing process of self-healing TBCs is controllable; controlling the process
can change the service lifetime.

(2) The self-healing process is usually governed by the generation of self-healing
materials at the crack gap. The diffusion of the corresponding element to the crack gap is
also affected by the exterior service conditions.

(3) The stress field around the sealed crack is also very important; the compressive
stress field will be beneficial to promote the sealing effect of the cracks.

(4) The reduction in the stress intensity factor or fracture mechanic parameter (energy
release rate, J integration) of the corresponding crack tip. It will also be helpful to delay the
crack propagation tendency of the passivation of the crack tip.

(5) Oxidation is inevitable; the TGO layer will be formed during the oxidation process,
and the formation and growth of the TGO layer will play an important role in affecting the
failure behavior of the self-healing TBCs under the high temperature service conditions.

(6) The in situ acoustic emission technique will be a very powerful means to char-
acterize the failure behavior of the self-healing TBCs, especially, the self-healing process
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can be monitored by the in situ acoustic emission technique. Based on the analysis of the
acoustic emission signal, the critical time point can be predicted when the self-healing
process appeared, and the thermodynamic process of the self-healing can be depicted.
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