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Abstract: Defect inspection is a key step in guaranteeing the surface quality of industrial products.
Based on deep learning (DL) techniques, related methods are highly effective in defect classification
tasks via a supervision process. However, collecting and labeling many defect samples are usually
harsh and time-consuming processes, limiting the application of these supervised classifiers on
various textured surfaces. This study proposes a semi-supervised framework, based on a generative
adversarial network (GAN) and a convolutional neural network (CNN), to classify defects of a
textured surface, while a novel label assignment scheme is proposed to integrate unlabeled samples
into semi-supervised learning to enhance the overall performance of the system. In this framework,
a customized GAN uses limited labeled samples to generate unlabeled ones, while the proposed
label assignment scheme makes the generated data follow different label distributions in such a
way that they can participate in training with labeled data. Finally, a CNN is proposed for semi-
supervised training and the category identification of each defect sample. Experimental results
show the effectiveness and robustness of the proposed framework even if original samples are
limited. We verify our approach on four different surface defect datasets, achieving consistently
competitive performances.

Keywords: deep learning (DL); generative adversarial network (GAN); label assignment; semi-
supervised learning

1. Introduction

Defect classification is a fundamental industrial inspection task, the aim of which
is to identify the category of a defective image. It is commonly performed on textured
surfaces of many industrial products, such as metal [1], wood [2], and fabrics [3–5]. This
process is crucial to guarantee product quality but is always executed manually in practice.
Aiming at replacing this human-involved operation, there are many approaches using
machine learning or deep learning techniques in automatic defect classification. However,
these methods are mainly based on a supervised scenario, where all the data must be
labeled. Unfortunately, the defect samples not only are hard to collect in large numbers
but also need to be labeled by experts. Supervised approaches have no ability to handle
unlabeled samples, which can lead to defect misclassification. This work introduces a
semi-supervised learning (SSL) approach that can generate and handle unlabeled defect
data in such a way that outperforms the supervised ones which only deal with labeled
data. Therefore, the SSL approach can achieve reliable accuracy with limited samples,
and the heavy and complicated manual sample collection and label allocation work can
be alleviated.

To achieve automatic defect classification, the previous work on addressing this prob-
lem can be categorized into traditional shallow network learning (SNL)-based approaches
and deep network learning (DNL)-based approaches. For simplicity, they are called SNL-
based and DNL-based approaches, respectively.
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SNL-based methods: In [6], Zhang et al. extracted the features based on Fisher distance
and principal component analysis (PCA), and used the support vector machine (SVM)
classifier for defect detection on an aluminum alloy surface. Yunwon and Kweon [7]
proposed a neighboring difference filter algorithm to extract the foreground defective
regions and used a random forest for defect classification. In [8], a guidance template-based
algorithm using the statistical characteristic of textures is proposed for defect classification
of strip steel surface. In [9], the combination of the completed local binary pattern (CLBP)
features and the nearest-neighbor classifier are used to perform defect classification tasks.
It is noteworthy that studies [7–9] are the combination of a hand-crafted feature extractor
and a typical ML classifier, which highly rely on human experience.

DNL-based methods: Zhou et al. [10] used a simple sequential structured CNN for
feature extraction and fed the representation tensors into a softmax layer for classifica-
tion. Hossain et al. [11] proposed a light model of a six-layer CNN for fruit classification.
Huang et al. [12] designed a small FCN network a quarter of the size of the original net-
work [13]. These methods usually had to use tiny CNN structures because of limited
industrial data. Except for the self-designed networks, some approaches adopted various
baseline CNNs for defect classification via transfer learning. Through pre-training on the
large dataset ImageNet, large baseline CNNs with dozens of layers, such as AlexNet [14],
VGG [15], Inception [16], and ResNet [17], can be applied to specific tasks and avoid over-
fitting. In [11], the classification system used not only a tiny model but also fine-tuned
a pre-trained VGG16 model. Studies [18,19] directly used pre-trained models for repre-
sentation learning and then fine-tuned them by their own data for defect classification.
The approach presented in [18] used the ZFNet to classify various textured surface defects
and gave further evidence that ImageNet pre-trained models can be applied in industrial
inspection tasks, whereas the distributions of textured defect data differ from those of
ImageNet data. Yang et al. in [19] presented the transfer learning method for surface defect
classification of flat panel displays. The study used AlexNet as the backbone and reduced
one fully connected layer for online training. Using large models can achieve higher preci-
sion but also cost more computation sources because of many model parameters, especially
in the last fully connected layers. Therefore, some approaches combined the DL and ML
techniques, which regarded the convolutional part as a feature extractor, with the aim to
replace hand-crafted features, and then are fed into a typical ML classifier. Studies [12,20]
combined the transferred CNN features and various ML classifiers in pursuit of a more
economical inspection system. Natarajan et al. in [20] used a combination of the VGG [15]
model and the SVM classifier for metal surface defect classification, where VGG was em-
ployed to extract feature maps which were then used as input to SVM. In [12], hierarchies
of features were extracted by FCN models and a two-stream algorithm was proposed to
classify defects, which can only be applied on single-class image. The combination-like
strategy aims to replace hand-crafted features with CNN features, which have a higher
abstract level and stronger robustness [21]. However, this also resulted in poor generaliza-
tion and an extra training process for the ML classifier. The main drawback of the previous
approaches is that they highly depend on supervised learning, which requires enough
defect samples and can only process labeled ones. The above approaches, whether based
on fully supervised learning or transfer learning, all fail to provide correct classification in
the presence of unlabeled samples.

Therefore, this study attempts to establish an SSL defect classification system, which
can handle both labeled and unlabeled samples. Indeed, for an SSL scheme, the first
consideration is the acquisition of unlabeled samples. As in other fields [22–24], the semi-
supervised or weakly supervised learning methods can work on enough unlabeled samples
that have become available on the Internet. However, it seems impossible to collect the
same scale of defect data due to the rare occurrence of defects and the privatization of
available data. Therefore, it is a better choice to consider how to generate valuable samples
instead of taking much time to collect real ones. In this paper, a standard generative
adversarial network (GAN) architecture is customized to fit defect data and then used to
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generate unlabeled samples [25]. Based on original defect samples, the GAN can generate
new ones through a competitive training process involving a pair of networks.

When there are enough unlabeled samples, the second problem is how to include
them in training. Different from transfer learning that trains labeled and unlabeled samples
alternately, the SSL system needs to train both simultaneously. The unlabeled samples
are often assigned to weak or pseudo labels for SSL, which is not a good choice for GAN
samples. The unlabeled samples they used, such as in studies [23,26], are real but GAN
samples are fake data generated by training. The existing methods of processing GAN
samples are too rough, treating them the same way during training—the GAN samples are
regarded as an extra class [27] or placed directly into existing classes [28].

We consider that all the GAN samples cannot be regarded as identical; the high-quality
ones should be used to expand the original dataset and the low-quality ones can boost
the learning process but not affect its optimization direction. This study proposes the
label assignment for the unlabeled samples (LAUS) algorithm, which makes different
assumptions for the unlabeled samples. The high-quality samples regarded as real images
are assigned the corresponding ground-truth class distributions, and the low-quality ones are
assigned a uniform label distribution over all the ground-truth classes, which assumes that
these samples do not belong to a specific class. In this way, labeled and unlabeled samples
can be mixed together for training. Moreover, since there are enough samples for training,
the CNNs used in defect classification will not be subject to tiny networks [10–12] or large
baseline networks [14,15,17], and hence can be designed more flexibly and scientifically.
This study designed a new CNN used as the classifier, named all learning lightweight
network (ALLnet), which focuses on industrial gray images, the layers of which are all
learnable. Compared with the CNNs used in previous works, this designs a suitable
trade-off between model power and size.

To address these two challenges, this paper introduces an SSL approach to classify
defects of textured surfaces with very few labeled samples. This method uses a GAN for
sample generation, a label assignment algorithm for semi-supervised training, and a CNN
for representation learning. Unlike the previous supervised ones, our SSL method can
generate unlabeled samples by itself and has the ability to handle labeled and unlabeled
samples simultaneously, and thereby achieves higher accuracy and robustness. To verify
our approach, we carried out extensive experiments on four different defect datasets. The
main contributions of this work are summarized as follows:

(1) An SSL framework that integrates a customized GAN to generate new samples is
proposed to classify defects under limited labeled samples.

(2) A label assignment algorithm that includes the unlabeled samples generated by GAN
into training together with labeled ones is proposed.

(3) A detailed analysis on the CNNs used in defect inspection and the network ALLnet is
designed for representation learning that is used in our SSL pipeline.

2. Unlabeled Samples Generation
2.1. Standard GAN

GANs are the recent emerging deep architectures for both semi-supervised and un-
supervised learning [25]. Unlike other DL networks, the GAN learns around two sub-
networks, a generator G and a discriminator D, and thus it can be characterized by training
these two networks in competition with each other. In each training step, G produces a
sample from a random noise z, with the aim of fooling the D. The D receives the generated
samples as well as the real data x to classify them as “real” or “fake”. Subsequently, G
is devoted to producing more realistic images and D works to improve the “distinguish-
ability”. Both networks are updated repeatedly, and the iteration stops when they reach a
Nash equilibrium. In more detail, D and G are competitors in a minimax game with the
following function.

min
G

max
D

V(G, D) = Epdata(x) log D(x) + Epz(z) log[1− D(G(z))] (1)
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where E is the empirical estimate of the expected value of the probability. G transforms z
into G(z), which is sampled from a noise distribution pz, and the ideal pz should converge
to the real data distribution pdata.

2.2. The Customized GAN

As already mentioned, the GAN has two sub-networks, a generator and a discrim-
inator, which can be multi-layer perceptron [25], auto-encoders [29], or CNNs [30]. The
customized GAN in our system uses CNNs as a backbone and is designed to be applicable
to industrial gray images.

The GAN architecture is shown in Figure 1. For the generator, we feed into a 100 d
random noise vector and reshape it to 4 × 4 × 8 using a linear function (because the mini-
batch size is 64, the actual input size is 4 × 4 × 512 for each past). To enlarge the tensors,
four deconvolutional layers are used with a kernel size of 5 × 5 and a stride of 2, denoted
as {D1, D2, D3, D4}. Each deconvolutional layer follows a BN layer and a ReLU function,
except the D4, which uses the tanh function. Finally, a sample that is 64 × 64 × 1 in size
can then be generated. The discriminator receives the generated samples and real images
as input. Similar to the generator, we use four convolutional layers to classify whether the
input image is real or fake. These layers are also 5 × 5 in size with a stride of 2, denoted as
{C1, C2, C3, C4}, each of which is equipped with a BN layer and a LeakyReLU function.
The settings of output activation functions are followed by the outstanding conclusions
in [27]. We add two fully connected layers to receive the last convolution feature maps and
then feed them into a sigmoid output.
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Figure 1. The architecture of the customized GAN.

For all the datasets, we train the GAN on the same hyper-parameters. We use stochastic
gradient descent (SGD) to train the models in the GAN with a mini-batch size of 64. All
the weights are initialized from a normal distribution; the variance is 0 and the standard
deviation is 0.02. The slope of leak is set to 0.2 in the LeakyReLU function. For each dataset,
the GAN will be trained with a learning rate of 0.0001 for 600 epochs.

3. Methodology
3.1. Overview of the SSL Framework

Figure 2 shows an overview of the proposed SSL framework, which consists of three
parts: the customized GAN, the LAUS, and the ALLnet. In a single pass, the GAN receives
labeled samples and noise as input and then generates unlabeled samples. Next, using
the LAUS algorithm, it processes the generated samples in such a way that they can be
included into labeled ones as training data. Finally, the ALLnet is trained on the mixed
samples and thus has high defect classification ability.
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3.2. LAUS Algorithm

In order to train with labeled samples, an SSL system makes a reasonable assumption
on unlabeled samples and assigns them “labels”—often not the real labels. There are
two assumptions that are commonly used for unlabeled samples. One is the “another
label”, which creates an extra class label for the unlabeled samples [27]. The other is the
“pseudo label”, which assigns each generated sample a ground-truth label according to the
prediction output [28]. Both methods are effective, but their assumptions are too rough. For
the unlabeled samples generated by GAN, “another label” considers that they have poor
quality and places them into a new class outside existing ones, whereas “pseudo label”
considers their quality as good as real samples and as belonging to the existing classes.
In truth, however, the image quality produced by GAN is unpredictable, and the ratio of
high-quality samples to low-quality samples in each category is also different.

Instead of creating a new class or pseudo labels, the proposed LAUS aims to isolate
the whole GAN sample and assign them to different label distributions. Through the model
that was trained on original samples, each GAN sample can obtain the corresponding
class probability vector, the maximum of which will be treated as its class score. The
high-score samples are assigned to their corresponding ground-truth class distributions.
These samples join the existing classes, act as real data, and extend the labeled samples.
The low-score samples are assigned to a uniform label distribution over all the existing
classes. These samples, therefore, belong to neither the existing classes nor a new class (see
Figure 3). After the LAUS process, the GAN samples that share common knowledge with
the real samples can be included in training and not affect the learning direction towards
unknown or fake classes. With this strategy, we can train powerful models on enough
defect data and avoid the risk of over-fitting.
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First of all, a CNN is supervised trained (i.e., the ALLnet in our pipeline) on real
samples Sr, and the output feature maps can be written as:

zj = ∑
i∈Mj

σ(wi, bi) (2)

where w and b are the weights and bias of the i-th neuron in the j-th convolutional layer,
and Mj is the set of input feature maps of the j-th convolutional layer. σ(·) represents the
activation function. After the training is completed, this model Ms is used to obtain the
class score of the GAN sample. The output of the ALLnet is the softmax function that is
defined as:

θj =
ezj

∑k∈C ezk
(3)

For the GAN-generated samples (SGAN), the class score τ of each SGAN is the
maximum prediction probability, τ = argmax (θ1, . . . , θj), j∈C, where C is the number of
ground-truth classes. According to τ, the SGAN are distributed into two sets of training
data: labeled samples Sl and unlabeled samples Su. The generated samples with high
scores join Sl and receive the ground-truth class label “y”, corresponding to the maximum
score. They are assigned the ground-truth class distribution qGC as well as the Sr, and the
qGC can be written as:

qGC =

{
0, k 6= y
1, k = y

(4)

The rest of the generated samples are assigned the uniform label distribution qUL that
can be written as:

qUL =
1
C

(5)

Furthermore, if the real samples are so few that the start model Ms experiences serious
over-fitting, the generated images would be regarded as unlabeled samples and assigned
to the uniform label distribution. Finally, the LAUS transforms all the GAN samples into
trainable data, and the details of it appear in Algorithm 1.
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Algorithm 1: LAUS Algorithm

Input: GAN samples SGAN , real samples Sr, and ground-truth class labels θgt.
1: Train ALLnet on {Sr,θgt} => startup model MS.
2: for i in SGAN :
3: if no MS:
4: Label SGAN as a uniform label distribution Luni f orm.
5: Su←SGAN, Sl←Sr.
6: break
7: end if
8: use MS on S(i)

GAN=> class scores τ(i).
9: if τ(i) ≥ τthreshold:
10: label S(i)

GAN as Lgt according to τ(i).
11: Su←Su + S(i)

GAN .
12: else:
13: label SGAN as Luni f orm.
14: Sl←Sl + S(i)

GAN ..
15: end if
16: Sl←Sr.
17: Training data ST←Su + Sl .
18: end for
19: Return ST

3.3. ALLnet

The baseline CNNs have become the common solution to deal with the representation
learning on big data. These heavyweight networks, although they can achieve adequate
results, may be unsuitable for some industrial scenes. For industrial inspection tasks, there
are not many categories in one defect dataset in general, and therefore, we neither have
enough defect data to train large networks nor need a network with so many neurons. In
this context, we propose a novel network, ALLnet, as the representation learning machine
of the semi-supervised pipeline. There are four blocks in ALLnet, denoted as {B1, B2,
B3, B4}. Each block consists of three learnable layers: a 3 × 3 conv with a stride of 1, a
3 × 3 conv with a stride of 2, and a BN layer. We stack the layers with small 3 × 3 conv
kernels, which can enhance the model capacity and complexity in fewer parameters [15].
The spatial pooling layer is replaced with stride convolution that lets the network learn
how to down-sample, and the fully connected (fc) layers on top of convolutional features
are replaced with a global average pooling (GAP) layer which has nearly zero parameters.

By the LAUS, we mixed the labeled and unlabeled samples into training data. Then,
they are fed into the ALLnet for SSL until the maximum iteration is reached.

3.4. Training
3.4.1. Loss Function

In this paper, we use the cross-entropy loss for the SSL system. Let k∈{1, 2,..., C} be the
predicted class, where C is the number of ground-truth classes. The cross-entropy loss can
be formulated as:

L = −
C

∑
k=1

log(p(k))q(k) (6)

where p(k) is the prediction probability that an input sample belongs to class k. It is derived
from the softmax function, which normalizes the output of the previous fully connected
layer. q(k) is the ground-truth class distribution. Let y be the corresponding ground-truth
class, and q(k) can be defined as:

q(k) =
{

0 k 6= y
1 k = y

(7)
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Therefore, if we only consider the non-zero term, (6) can be equivalent to:

L = − log(p(y)) (8)

As in Algorithm 1, the GAN samples have different assumptions. The high-score
samples are assigned to ground-truth class distribution, whereas the low-score samples are
assigned to a uniform label distribution qLAUS(k), which is uniformed over the ground-truth
classes. Let τ be the threshold of class score, and qLAUS(k) can be defined as:

qLAUS(k) =

{
q(k) p(k) ≥ τ

1
C p(k) < τ

(9)

where the q(k) in the upper part is denoted in (7).
For the real images and the high-score samples, the cross-entropy loss is equivalent to

(8), but for low-score samples, (6) can be equivalent to:

L = − 1
C

C

∑
k=1

log(p(k)) (10)

Combining (8), (10), and (6), the cross-entropy loss for our SSL framework can be
rewritten as:

L = −(1−ω) log(p(y))− α(n)
ω

C

C

∑
k=1

log(p(k)) (11)

If the input image is labeled, ω = 0. If the input image is unlabeled, ω = 1. Since there
are more labeled samples than unlabeled ones in training data, a penalty function α(n) is
incorporated into the unlabeled item, which can avoid making the learning tend to rapid
deterioration when too many GAN samples are added. α(n) can be written as:

α(n) =


0 n < N1

n−N1
N2−N1

αt N1 ≤ n < N2

αt N2 ≤ n

(12)

where n is the number of generated samples and αt is the threshold, which is set to 0.8 in
this paper. For SSL, the number of unsupervised samples should not be less than that of
the supervised ones. Let Nreal be the number of real training images, N1 is equal to Nreal,
and N2 is five times the value of Nreal.

3.4.2. Implementation

We train the SSL model to minimize the loss function in (11). All the input images,
consisting of real and GAN ones, are resized as 64 × 64 × 1 and randomly mixed in
training data. The mini-batch size of each input is 128. We train the models with the
Adam optimizer [31] with the exponential decay parameters β1 and β2 set to 0.9 and 0.99,
respectively. We train the model with a learning rate of 0.0001 for 100,000 mini-batch
iterations. All the experiments were run in Python with Tensorflow packages on an Intel
Core i7, 3.3 GHz with 64-GB RAM and a NVIDIA TITAN Xp GPU workstation.

4. Experiments
4.1. Defect Datasets

The proposed method is evaluated on four types of defect datasets, namely the wood
defect dataset KNOTS [2], the textile dataset Fabrics [3], the steel plate defect dataset
NEU-CLS-64 [32], and the magnetic tile defect dataset MT [33]. NEU-CLS-64 is improved
on the defect dataset NEU-CLS, which contains 1800 images of six defect classes. The
motive to recreate the NEU-CLS-64 is that multiple and even unknown defects exist in
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an image. So, we extended the NEU-CLS in terms of quantity and category. In more
detail, every image was resized to 192 × 192 and center-cropped into nine 64 × 64 images.
Then, we discarded the following cropped images: the ones with heavily occluded defects,
edge-truncated defects, and no defect. Finally, the updated dataset NEU-CLS-64 assembles
approximately 7000 tiny images with nine defect classes, i.e., crazing (Cr), grooves and
gouges (GG), inclusion (In), patches (Pa), pitted surface (PS), rolling dust (RD), rolled-in
scale (RS), scratches (Sc), and spots (Sp). The details of the NEU-CLS-64 and three other
defect datasets are summarized in Table 1, and the examples of each dataset are shown
in Figure 4. In this section, we mainly report results on the NEU-CLS-64, which is a
relatively large-scale dataset; the other three datasets serve as auxiliary datasets for further
verification. All the datasets use the same train/test ratio in experiments, and the ratio is
7:3 in this study.

Table 1. Details of four defect datasets.

Datasets (Num.) Defect Type and Num.

NEU-CLS-64 (7226) Cr (1210), GG (296), In (775), Pa (1148), PS (797), RD (200),
RS (1589), Sc (773), SP (438).

KNOTS (425) Dry (69), Edge (65), Encased (30), Horn (35), Leaf (47),
Sound (179).

Fabrics (1173) Cotton (588), Denim (162), Nylon (57), Polyester (226),
Silk (50), Wool (90).

MT (392) Blowhole (115), Break (85), Crack (57), Fray (32), Uneven (103).
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4.2. GAN Results

We first need to ensure that most samples generated by GAN are available. The
examples of GAN samples are shown in Figure 4. For most types of defects, GAN samples
cannot be intuitively distinguished from real images by human eyes. However, several
images of some defect categories are fuzzy, such as the “crazing” in the NEU-CLS-64 (see
the first column in Figure 4a). Next, we want to prove that the unlabeled GAN samples
can boost the classification performance. Since unlabeled samples are relatively easy to
obtain, we hope that these generated samples have similar semantic information to the
real samples, and thereby can assist or replace the labeled samples that are too difficult to
collect. In order to verify this, we added different numbers of GAN samples generated
on the NEU-CLS-64 into training, and the results are given in Table 2. From this table,
we can safely conclude that the unlabeled GAN samples can share common knowledge
with the labeled ones, and by the addition of GAN samples, there is a significant increase
in classification accuracy. As we discussed in Section 3, LAUS makes a more reasonable
assumption for GAN samples and therefore achieves the best results. The classification
accuracy is improved by approximately three points when 1 × GAN samples are added
compared to the original samples. As the number of GAN samples increases, classification
accuracy increases gradually, and it reaches the peak when 3 × GAN samples are added.
Since the low-score samples are much more abundant than the high-score ones, the accuracy
would tend to deteriorate if too many GAN samples are added, but even so, adding 5×GAN
samples still gives a 3.73% improvement in accuracy over the baseline.

Table 2. Comparing LAUS with related algorithms.

SGAN:Sreal
LAUS Another Label Pseudo Label

acc. (%) acc. (%) acc. (%)

0 (baseline) 96.24 96.24 96.24
1× 98.04 98.19 98.39
2× 98.40 98.60 98.55
3× 99.37 98.92 98.41
4× 99.13 99.04 97.90
5× 98.97 99.02 97.61

We evaluated the GAN samples for each category of the NEU-CLS-64 in detail, and
the results are shown in Figure 5. We wanted to explore how unlabeled samples contribute
to overall accuracy when they are trained along with labeled samples. From Figure 5, we
observe that the addition of GAN samples can lead to a consistent decrease in error rate
for all the defect classes. Unsurprisingly, the ratio of high-score and low-score samples
produced on each class is quite different. The class with a higher error rate seems to produce
fewer high-score samples, but enough low-score samples can still reduce the error rate.
Like the Cr, although it only has only 2% high-score samples of the GAN samples, the
Top-1 error rate of Cr dropped dramatically by approximately 5%.

4.3. Comparison with Other Label Assignment Algorithms

We compare the LAUS with the “another label” and “pseudo label”, which can also
be used in the semi-supervised framework. The experimental results on the NEU-CLS-64
are also listed in Table 2. In this table, we observe that both methods are effective and
the LAUS can also exceed them by 1~2 points when they all reach the peak. We consider
the reason for this is that LAUS’s assumption for GAN samples is more reasonable. The
“another label” makes a coarse assumption for the GAN samples that are all considered as
low-score ones. So, as the number of GAN samples increases, the accuracy rises gradually.
The “pseudo label” gives an over-optimistic evaluation of the GAN samples and puts them
all in the ground-truth classes. It causes the accuracy to peak before many GAN samples
are added, and then drops sharply due to too many low-score samples making the learning
process deteriorate. Unlike the onefold assumptions of the “another label” and “pseudo
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label”, the LAUS performs different assignments for the GAN samples, which may be the
reason why the LAUS has a superior performance.
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4.4. Comparison with Baseline CNNs

We replace the ALLnet with other baseline CNNs to evaluate its effect in a semi-
supervised framework. Since baseline CNNs require a great amount of training data, we
enlarged the training set for a fair comparison, where 3 × GAN samples are added. The
input size and weight parameters of CNNs used in experiments are different, and hence we
use different training epochs and minibatch sizes for them. The time of a float operation is
used as the measure of runtime. The AlexNet and VGG16 are trained with a minibatch size
of 64 for 300 epochs, and the InceptionV3 and ResNet101 with a minibatch size of 32 for
600 epochs. The training configuration for ALLnet is defined in Section 3. The results on
NEU-CLS-64 are listed in Table 3. It is no surprise that the strong baseline CNNs obtained
adequate results—the accuracy exceeds 99%. However, a large input size requires enough
memory and redundant parameters and has excessive computation costs, which can slow
down the convergence and increase the computation time. By comparison, the ALLnet
not only achieved the same level of accuracy as the large networks, but also has a simpler
structure and less computing time. Furthermore, we also make a detailed assessment of
the internal structure of the ALLnet, mainly to judge the impact of the number of blocks
and input size on the model. We observe that each additional block in the ALLnet brings
an approximately 1% increase in the overall accuracy, and this trend will continue until
there are four blocks in the model. Another finding is that expanding input size can hardly
increase accuracy but can greatly reduce computational speed. According to the above
results, we can conclude that the ALLnet with four blocks achieved the best trade-off
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between speed and precision, and a large network seems to be unnecessary for industrial
inspection tasks.

Table 3. Comparison with baseline CNNs.

Models Input Size Parameters Accuracy (%) Runtime (ms/Float)

AlexNet 224 × 224 5.8×107 99.10 42.1
VGG16 224 × 224 13×107 99.62 66.2

InceptionV3 299 × 299 2.4×107 99.29 21.0
ResNet101 224 × 224 4.0×107 99.47 29.7
ALLnet(2B) 64 × 64 0.2×106 97.50 6.9
ALLnet(3B) 64 × 64 0.7×106 98.44 8.4

ALLnet(4B) * 64 × 64 2.9×106 99.37 8.6
ALLnet(4B) 128 × 128 2.9×106 99.37 21.0
ALLnet(5B) 64 × 64 12×106 99.38 10.2

* represents that this model is used in our semi-supervised framework. “B” indicates the block of the ALLnet,
which consists of two conv layers and a BN layer.

4.5. Comparison with Other Defect Classifiers

We compare our SSL method with state-of-the-art defect classifiers based on super-
vised learning or transfer learning. The methods selected for comparison include the
supervised ones by Zhou et al. [12] and Hossain et al. [13], and the transfer learning-based
ones are Decaf [14] and MVM-VGG [16]. For simplicity, we call these four methods S1,
S2, T1, and T2, respectively. These methods are reproduced by Tensorflow as our method
for fair comparison. The contrast experiments were carried out on the four aforemen-
tioned defect datasets by adding different numbers of GAN samples. These GAN samples
were added in two ways: one is to compensate the difference between classes to restore a
dataset into a balanced one (balance mode, “B” for short); the other is to follow the original
inter-class ratio (unbalance mode, “U” for short). The results are shown in Table 4.

Table 4. Comparison with other defect classifiers on four defect datasets.

Dataset NEU-CLS-64 KNOTS

Methods S1 S2 T1 T2 Ours S1 S2 T1 T2 Ours

0 (baseline) 87.50 88.14 92.87 97.00 96.24 79.69 73.44 80.21 73.81 80.38

1 × GANs
B 93.25 92.04 96.84 97.87 98.04 84.38 89.06 85.28 89.31 89.06
U 93.64 91.16 95.66 96.87 97.86 78.91 84.38 82.09 85.29 86.72

2 × GANs
B 95.62 95.40 97.76 98.58 98.40 90.63 89.84 88.69 92.30 91.14
U 94.72 93.25 95.89 98.00 98.79 87.50 85.90 83.56 88.69 90.63

3 × GANs
B 97.94 97.11 99.10 99.34 99.37 94.53 94.01 96.62 97.49 97.49
U 96.63 95.16 97.60 98.89 98.87 93.49 91.41 92.20 94.62 95.31

4 × GANs
B 97.26 95.81 98.55 99.12 99.13 92.97 92.96 93.02 97.00 95.00
U 96.13 94.28 96.16 92.87 98.36 88.80 90.89 90.55 92.37 94.53

5 × GANs
B 96.65 95.66 97.75 98.13 98.87 91.41 93.49 92.37 96.53 94.68
U 84.90 - 91.34 90.43 84.91 88.67 91.46 86.32 93.02 83.33

Datasets Fabrics MT

0 (baseline) - - 73.47 82.33 65.42 96.88 90.31 92.60 59.32 92.19

1 × GANs
B 67.71 73.70 83.33 90.55 80.02 91.41 92.19 94.88 66.87 96.09
U 69.27 - 79.93 88.22 77.60 89.84 91.41 92.90 64.62 95.31

2 × GANs
B 86.91 85.32 90.10 91.70 88.93 92.58 - 97.51 79.62 97.40
U 79.84 82.34 86.40 91.09 84.21 94.53 96.88 92.33 64.99 92.19

3 × GANs
B 90.94 91.99 91.90 93.07 93.80 95.31 - 99.09 82.84 99.22
U 90.00 90.04 89.01 92.80 90.31 99.22 98.18 96.68 81.63 97.65

4 × GANs
B 87.30 89.55 91.04 91.61 91.40 97.92 - 98.82 82.77 98.17
U 88.09 86.33 88.64 91.54 90.09 97.66 97.66 95.31 82.59 97.39

5 × GANs
B 85.68 89.50 87.99 92.98 90.04 96.61 - 97.79 83.82 98.88
U 83.33 82.50 87.50 91.15 86.98 97.40 97.27 95.01 85.77 94.27
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In the four defect datasets, our method achieves 3.13%, 17.11%, 28.38%, and 7.03%
improvements in accuracy compared to the baseline, respectively. Meanwhile, our method
at the point of 3 × GANs consistently obtained the best results and is superior to other
methods for each dataset. For each dataset, our method can work well even if the original
data are limited, which also shows that our method performs better than other methods
in terms of generalization and robustness. Moreover, our method can easily correct the
original unbalanced defect dataset into a balanced one, which brings an improvement
in accuracy.

5. Conclusions

In this paper, we propose a semi-supervised learning method that mainly deals with
data-limited defect classification tasks. This method has no need for extra collection of
defect data but uses a customized GAN to generate samples. Through the proposed
LAUS, the GAN samples can be trained with the limited original samples simultaneously.
We also designed the ALLnet, which is trained on these samples in a semi-supervised
manner. Extensive experiments on four different defect datasets have shown that under
the semi-supervised learning framework, we obtained substantial accuracy improvements
that range from 3.13% to 28.38%. Our method can be more precise and robust than the
previous state-of-the-art transfer learning and supervised learning methods, and is effective
for defect classification when the original samples are limited.
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