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Abstract: For the smart manufacturing development of printed-circuit-board (PCB) exposure de-
vices, the LED parallel-light (LPL) module is investigated and the angle errors of those LPL units 
are identified by neural network learning algorithms. At present, in PCB manufacturing, most cir-
cuit boards use photoresist covering etching. After exposure and development, unwanted copper 
foil is etched and removed to make circuit boards. The exposure process is its key process, and the 
equipment used in this process is an exposure machine. The LPL unit is designed and the LPL ex-
posure module is searched under the principle of higher irradiance uniformity. The learning data 
of supervised learning for the convolutional neural network (CNN) include a 2D irradiance distri-
bution image constructed by the ray tracing simulation tool. In these supervised learning data, all 
units of LPL-EM are randomly added with a self-specific angle error. By using Fast Region-based 
CNN, the identification of the multi-LPL module with the specific errors of inclination and azimuth 
angle is verified. Those results preliminarily illustrate that supervised learning techniques should 
be able to help identify the errors of inclination and azimuth angle for the single LPL unit and multi-
light module of PCB exposure devices. In other words, this technology should serve as a reference 
for the development of the PCB exposure process towards smart manufacturing. 
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1. Introduction 
With the development of information technology, manufacturing technology is grad-

ually developing towards the direction of so-called smart manufacturing that incorpo-
rates information technology and artificial intelligence (AI) [1–3]. Smart manufacturing 
can help to increase the flexibility and efficiency of factories, increase manufacturing yield 
or quality, and reduce the use of manpower and energy. Moreover, it is also more in line 
with the requirements of environmental sustainable development [4]. It is well known 
that the concept of sustainable manufacturing has gradually become one of the driving 
forces behind the development of the manufacturing industry. To achieve the smart man-
ufacturing goals, virtualization technology of physical entities [5] and machine learning 
algorithms are imported [6–8]. To support intelligence learning or deep learning [9–13], 
several learning algorithms that allow computers to learn automatically are proposed, 
such as backpropagation (BP), convolutional neural network (CNN), and recurrent neural 
network (RNN), and applied in many fields, such as computer vision, natural language 
processing, speech recognition, handwriting recognition, biometric identification and 
medical diagnosis. BP learning uses the chain rule to calculate the gradient of the loss 
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function with the weights of each layer of the network as variables, and updates the 
weights to minimize the loss function [12]. CNN is a feedforward neural network [12,13]. 
Due to the convolutional layer and pooling layer in its architecture, it has the benefit of 
strengthening pattern recognition and the relationship between adjacent data. Based on 
its unique advantages in pattern recognition, CNN has achieved good results in the ap-
plication of image and speech recognition. To enhance the detection performance for the 
recognizing task of semantic segmentation, a region-based CNN (R-CNN) method is pro-
posed [14,15]. Compared to the best previous results achieved with the PASCAL visual 
object casses (VOC) 2012, the R-CNN algorithm with the rich hierarchy of image features 
is proven to show 30% relative improvement [14]. To increase learning speed and enhance 
detection accuracy for the object detection, the Fast Region-based convolutional network 
method (Fast R-CNN) that employs several innovations is proposed [16,17]. It is shown 
that, compared to R-CNN and the spatial pyramid pooling network (SPPnet), Fast R-
CNN’s speed of training and testing is several times faster, and has higher accuracy [16]. 
The Faster RCNN applied in face detection has impressive results [18]. RNN has the char-
acteristics of memory, parameter sharing and Turing completeness, and is a kind of neural 
network specially used to solve time-related problems [9,10]. RNN can efficiently learn 
nonlinear features of sequences, so it has achieved good results in speech recognition, lan-
guage modeling, and machine translation applications. 

In printed-circuit-board (PCB) manufacturing systems, the UV exposure process is 
one of the key processes [19,20]. UV lamps used in traditional UV exposure equipment 
are mercury-containing products. According to the spirit and development of the Mina-
mata Convention on Mercury [21], which is an international convention to comprehen-
sively regulate mercury, the future of mercury-containing UV lamps will surely be regu-
lated. Under the influence of sustainable manufacturing and related environmental pro-
tection conventions, the UV-LED exposure machine is expected to gradually replace tra-
ditional exposure equipment and become the mainstream. The basic requirements for ex-
posure of traditional PCB parallel-light exposure machines are as follows: 1. the irradiance 
is at least 20 mW/cm2, 2. the irradiance uniformity is 90%, 3. the light collimation includes 
the parallel-light half angle and inclination angle within at least 4°, and 4. the wavelength 
is preferably 365 nm, 405 nm, and 436 nm. Looking at the current status of UV-LED tech-
nology, for UV-LED parallel-light exposure machines to fully replace traditional UV par-
allel-light exposure machines, there are still some technical challenges.  

In this paper, based on the demands of realizing smart manufacturing for the LED 
parallel-light (LPL) module of PCB exposure devices, we will investigate the LPL-EM’s 
angle errors in all LPL units and identify the angle errors of those LPL units, due to man-
ufacturing and assembly errors, by CNN learning algorithms (CNNLA). First, an LPL unit 
is designed and virtualized, and identified by the CNN and Fast R-CNN learning algo-
rithms. The learning data of supervised learning for the CNN include a 2D irradiance 
distribution image built by the ray tracing simulation tool, when it is assumed that all 
units of the LPL-EM randomly have their self-specific angle errors. The technology of the 
automatic identification of the azimuth and inclination angle errors of the LPL-EM by us-
ing Fast R-CNN with Haar-like features is realized and verified. Obviously, the super-
vised learning technology can be effective at identifying the single LPL unit and multi-
LPL-EM of PCB exposure devices. Based on those results, it is possible to further under-
stand the exposure devices of the PCB exposure process in detail and analyze their man-
ufacturing problems, thereby realizing the goal of smart manufacturing. 

2. Design of the LPL Unit and LPL Exposure Module 
2.1. Design of the LPL Unit 

For UV exposure machines in PCB production, higher light parallelism and higher 
irradiance uniformity (IU) on the exposure working plane mean that they have higher 
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efficiency performance. Here, the IU is defined as the ratio of the minimum irradiance to 
the maximum irradiance among all irradiated pixels and can be written as follows: IU =   100 %, (1)

where 𝐸  and 𝐸  represent the minimum and maximum values of irradiance 
among all the irradiated pixels, respectively. The LPL exposure module (LPL-EM) is com-
posed of LPL units arranged in a hexagonal shape. The LPL unit mainly contains an LED 
chip, metal core PCB (MCPCB) substrate, and total internal reflection (TIR) lens. Their 
configuration relationship is as follows: the LED chip and TIR lens are bonded on a 
MCPCB substrate and the LED chip is positioned in the center accommodation space of 
the TIR lens. The optical collimation degree of the LPL-EM is directly related to the optical 
collimation degree design of the unit, the manufacture and assembly of the unit. There-
fore, it is necessary to design and manufacture the LPL unit with higher light parallelism 
and further optimize all unit positions of LPL-EM under the target of higher IU. In addi-
tion, it must be noted that UV is relatively harmful to the human body, and the wave-
length factor has little effect on the validity of ray tracing simulation. Therefore, under the 
premise of considering the convenience and reliability of manufacturing, and the safety 
and convenience of the experiment, we use white LEDs to replace the UV-LEDs in this 
study. The LPL unit and LPL-EM is designed by the ray tracing simulation tool and the 
normalized radiant intensity and normalized irradiance distribution of the designed LPL 
unit on the exposure working plane are shown in Figure 1, where the distance between 
the exposure working plane and the MCPCB substrate of the LPL-EM is 400 mm. For the 
radiant intensity of the designed LPL unit, half of the full width at half maximum (FWHM) 
is about 3.8°. One can observe from Figure 1b that the magnitude of the normalized irra-
diance distribution is represented by the image color, and the corresponding relationship 
between the color and the normalized irradiance magnitude can be observed from the 
color contrast chart.  

(a) (b) 
Figure 1. (a) Angle distribution and (b) irradiance distribution of the designed LPL unit 
on the exposure working plane. 

In the real physical world, manufacturing and assembly errors are inevitable. Those 
errors can cause the radiant intensity angular distribution of each LPL unit, called the light 
distribution reference direction, to deviate from the ideal surface normal direction and the 
deviation is described by the inclination angle and azimuth angle. Here, the inclination 
angle refers to the angle between the light distribution reference direction and the ideal 
surface’s normal, and the azimuth angle refers to the angle between the light distribution 
reference direction and the positive x-axis. Four irradiance distributions of the LPL units 
with specified deviations are shown in Figure 2, where highlighting marking is added to 
emphasize the variation of each major irradiance distribution. As can be seen from Figure 
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2, the changes in these highlighted marks are conditions that satisfy the original assump-
tions. To verify the validity of the ray tracing simulation, the design sample involves trial 
manufacturing. The photos of the measurement architecture, the irradiance distribution 
without external error, and the irradiance distribution with the external angle error of 2° 
for the experimental results of the LPL unit are shown in Figure 3. It can be observed that 
the test sample has a good irradiance distribution and the experimental results are similar 
to the simulation results. 

  
(a) (b) 

  
(c) (d) 

Figure 2. Four irradiance distributions of the LPL units with specified deviations on the exposure 
working plane: (a) inclination angle 1° and azimuth angle 0°, (b) inclination angle 1° and azimuth 
angle 165°, (c) inclination angle 2° and azimuth angle 0°, and (d) inclination angle 2° and azimuth 
angle 300°. 

 
(a) 
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(b) (c) 

Figure 3. Photos of (a) the measurement architecture, (b) the irradiance distribution without external 
error, and (c) the irradiance distribution with the external angle error of 2° for the experimental 
results of the LPL unit. 

2.2. Design of the LPL Exposure Module 
Next, to meet the target of higher IU, the distance between the centers of two adjacent 

LPL units, called the unit pitch, is further analyzed by the ray tracing simulation tool [22]. 
A simple LPL-EM, consisting of 23 LPL units arranged in a hexagonal shape, is considered 
and shown in Figure 4. It can be observed that these 23 units can be divided into the fol-
lowing two categories: one is called the edge unit located at the boundary, and the other 
is called the intermediate unit that is not located at the boundary. There are 16 edge units 
in total, and the corresponding exposure area has an obvious edge effect. There are seven 
intermediate units, which are composed of six units at the top corners of a regular hexagon 
and a unit at the center of the hexagon. The edge effect of the corresponding exposure area 
is small. This is why the 23 units in this hexagonal configuration are called the simple LPL-
EM. The simple module is used to study the optical quality of LPL-EM, which has the 
characteristics of representativeness, simplicity, symmetry, and rapidity. Figure 5 shows 
the variation in the IU with LPL unit pitch in the area that is less affected by the edge 
effect. It can be observed that when the LPL unit pitch is 51.4 mm, the higher IU is obtained 
about (92.9%). Therefore, the LPL unit pitch is taken as 51.4 mm. In Figure 6a, one can 
observe that there are obvious edge effects around the irradiation region. As mentioned 
above, the IU of the parallel-light exposure machine is 90% and most of the IU in those 
peripheral areas obviously cannot meet this standard. Therefore, the effective exposure 
region of the LPL-EM must be explored. In addition, since some errors in manufacturing 
and assembly cannot be completely avoided, these errors will lead to a consequent drop 
in IU, and higher tolerances in manufacturing and assembly help to reduce the production 
of finished products. Therefore, a larger area and a higher IU are set as the exploration 
goals, and the exploration results shown in Figure 6b show that the area is 150 × 150 mm2 

and the IU is 92.9%. In Figure 6b, the grids are taken as 25 × 25, that is, the pixel size of the 
grid is 6 × 6 mm2. For the IU detection standard commonly used in the industry, the UV 
irradiation meter is used to regularly measure 25 positions, 5 positions for each row and 
column, within the set effective exposure area. The diameter of the measuring range of 
the irradiance meter is generally greater than 20 mm. Comparing this practice standard 
with the IU analysis standard for this study, this analysis standard is obviously higher 
than the practice standard. It is a decision that takes into account both the applicability 
and accuracy of the research. In addition, in the effective exposure region, the influence 
of the edge effect is small, and the irradiance field is relatively symmetrical, so the IU is 
relatively higher. 
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Figure 4. Schematic of a simple LPL-EM consisting of 23 LPL units arranged in a hexagonal shape. 

 
Figure 5. Variation in the IU with LPL unit pitch. 

  
(a) (b) 

Figure 6. Irradiance distributions of the designed LPL-EM on the working plane: (a) irradiated re-
gion and (b) effective exposure region. 
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3. Identification of the Angle Errors of LPL Unit by Applying CNNLA 
3.1. Using CNN 

As the irradiance distribution is a two-dimensional image, the CNNLA is considered 
for neural network learning. The irradiance distribution of the LPL unit with a given an-
gular error is simulated and obtained by the ray tracing simulation tool and it is used to 
make learning material for the CNN learning program (CNNLP) based on Keras in Py-
thon. The setting of the basic architecture of CNN is as follows: two layers of convolution 
layers, two layers of pooling layers, and one layer of fully connected layers as learning 
models. To improve the accuracy and learning efficiency, cross entropy (CE) is taken as a 
function of computing loss and estimation error, and can be written as follows [9]: CE = − ∑ 𝑝 (𝑥) ∗ log 𝑞 (𝑥), (2)

where N is the test set size, q(𝑥) represents the estimated probability of event x occurring 
on the learning set, and p(𝑥) represents the true sample result. The output value of CE is 
between 0 and 1. A perfect model would have a log loss of 0. In addition, two convolu-
tional layers, two pooling layers, and one fully connected layer are set as learning models 
in the CNNLP. The frequency of updating parameters is one batch for every four input 
data.  

First, it is assumed that the inclination angle is 1° and the azimuth angle is randomly 
selected from 0° to 360°. According to the mechanism of azimuth error generation, this 
error should be direction-independent, so the probability of occurrence is assumed to be 
the same at any angle of azimuth from 0° to 360°. The elementary learning objective is to 
distinguish which quadrant the azimuth angle of the learning sample is in. The total num-
ber of input data is 3000, which is divided into two parts, training and testing, and the 
numbers of training data and testing data are generated by random sampling of the total 
data in the region according to a preset proportion. Numbers of training data and testing 
data for first learning epoch are shown in Table 1, where the quadrant is one part of the 
irradiated plane divided into fourths. The first quadrant is located in the area where both 
coordinate values are positive, and the other quadrants are given in reverse clockwise 
order. Following the above data, the first learning epoch is performed. Those data are 
resampled before each learning session. The learning epochs are set as 10, and the results 
based on the termination condition, CE < 0.05, are listed in Table 2. It is shown from the 
learning results that the testing accuracy gradually converges and the testing accuracy 
reaches more than 80% after the 7th learning epoch. After 10 epochs, the testing accuracy 
has reached 86.8%.  

Table 1. Numbers of training data and testing data for first learning epoch. 

 First Quadrant Second Quadrant Third Quadrant Fourth Quadrant 
Number of training data 588 613 594 607 
Number of testing data 146 153 148 151 

Total 734 766 742 758 

Table 2. Accuracy results of 10 learning epochs for the elementary learning objective. 

Number of Epochs Training Accuracy (%) Testing Accuracy (%) 
1 77.0 76.2 
2 78.9 77.3 
3 80.6 78.1 
4 81.4 80.1 
5 81.1 79.2 
6 81.7 79.1 
7 82.9 82.0 
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8 84.0 83.1 
9 85.1 84.9 

10 86.7 86.8 

3.2. Using Fast R-CNN 
Next, a further learning objective is to be able to efficiently classify learning samples 

within 15° of azimuth. The accuracy results of the training and testing are shown in Table 
2. This learning task is clearly a failure. It is because the learning effect is not good when 
the azimuth angle of the learning sample is close to the boundary region for azimuth clas-
sification, that is, this learning method is not suitable for learning tasks with a high pro-
portion of boundary regions. To solve this problem, the Fast R-CNN method is chosen 
and several feature boxes are set. The individual features of the adjacent feature boxes are 
strengthened to improve the learning accuracy. The learning conditions are the same as 
the CNN in Section 3.1. The learning results of 10 epochs are listed in Table 3 and the 
testing accuracy reaches 78.3% through 10 learning epochs. It is shown that the Fast R-
CNN method can effectively resolve irradiance images up to an azimuth angle of 15°. 
Thus, the automatic identification technology that the automatic identification of LPL 
units in exposure machines by using Fast R-CNN is realized and can also be used to seek 
the angle errors of lighting devices, based on their irradiance distribution image. Alt-
hough the current method can effectively reduce the learning interference caused by the 
partition boundary effect, the current learning accuracy is still not ideal. The improvement 
in accuracy is a topic that can be further continued in the future. 

Table 3. Accuracy results of 10 learning epochs for the advanced learning objective. 

Number of Epochs Training Accuracy (%) Testing Accuracy (%) 
1 70.1 69.9 
2 70.9 71.4 
3 73.3 73.2 
4 73 75 
5 74.8 74.6 
6 75.1 75.3 
7 77.6 76.1 
8 77.3 75.8 
9 78.3 77.4 

10 79.1 78.3 

4. Identification Angle Errors of the LPL Units in the Simple LPL-EM 
4.1. Description for the Haar-Like Feature Method 

For identifying the angle errors of the LPL units in the simple LPL-EM, the Haar-like 
feature is imported in the learning algorithm [23]. A rectangular Haar-like feature is de-
fined as the difference between the pixel sums of several regions in the rectangle and can 
be written as follows: 𝑖𝑖(𝑥, 𝑦) = ∑ 𝑖(𝑥 , 𝑦 ), , (3)

where 𝑖𝑖(𝑥, 𝑦) is the integral image and 𝑖(𝑥 , 𝑦 ) is the original image. That is, the sum of 
the pixels in the rectangular area can be represented by the value of the integral image. 
Furthermore, to quickly calculate the integral image, the following relational equations 
are used [23]: 𝑠(𝑥, 𝑦) = 𝑠(𝑥, 𝑦 − 1) + 𝑖(𝑥, 𝑦), (4)𝑖𝑖(𝑥, 𝑦) = 𝑖𝑖(𝑥 − 1, 𝑦) + 𝑠(𝑥, 𝑦), (5)
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where 𝑠(𝑥, 𝑦) is the cumulative row sum. Using Equations (4) and (5), the integral image 
can be computed in one pass over the original image. The schematic diagram of the cal-
culation of the Haar-like feature by using the integral image is shown in Figure 7. In Figure 
7, the value of the integral image at location 1–4 can represent the sum of the pixels in 
rectangle A, A+B, A+C, and A+B+C+D, respectively. Therefore, the sum of the pixels 
within rectangle D can be calculated as 4+1−2−3, that is, the sum of the pixels within rec-
tangle D can be calculated for four array references. Using this method, any rectangular 
sum in the image of irradiance distribution can be quickly calculated as four array refer-
ences.  

 
Figure 7. Schematic diagram of the calculation of the Haar-like feature by using the integral image. 

4.2. Description of the Feature Classification of the Irradiance Distribution 
In this study, the considered LPL-EM arranged in a hexagonal shape, as shown in 

Figure 3, can be observed as a composite of regular triangles formed by three light sources. 
In the real module, each LPL unit has its own angle error. To directly perform feature 
classification for the LPL-Ems is a very complex and difficult problem. To simplify this 
problem, the basic analysis model (a regular triangle formed by three LPL units) is con-
sidered and shown in Figure 8. It is used to explore the feature classification of the irradi-
ance distribution in the regular triangle area when angle errors exist in those LPL units. 
For the basic analysis model, the three LPL units have the characteristics of rotational 
symmetry (rotational symmetry of 60°). One unit is appointed as the first unit and marked 
as “1”, the second unit is marked as “2”, and the third unit is marked as “3”, as shown in 
Figure 8. The second and third units are symmetrical about the mirror axis, so their mirror 
images are the same and are classified into the same category. In addition, based on the 
learning research results of the LPL unit, the LPL-EM continues to use previous learning 
tools and learning conditions. The accuracy target is set to 70%. First, the first and third 
units are fixed, and the effect of angle deviation of the second unit at different angles is 
discussed. By the ray tracing results, it is found that the variation in the IU in the inner 
area of the model is less than 1% when the deflection in the outside angle of the triangle 
is greater than 15°, so the deflection in the outside angle of the triangle that exceeds 15° 
will be ignored. Then, the feature classification of the irradiance distribution is achieved 
by the classification principle of the inside of the triangle in the deflected 30° area and the 
outside of the triangle in the adjacent 15° area. Following the classification principle, the 
first unit has two categories, which are categorized by schematic symbols (“1-1” and “1-
2”) and direction arrows, as shown in the Figure 8, the second unit has four categories, 
and the thirst unit has two categories. The schematic symbols for the classification of the 
second and third units are 2-1, 2-2, 2-3, 2-4 and 3-1, 3-2, respectively, and their direction 
arrows are also shown in Figure 8. In other words, without considering the difference in 
mirror images, 16 (=2 × 4 × 2) irradiance distribution categories can be obtained. 
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Figure 8. Schematic of the basic analysis model. 

4.3. Identification of Angle Errors of the LPL Units 
Next, those 16 irradiance distribution categories are regarded as classification learn-

ing targets. The task of this learning method, using the method of Haar-like feature to 
calculate the relative position of the maximum and minimum values for the irradiance 
distribution of the basic analysis model, is tried. This task is divided into the following 
two steps: the first step is to identify one of sixteen irradiance distribution categories and 
the second step is to further identify the inclination deviation value within a range.  

The first step uses the so-called azimuth identification method based on Fast R-CNN 
learning with Haar-like features. The positions of the maximum and minimum values in 
the irradiance distribution images of the basic analysis model obtained by the ray tracing 
simulation tool are considered. By the variation in the two positions, the irradiance image 
can carry out the identification of 16 irradiance distribution categories. The results of iden-
tification accuracy for the first step through 10 learning epochs are listed in Table 4 and 
the accuracy reaches 76.03% through 10 learning epochs. The second step is the called 
inclination identification method. The variation in IU caused by deviation is used as the 
classification basis. Table 5 shows the results of identification accuracy for the deviation 
range of inclination angles through 16 learning epochs. One can observe that the accuracy 
is less stable and was 75.70% at 16 learning epochs. In other words, through the first step 
of classification, the deflection range of the azimuth angle for the first unit of the basic 
analysis model can be automatically recognized and, through the second step of classifi-
cation, the deviation range of inclination angles can be automatically recognized. In addi-
tion, the second and third units of the model can also be further identified automatically. 
Similarly, the other units can also be identified automatically. According to this triangle 
model method, the angle error conditions of adjacent triangles can be calculated one by 
one, so as to obtain the individual angle error conditions of the twenty-three units in the 
simple LPL-EM.  

Table 4. Identification accuracy results of 16 irradiance distribution categories through 10 learning 
epochs. 

Number of Epochs Accuracy (%) Number of Epochs Accuracy (%) 
1 68.23 6 71.03 
2 69.01 7 73.02 
3 69.92 8 74.86 
4 70.13 9 75.22 
5 71.46 10 76.03 

Table 5. Identification accuracy results for the deviation range of inclination angles through 16 
learning epochs. 
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Number of Epochs Accuracy (%) Number of Epochs Accuracy (%) 
1 73.13 9 75.84 
2 70.15 10 73.86 
3 71.11 11 70.04 
4 70.67 12 72.73 
5 75.62 13 74.88 
6 76.84 14 76.63 
7 74.09 15 78.84 
8 74.94 16 75.70 

To verify the above learning method for automatic identification, the intermediate 
units of the simple LPL-EM are chosen. For the convenience of description, the seven LPL 
units have their own numbers, numbered 1 to 7, as shown in the center of Figure 4. First, 
the identification images of the seven LPL units with individual, specified and known 
angle errors are obtained by the ray tracing simulation tool. Those specified angle errors 
are listed in Table 6. Here, the angle errors of LPL unit No. 1 are taken as the inclination 
angle 1° and the azimuth angle 45° and are assumed to be known. For the triangle formed 
by LPL units No. 1, No. 2 and No. 3, the angle errors of LPL units No. 2 and No. 3 are 
obtained by the azimuth identification method and the inclination identification method, 
and the result is shown in Table 7. Then, for the triangle formed by LPL units No. 1, No. 
3 and No. 4, the angle error of LPL unit No. 4 is obtained and shown in Table 7. Similarly, 
the angle errors of LPL units No. 5, No. 6 and No. 7 are obtained and shown in Table 7. 
The angle errors of six solved LPL units converge exactly within a particular range, that 
is, the automatic identification verification method is proven to be effective. 

Table 6. Those specified angle errors of the seven LPL units for the automatic identification verifi-
cation method. 

Number of LPL Unit Inclination Angle (°) Azimuth Angle (°) 
1 1 45 
2 0.2 17 
3 0.75 13 (Outside *) 
4 0.3 60 
5 0.94 12 
6 0.6 14 (Outside) 
7 0.9 56 

* Here ,“outside” refers to the angle outside the triangle. 

Table 7. The obtained angle errors of the seven LPL units by the automatic identification verification 
method. 

Number of LPL Unit Inclination Angle (°) Azimuth Angle (°) 
2 0.1–0.5 0–30 
3 0.6–0.8 0–15 (Outside *) 
4 0.1–0.5 30–60 
5 0.9–1.0 0–30 
6 0.6–0.8 0–15 (Outside) 
7 0.9–1.0 30–60 

* Here, “outside” refers to the angle outside the triangle. 

5. Conclusions 
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In this study, for the smart manufacturing development of PCB exposure devices, the 
LPL unit and LPL-EM are investigated and the angle errors of those LPL units are identi-
fied by the use of neural network learning algorithms. First, using the ray tracing simula-
tion tool, the LPL unit with FWHM of 7.6° is designed and the LPL-EM with IU 92.9% is 
obtained. Then, for CNN supervised learning, the 2D irradiance distribution images, built 
by the ray tracing simulation tool, are used as the learning data. The variation in these 
learning data suggests that all units of the LPL-EM randomly have their own specific an-
gle errors. The azimuth identification method based on Fast R-CNN learning can identify 
one of sixteen irradiance distribution categories and the inclination angle identification 
method, based on Fast R-CNN learning with Haar-like features, can obtain the inclination 
deviation value within a specific range. According to those results, supervised learning 
techniques should be able to help identify the errors of inclination and azimuth angle for 
the single LPL units and multi-light modules of PCB exposure devices. In other words, 
preliminary verification can provide a detailed understanding of the PCB exposure pro-
cess of exposure devices and analyze their manufacturing problems, so as to achieve the 
goal of smart manufacturing. 
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