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Abstract: Nowadays, magnesium (Mg) composites are gaining much attention in biomedical device
applications due to their biocompatibility and biodegradability properties. This research is to study
the microstructure, mechanical, corrosive and antibacterial properties of Mg−2.5Zn−0.5Zr/xCNT
(x = 0, 0.3, 0.6, 0.9) composites made with mechanical alloying and semi-powder metallurgy (SPM)
processes, accompanied by SPS. Based on the microstructural characteristics, CNTs were almost
uniformly distributed in the Mg matrix. The results displayed that the hardness and ultimate
compressive strength (UCS) of the composites were meaningfully increased compared to a Mg matrix.
Moreover, the degradation rate of Mg composites was almost halved in the presence of small amounts
of CNTs in the Kokubo simulated body fluid (SBF). Due to the slowed degradation process, the
Mg−2.5Zn−0.5Zr/0.6CNT biocomposites exhibited excellent cellular compatibility. Evaluation of
antibacterial activity displayed that adding CNTs to the Mg matrix could significantly prevent the
growing of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In general, the research
results showed that CNTs are an efficient reinforcement for Mg−2.5Zn−0.5Zr/CNTs biocomposites,
which leads to improved mechanical, degradation and antibacterial performances.

Keywords: nanocomposites; magnesium; CNTs; mechanical properties; biocompatibility

1. Introduction

Over the past decades, researchers have shown an increasing interest in replacing
conventional implantable devices with Mg-based alloys and composites to overcome
common problems in orthopedics [1–3]. Mg, on the other hand, is found naturally in bone
tissue and is essential for the body’s metabolism [4]. Mg is the fourth most plentiful ion in
the human body, so a person weighing 70 kg needs about 1 mole of Mg, half of which is
stored in bone tissue.

It is also possible to mention the elastic modulus of Mg (41–45 GPa) compared to iron
(Fe) (211.4 GPa) or zinc (Zn) (90 GPa), which makes it further analogous to the natural bone
of the body (3–20 GPa) and prevents stress shielding phenomena [3,5]. Mg is well involved
in the reaction of bone minerals and controls bone reproduction and regeneration [6].
Mg, on the other hand, is easily destroyed in the body and excreted through the body
fluids, consequently there is no need for a second surgery to remove it from the body [7,8].
Of course, in the biological environment of the body, the decomposition rate of Mg with
a decrease in mechanical properties is higher than the recovery rate of bone tissue, while
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the release of hydrogen gas is observed also on the surface of Mg. Furthermore, the
release of hydrogen gas on the surface of Mg is also one of the things that limits the use
of Mg in complex physiological environments [8–10]. Moreover, Mg-based composites
are less resistant to bacteria, causing infections around implantable devices and triggering
more problems for postoperative patients. Bone infections are fundamental and inevitable
problems that put people under the stress of medical and financial difficulties. It is generally
triggered via a prime microbial infection, mostly by S. aureus, and is really an inflammatory
process leading to bone demolition [11,12].

Therefore, the mechanical properties, degradation and antibacterial performances of
Mg samples must be improved in some way. Alloying and composite production at the
same time can be a suitable method to improve the properties of Mg [5,13]. When choosing
alloying elements as background, it should be noted that the elements ought not to be toxic
in the body [14,15].

Zn is an essential element for the survival of human life. Zn is one of the foremost
vital elements in the body after Fe. This element is stored in muscle and is also present in
blood cells, retina, bone, skin, kidney and liver [16]. Zn is also an indispensable element for
cell growth and an important component of bones in the body [16]. Studies have shown
that Zn increases osteoblast adhesion, cell proliferation and differentiation in bone cells.
Studies have also shown that adding Zn to Mg in the range of 1–5 wt% improves the
mechanical properties and corrosion resistance of the alloy [16,17]. On the other hand,
Zn as an experimental implantable material poses no risk of toxicity to humans. Zn poi-
soning to humans has only been observed with overdose (50 mg per day) or excessive
toxic exposure to Zn, whereas whole destruction of pure Zn implants releases only 150
µg/day [18]. Zirconium (Zr) is another biocompatible alloying element with a grain refine-
ment function. Recently, Mg-Zr alloys have received much attention for their great specific
damping capacity (80%), which helps to dampen the vibrations created at the implant/bone
interface during movement and loading [19,20]. Gu et al. [21] has shown that adding 1
wt% of Zr in Mg has led to substantial progress in the strength and ductility of the metal
(UTS = 171.87 ± 2.31 Mpa), an increase of 27 ± 2% in elongation and a reduction of 50%
in the degradation rate. Generally, the alloying content of Zr ought to be less than 1 wt%
in Mg-based biomedical alloys [4]. Based upon these considerations, a basic chemical
composition containing Zn and Zr is proposed in this study for Mg alloys.

As previously mentioned, one of the most popular techniques to achieve the supe-
rior properties of Mg is the encapsulation and fabrication of composites using suitable
nanofillers [13]. It has been determined that due to the attractive properties of CNTs,
including Young’s modulus (1TPa), extremely high strength (30 GPa) [22], stiffness (1TPa)
in tension [22], load transfer efficiency, chemical inertness and high thermal conductiv-
ity (3000 W/m.K) [23], and large surface-to-volume ratio, these are a very high potential
candidates as a reinforcing material for multipurpose composites [24]. Hou and his col-
leagues [25] have shown that uniformly dispersing multi-wall carbon nanotubes (MWCNTs)
as reinforcement in a Mg-Zn matrix has improved the mechanical properties and thermal
conductivity.

However, so far, research on the reinforcement function of CNTs for Mg-based com-
posites has mainly focused on their mechanical properties (Table 1). Nonetheless, these
reinforcing materials pose biosafety issues and may improve the antibacterial action of
Mg-based composites for orthopedic applications. According to a review of the scientific
literature, no attempts have been made to investigate Mg−2.5Zn−0.5Zr/CNTs nanobio-
composites. The aim of this research is to make nanobiocomposite Mg−2.5Zn−0.5Zr/CNTs
with a mechanical alloying method and SPM process along with SPS, and investigate the
feasibility of improved mechanical, corrosion and antibacterial performance for biomedical
devices.
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Table 1. A summary of the mechanical reinforcement performance of CNTs in Mg-based composites.

Samples Processing Route Elongation(%)
Ultimate

Compressive
Strength, MPa

Hardness
HV Years Ref.

MZ−3Zn SPM + HTE 12.1 ± 1.3 289.6 ± 13 66 ± 2 2022 [26]

MZ−3Zn−0.2fCNT SPM + HTE 13.6 ± 1.5 368.2 ± 12 70 ± 2 2022 [26]

MZ−3Zn−0.4fCNT SPM + HTE 15.7 ± 1.5 390 ± 15 74 ± 2.5 2022 [26]

MZ−3Zn−0.8fCNT SPM + HTE 11.9 ± 1.3 320.2 ± 14 76 ± 3 2022 [26]

AZ61 PM - 135.7 - 2020 [27]

AZ61−0.1CNT PM - 127.2 - 2020 [27]

AZ61−0.2CNT PM - 146.8 - 2020 [27]

AZ61−0.5CNT PM - 168.4 - 2020 [27]

AZ91 PM - 141.2 - 2020 [27]

AZ91−0.1CNT PM - 132.3 - 2020 [27]

AZ91−0.2CNT PM - 145.6 - 2020 [27]

AZ91−0.5CNT PM - 153.5 - 2020 [27]

AZ31 PM + Extrusion 14.5 ± 1.5 363 ± 3.5 58 ± 3.0 2015 [28]

AZ31−0.3GNPs PM + Extrusion 21.7 ± 2.8 397 ± 5.3 71 ± 2.1 2015 [28]

AZ31−0.3CNTs PM + Extrusion 13.3 ± 3.0 457 ± 6.0 78 ± 2.8 2015 [28]

Mg−6Al−0.5CNT MBM + CP + HTE - ~160 ~40 2014 [29]

Mg−6Al−1CNT MBM + CP + HTE - ~140 ~36 2014 [29]

Mg−6Al−2CNT MBM + CP + HTE - ~105 ~34 2014 [29]

Mg−6Al−4CNT MBM + CP + HTE - ~75 ~28 2014 [29]

Mg−1Al SPM + VS + HTE 6.9 ± 0.5 377 ± 8 50 ± 4 2014 [30]

Mg−1Al−0.6GNTs SPM + VS + HTE 4.0 ± 0.6 407 ± 3 63 ± 2 2014 [30]

Mg−1Al−0.6CNTs SPM + VS + HTE 10 ± 0.3 425 ± 5 61 ± 5 2014 [30]

Mg−1Al−0.6(1:5)
(CNTs + GNPs) SPM + VS + HTE 16 ± 0.5 397 ± 3 56 ± 3 2014 [30]

AZ81 DMD + HTE 7.9 487 ± 14 119 ± 2 2013 [31]

AZ81−1.5CNTs DMD + HTE 12.9 488 ± 13 114 ± 8 2013 [31]

ZK60A DMD 6.6 ± 0.6 522 ± 11 138 ± 7 2011 [22]

ZK60A−1.0CNTs DMD 15.0 ± 0.7 547 ± 3 114 ± 6 2011 [22]

Mg PM-HTE - 239 ± 15 40 ± 2 2011 [32]

Mg−0.5Al−0.18CNT PM-HTE - 357 ± 13 50 ± 4 2011 [32]

Mg−1Al−0.18CNT PM-HTE - 421 ± 15 58 ± 3 2011 [32]

Mg−1.5Al−0.18CNT PM-HTE - 421 ± 11 60 ± 4 2011 [32]

HTE: hot extrusion, MBM: mechanical ball milling, PM: powder metallurgy, CP: cold pressing, VS: vacuum
sintering, DMD: disintegrated melt deposition.

2. Materials and Methods
2.1. Raw Materials

Pure Mg (99.5%, <10 µm), Zn (99.9%, <3 µm), and Zr (99.9%, <3 µm) powders were ob-
tained from Sigma Aldrich, USA. Multi-walled CNTs (diameter = 5–30 nm, length= 5–10 µm
and purity = 95%) were provided by Platonic Nanotech Pvt. The SBF solution was pur-
chased from ESPADANA Co., Iran. Fabrication of the base alloy with mechanical alloying
method; Mg−2.5Zn−0.5Zr powders were prepared in a planetary ball mill. The enclosed
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powders were placed in sealed 120 mL steel containers rotating at 300 rpm, and a mixture of
balls (Ø = 10 mm balls with 4.07 g mass and Ø = 20 mm balls with 32.65 g mass) were placed
in the containers (the ratio of balls to powder was about 20:1). Moreover, in order to prevent
the oxidation of the raw materials, the air was taken out of the chambers and replaced by
a neutral gas, argon (<3 ppm oxygen). In order to make Mg−3Zn−1Ca−0.5Zr/xCNTs
(x = 0, 0.3, 0.6, 0.9) nanobiocomposites, the SPM method was used. For this purpose, CNTs
and ethanol were put in the ultrasonic device to break the molecular bonds and prevent
the van der Waals bonds between the CNTs. Then, Mg alloy was added to the solution and
mixed for 2 h at a speed of 600 rpm at a temperature of 40 ◦C. Finally, it was placed in an
oven with controlled atmospheric conditions for 1 day to dry. Composite powders with
CNT values of 0, 0.3, 0.6 and 0.9 were labeled as MZ, MC1, MC2, and MC3, respectively.
The composite powders were sintered in an SPS chamber at a temperature of 570 ◦C and a
pressure of 40 MPa for 10 min. A schematic of the sample formation steps is represented in
Figure 1.
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2.2. Microstructure and Mechanical Properties

The structure and morphology of the raw materials were investigated with optical
microscopy (Olympus BX53M), scanning electron microscopy (SEM, QUANTAFEG250,
FEI, USA) and transmission electron microscopy (TEM, HT7700 Hitachi, Japan) images.
Energy dispersive X-ray spectroscopy (EDX, JSM−5910LV, JOEL Ltd., Japan) analysis was
performed to complete the structural studies. Phase changes were studied with an X-ray
diffractometer (XRD, D8 Advance, Brucker, Karlsruhe, Germany). Furthermore, Raman
spectroscopy according to the literature [7] was used to determine the functional groups of
CNTs.

Contact angle tests on the surfaces of the composites were performed using a static
drop method via a video contact angle instrument (Dataphysics OCA 15) in air and at
room temperature with a droplet size of 10 mL to measure the wettability. The results
of the three samples were utilized to calculate the average contact angle for each com-
posite. A SANTAM model device (STM50) was used to measure a cylindrical composite
(diameter = 10, height = 15 mm) according to the ASTM-E9 standard at a velocity of 2 mm
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per minute and a load of 10 kilonewtons. The test was repeated three times and the
mean of the three data was reported in the final analysis. A Vickers microhardness test
(LECO M-400) with a peak load of 300 g was also applied to study the microhardness of the
composites. Five different locations were analyzed from each sample to obtain the results.

2.3. Degradation Behavior

To measure the degradation rate of composites in accordance with the ASTM-G31-72
standard [33], cylindrical specimens with a diameter of 10 mm and a height of 10 mm were
placed in an incubator at pH 7.4 and a temperature of 37 ◦C, and they were soaked inside
the incubator to prevent evaporation for 2 weeks. The pH change in the immersion test was
recorded and evaluated at 12 h intervals. To assess hydrogen release, the released hydrogen
bubbles were collected in a funnel and the volume change of the Kokubo SBF (A Kokubo
SBF is a solution with ionic concentrations similar to human blood plasma (see Table 2))
was measured by a standard graduated burette attached to the funnel. A schematic of
the experimental setup is presented in Figure 2. After washing with water and acetone to
remove corrosion products from the surface of the sample, the sample was weighed. The
formula W/DAT × 87.6 = CR was used to calculate the corrosion rate [34]. In this formula
CR equals the typical corrosion rate in mm/year, as well as W, D, A and T are weight lost
in milligrams, density, sample surface area exposed to the corrosion solution (cm2), and
exposure time, respectively.

Table 2. Chemical composition of the Kokubo simulated body fluid (SBF) compared to the human
blood plasma.

Solution
Ion Concentration (mmol/L)

Na+ K+ Ca2+ Mg2+ HCO3
- Cl− HPO42− SO42−

Plasma 142.0 5.0 2.5 1.5 27.0 103.0 1.0 0.5

Kokubo (c-SBF) 142.0 5.0 2.5 1.5 4.2 147.8 1.0 0.5
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2.4. Antibacterial Evaluation

Gram-positive S. aureus and Gram-negative E. coli were used to assess the antibacterial
performance of composites by a disc diffusion process.

To do this, a sterile swab was inserted into it, the microbial suspension was washed
(squeezing the swabs to the side of the tube) and the culture medium was in the form
of cultivation. The samples were placed in an incubator at 37 ◦C for 1 day. Note that
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gentamicin discs are employed as antibiotics. If the samples have antibacterial properties,
this can be recognized by their surrounding zones of inhibition (IA).

2.5. Biocompatibility Assessment

All samples were sterilized by ultraviolet (UV) irradiation for at least 2 h prior to cell
testing. All samples were assessed for cell viability using the MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide) approach (n = 3), as shown in [24].

2.6. Statistical Analysis

Test outcomes are expressed as mean ± standard error (SE) and examined for signifi-
cant data at p-values of 0.05 (*), 0.01 (**), and 0.001 (***) using Sigmaplot software.

3. Results and Discussions
3.1. Microstructure

Figure 3—SEM images show pure elemental Mg (a,b), Zn (c,d), and Zr (e,f) without
mechanical or chemical stress. Pictures (g,h) show the alloy obtained from the grinding
process after an optimal time of 25 h. Powder particles are constantly expanding, galling,
breaking, and remelting during high energy milling. Decreases in particle size with in-
creasing milling time have been observed. The result is an alloy powder (MZ) with a new
surface created by particle-to-particle fusion and penetration.
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Electron microscope image and EDX measurements of as-prepared samples are shown
in Figure 4. According to the obtained results, Mg, Zn, Zr and O elements for the MZ
alloy matrix (Figure 4a) and Mg, Zn, Zr, O and C elements for different amounts of CNT in
the MZ/CNTs composites (Figure 4b–d) were identified. The pictures show the uniform
distribution of the alloy elements by the mechanical alloying method, and the almost
uniform distribution of the carbon reinforcement in the background phase by the SPM
technique (Figure 4d).
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Figure 4. SEM images and EDX spectra of (a) MZ (b) MC1 (c) MC3 and (d) map images of MC2
powder composite.

Figure 5a shows the TEM micrographs of CNTs after the dispersion method (in ethanol
solution) used in this study. As can be seen, individual CNTs had diameter sizes in the range
of 50–60 nm. On the other hand, MC2 composite powders displayed a nanotube shape
with a thickness of 50 nm and a homogeneous distribution of matrix particles (Mg alloy)
inside the nanotube with high adhesion, as shown in Figure 5b–d. Considering that almost
all Mg particles are adsorbed on the CNT surface and very few Mg particles are outside the
CNT support, a strong MZ/CNT interaction was observed. Raman spectroscopy results
for MWCNTs (Figure 5e) confirm the presence of D band (1335 cm−1), G band (1567 cm−1)
and D’ band, new second order D band (2686 cm−1) which is a typical characteristic for
multi-walled CNTs [35].

Figure 6—XRD analysis was used to identify elements and classify phases better. Only
one set of clearly defined Mg-α peaks was found in pure Mg (standard card No. 190239)
and there was no peak for the second phase. Clearly, the peaks detected at 2
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Figure 7—shows the contact angles of a liquid drop with the bulk surface for MZ 120 
and for MC1, MC3, MC2 are 97, 85, 76 degrees, respectively. The presence of CNTs affects 
the surface properties of MZ/CNTs composites. Adding 0.3 wt% causes a sharp increase 
in contact surface. The reason can be ascribed to the formation of functional groups such 
as carboxyl, carbonyl and hydroxyl, which leads to the hydrophilicity of the sample sur-
face. This phenomenon is directly related to the improvement of biocompatibility, as 
much as the hydrophilicity of Mg-based composites improves, the biocompatibility in-
creases [40,41]. This may significantly contribute to medical success, as improved wetta-
bility of the implantable composite surface improves its ability to adhere to biological 
materials. As examined in previous studies, increasing the hydrophilicity of the bone 
implant surface is advantageous for the absorption of nutrients and bioactive factors, 
thereby promoting bone healing during in vivo implantation [42]. 

are equivalent
to 32.2, 34.4, 36.6, 47.5, 57.3, 63.0, 67.3, 68.6, 70.0 and 72.4◦ [36]. In addition, the XRD pattern
shows peaks for Zn and Zr metals in the pure sample, while no peaks were found for
the second phase [15,37,38]. The crystalline nature of the prepared CNTs sample can be
confirmed by detecting the peak in the XRD spectrum [39]. In the XRD result related to
the MZ/CNTs composite, the (002) peak of CNT is not clearly observed, which can be
caused by the low amount of additives and also the way of preparation in the solution,
which is associated with breaking van der Waals bonds and preventing local agglomeration.
According to the XRD spectrum, only peaks related to α-Mg, MgZn2, and Mg7Zn3 phases
can be identified.
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Figure 7—shows the contact angles of a liquid drop with the bulk surface for MZ 120
and for MC1, MC3, MC2 are 97, 85, 76 degrees, respectively. The presence of CNTs affects
the surface properties of MZ/CNTs composites. Adding 0.3 wt% causes a sharp increase in
contact surface. The reason can be ascribed to the formation of functional groups such as
carboxyl, carbonyl and hydroxyl, which leads to the hydrophilicity of the sample surface.
This phenomenon is directly related to the improvement of biocompatibility, as much
as the hydrophilicity of Mg-based composites improves, the biocompatibility increases
[40,41]. This may significantly contribute to medical success, as improved wettability of the
implantable composite surface improves its ability to adhere to biological materials. As
examined in previous studies, increasing the hydrophilicity of the bone implant surface
is advantageous for the absorption of nutrients and bioactive factors, thereby promoting
bone healing during in vivo implantation [42].
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3.2. Mechanical Properties

Figure 8a displays the microhardness of MZ/CNTs composites, which increases by
increasing the amount of CNT from 0, 0.3, 0.6, and 0.9 wt% to 58, 67, 78, and 80 HV,
respectively.
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gliding over and bypassing the CNTs, (d) OM image and grain size calculations of MZ, MC1, MC2
and MC3 composites.

Another important criterion for a bone replacement implantable device is compressive
strength [43]. Figure 8b shows the results of the compressive strength tests by plotting two
parameters of UCS and elongation of MZ/CNTs composites. The results show that com-
posites containing 0.3 and 0.6 wt% CNTs have higher UCS values and higher elongations
at break than the base matrix, with the highest stiffness associated with MC2 composites.
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On the other hand, when the amount of CNTs was increased, a decrease in mechanical
properties was observed. This may be attributed to the phenomena of aggregation and
van der Waals binding. Among the possible mechanisms that play a role in the increase in
compressive strength, the roles of CNTs as crack bridging and crack deflection inhibitors
have been mentioned [44]. In other words, there is an effective load transfer from Mg to the
reinforcement due to the higher elastic modulus of CNTs compared to the Mg matrix and
failure strain [45]. Another dominant mechanism is the Orowan mechanism. A scheme
presenting the Orowan ring mechanism after dislocations slide on and around the CNTs is
shown in Figure 8c. The contribution of different strengthening mechanisms depends on
the CNT volume fraction, CNT surface bonding, matrix and base alloy type, and the CNT
aspect ratio [44,46,47]

Figure 8d shows the plots along with optical micrographs of MZ/CNTs. A significant
decline in particle size was observed with the addition of CNT reinforcement. That is, the
improvement in the mechanical properties of nanocomposites can be attributed to grain
refinement due to the presence of CNTs [48].

3.3. Assessment of Degradation Behavior

Figure 9—shows the surface morphology of Mg alloys and MZ/CNTs composites after
being immersed in SBF for 7 days. In Figure 8a, many deep cracks and pitting corrosion
are observed, indicating severe corrosion damage to the Mg alloy. However, the MZ/CNT
composite with a small amount of CNTs has fewer cracks and smaller pits (Figure 8b,c).
Hard corrosion and deep cracks were observed with increasing CNT content (Figure 9d).
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Carbon nanomaterials (CNMs) such as CNTs seem to have a significant impact on
heterogeneous nucleation, causing grain refinement of the Mg-α based phase and enhancing
the corrosion resistance of the alloys [7]. Therefore, the decomposition rate of the Mg-α
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based phase in composites with a low CNT share is slowed down and less Mg(OH)2 and
H2 are produced. On the other hand, CNTs have a bridging function and their filamentous
appearance can prevent or retard delamination of the surface oxide layer of composites,
which has a positive effect on corrosion resistance [49]. Furthermore, apatite deposits can
form dense layers on Mg composites with the oxygen-rich groups and the available sites of
CNTs, and prevent the penetration of the corrosive solution into the sample [50].

Figure 10a shows the XRD pattern of MC2 after seven days of immersion in the SBF
solution. It is clear that the corrosion products Mg(OH)2 and HA occur because of the
presence of inorganic ions including H2PO4−, Ca2+ and Cl− in the SBF solution [51].
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Figure 10. (a) X-ray diffraction patterns of MC2 after soaking in SBF for 7 days, (b) weight loss
corrosion rate of MZ/CNTs nanocomposites in Kokubo solution for the durations of 3, 7 and 14 days,
(c) pH value, (d) H2 evolution of MZ, MC1, MC2 and MC3 composites.

Figure 10b shows a plot of the weight loss of the composite after 3, 7 and 14 days of
immersion. As can be seen, the corrosion rate of the sample increased during the first three
days. This is likely as a result of the surface area of the sample being directly exposed to
the solution for the first few days, causing an exothermic reaction and accelerating the
corrosion rate. Moreover, due to the comparatively high chloride concentration of the
Kokubo solution, this phenomenon may also occur in the first few days. By extending the
duration of the immersion test to seven days, the degradation rate of 0.3 and 0.6 wt% CNT
nanocomposites increased at lower exposure gradients compared to the first three days of
exposure. However, nanocomposites comprising 0.6 wt% CNTs showed lower corrosion
rates at this exposure time. A 14-day immersion period decreased the corrosion rate of all
nanocomposites. This may be due to the creation of a protective layer of corrosion products
on the surface of the nanocomposites after long-term exposure. This layer can diminish the
corrosion rate of nanocomposites through impeding direct contact of the nanocomposites
to the solution [43]. The pH of the solution was also monitored during the immersion test
to detect the release of degradation products (Figure 10c). A gradual increase in pH was
observed for all samples. The increased alkalinity of the SBF solution can be ascribed to
the diffusion of OH− ions [52]. The pH value of the electrolyte increased rapidly with
the immersion time at first, and then gradually and finally steadied at constant values
(Figure 10c). The mechanism of the reactions is as follows:
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I. Cathodic decomposition of water,

H2O + 2e− → 2OH−
(aq) (1)

II. Anodic dissolution of α-Mg

Mg(s) → Mg2+
(eq) + 2e− (2)

III. Creation of a hydroxide layer

Mg2+
(eq) + 2OH−

(aq) → Mg(OH)2(S) (3)

The release of hydrogen bubbles immediately after placing the sample in the solution,
which indicates the beginning of the reaction between the composite and the solution, was
also evaluated. Figure 10d shows that the MC2 sample significantly reduced H2 released
from 62 ± 3 to 29 ± 3 mL/cm2 compared to the Mg alloy matrix.

3.4. Biological Properties
3.4.1. Antibacterial Evaluation

In order to evaluate the potential antibacterial properties, all the samples were exposed
to Gram-negative and Gram-positive bacteria, that is, E. coli and S. aureus models. The zone
of inhibition (in millimeters (mm)) was then measured for different samples.

Figure 11a shows that the bacterial growth stopped around the MZ/CNTs nanocom-
posites containing 0.3–0.9 wt% CNTs, while bacterial proliferation was detected around the
MZ matrix. In addition, the images show the formation of a wider zone of inhibition around
the composite MC3 (3.3 mm) on the agar plate compared to the composite MC1 (2.05 mm),
which contains fewer CNTs. Therefore, it can be concluded that the antibacterial properties
of nanocomposite samples are related to their CNTs content, that is, increasing the content
of CNTs in the nanocomposite is associated with larger inhibition zones. While the inhi-
bition zones of E. coli and S. aureus were in the ranges of 0.24–3.1 mm and 0.33–3.3 mm,
respectively. The antibacterial activity of CNMs depends on their composition, target micro-
organisms, surface modification, and reaction environment. The antibacterial mechanism
of CNMs is based on attacking the membrane/wall of microbial cells, thereby damaging
cellular structures and the physical mechanisms associated with the biological separation
of microbial cells from the environment [53,54]. It also creates oxidative stress conditions
through the generation of toxic substances, such as reactive oxygen species (ROS), and
chemical antimicrobial effects that depend on the interaction of micro-organisms with
CNMs. CNM-microbe interactions facilitate electron transfer. ROS-independent oxida-
tive stress is promoted by the removal of electrons from the microbial surface leading to
biological death [55].

According to some research, CNTs can exhibit full antibacterial activity. In fact, size
plays an important role in microbial inactivation. Indeed, the surface-to-volume ratio of
CNMs increases with decreasing size, resulting in a stronger attachment to the microbial
membrane or cell wall and more effective microbial tasks. These mechanisms are reliant
on the ability of CNTs to bind to micro-organisms and disrupt their cell membranes,
morphology, and metabolic processes [55]. The bacteriostatic properties of CNTs have been
shown to result from their ability to damage microbial cell membranes and cause bacterial
cell death upon direct contact. Upon incubation with CNTs, micro-organisms exhibit
morphological changes of cell integrity disruption. Furthermore, a five-fold improvement
in plasmid DNA, release of cytoplasmic material, and a two-fold increase in RNA were
demonstrated after exposure to small CNTs [56].
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Figure 11. (a) Antibacterial activities by the disk diffusion test against both gram-positive (S. aureus)
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3.4.2. Cellular Compatibility

Figure 11b shows the results of an MTT assay of MG63 cells cultured on nanocom-
posites for three and seven days. The number of viable cells is proportional to the amount
absorbed. In particular, increasing the culture time slowly increases the number of viable
cells in the MZ/CNT nanocomposites. MC1 and MC2 composites are effective in stimu-
lating cell viability compared to the controls. The addition of large amounts of CNTs up
to 0.9 wt% resulted in a strong inhibitory effect during long-term incubation. After three
days of incubation, the cell viabilities of MZ, MC1, MC2, and MC3 were 73, 84, 90, and
77%, respectively, which are higher than 75% for composites containing CNTs, indicating a
good cell compatibility [57]. Increasing the CNT content may lead to greater destruction by
galvanic corrosion and increased toxicity [58–60].

4. Conclusions

The microstructure, mechanical characteristics, degradation and antibacterial activity
of Mg−2.5Zn−0.5Zr/xCNTs nanocomposites (x = 0, 0.3, 0.6 and 0.9) made with mechan-
ical alloying processes and SPM with SPS were evaluated. The increase in compressive
strength of MZ/CNT composites was evident compared to the base alloy without CNTs.
The addition of low concentrations of CNTs to Mg-based composites reduced the degra-
dation strength in the SBF environment by almost half. According to the cytotoxicity
studies, composites with low CNT concentrations (0.6 wt%) showed good biocompatibility.
All MZ/CNT composites exhibited excellent antibacterial properties against E. coli and
S. aureus. The antimicrobial activity of the composites was shown to increase with in-
creasing amounts of CNTs. Therefore, Mg−2.5−0.5Zr/0.6CNT composites with excellent
performance in treating bone infections can be a substitute for implantable devices in
biomedical applications.
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