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Abstract: Deterioration of soils over the years has led to a decline in crop yields and nutritional
qualities, resulting from the oversupply of conventional fertilizers, which are unsustainable, costly
and pose a threat to the environment. Nanoparticles are gaining a reputation in the field of agriculture
for the remediation of soil degradation in a sustainable way. Recently, they have been recognized
as potential fertilizers with properties that make them more absorbable and readily available for
plant use than their bulk counterpart. However, there is less literature elaborating on the use
of nanoparticles as agro-inputs for crop nutrition and protection. This review, therefore, provides
insights into the application of nanoscaled nutrient elements such as silver, zinc, copper, iron, titanium,
magnesium and calcium as fertilizers. In addition, the review explains the need for utilizing green
synthesized nanomaterials as one of the ways to palliate the use of environmentally toxic chemicals in
the cropping system and discusses the various benefits of nanoparticles, ranging from plant growth
stimulation to defence against pathogens.
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1. Introduction to Nanoparticles

Soil degradation has led to an imbalance between food and feed production, climate
regulation, water retention and carbon storage in the ecosystem. On a larger scale, it has led
to soil erosions and nutrient runoffs, leading to soil infertility, thus affecting human beings
through malnutrition and other related diseases [1,2]. To increase productivity and improve
soil quality, fertilizers have been used for decades by farmers worldwide on degraded soils
affected by human factors [3,4]. However, their intensive usage has led to the pollution
of both water and soil as the crop uses less than half of the applied amount [5,6]; the
other remaining amount is lost through photolysis, hydrolysis, leaching and microbial
immobilization and degradation [7]; thus, threatening the soil microorganisms, human
health and the ecosystem, and reducing the profit margin of farmers [6,8,9].

Limited nutrient usage efficiency and environmental restrictions connected with the
use of chemical fertilisers continue to be a key issue and obstruction to attaining adequate
sustainability in agriculture [6,10]. Currently, the work of researchers is aimed at eco-
friendly agricultural practices that can achieve sustainable food production in the long term
without altering the environment and wasting resources [11]. The introduction of new tech-
nologies, such as nanotechnology, is a key to sustainable food production, hence protecting
the environment [6]. Nanotechnology is known as the science of designing, producing and
characterizing particles at the nanoscale [12]. These particles, of a size less than 100 nm,
have presented numerous properties that allow them to be at the core of several fields, such
as drug delivery, cancer diagnosis and treatment [13]. They are wonderful absorbents and
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catalysts owing to their area, they present a reduced risk of modification by temperature, a
tuneable pore size, and easy adsorption and surface coating [14].

Nanotechnology is defined as the scientific knowledge to manipulate and control
matter in the nanoscale range to make use of size- and structure-dependent properties and
phenomena distinct from those at smaller or larger scales [15]. The use of nanomaterials
dates from 4500 years ago. In some civilisations, nanofibers were used for the reinforcement
of ceramic matrixes. In addition, the ancient Egyptians of the third century used NMs for
the production of different forms of dyes [16]. The development of nanotechnology has
resulted in the production of nanoparticles with many applications in different fields, such
as the food industry, medicine and textiles [17]. In agriculture, their usage as fertilizers and
pesticides has been reported in many studies. Elements such as silver, zinc, copper, iron,
silicon, titanium, magnesium, and manganese have been supplied to plants in different
forms, hence, having a beneficial effect on their growth and yield as they fight against
infections and act as fertilizers or carriers of nutrients [18–23] Although scientific reports
have demonstrated the applications of nanofertilizers and nanoparticles in crop nutrition
and pest control, the adoption of this sustainable alternative is still in its infancy. Hence,
this review, therefore, aims to provide insights into the broad agricultural applications of
nanoparticles as nanofertilizers.

2. Synthesis Methods up to Date

Several methods have been proposed for the synthesis of metal nanoparticles. They are
classified into two main groups, bottom-up methods and top-down methods, which include
physical, chemical and biological methods. The precipitation method, microemulsion,
ultrasound, hydrothermal synthesis, microwave synthesis, inert gas condensation, laser
ablation, sputtering, sol-gel, mechanical milling, biosynthesis, etc., are among the ones that
have been extensively used, as described in Table 1 [24–26]. Though these methods are
usually easy to conduct, the chemical and physical ones present some concerns when it
comes to the stability and monodispersion of the size of the nanoparticles. In addition,
most of these methods are either costly or not energy and material efficient and present a
risk to the environment due to the emission of toxic chemicals [27,28].

Table 1. Nanoparticle synthesis methods [25,29–33].

Advantages Disadvantages

Top-Down Approach

Physical methods

Evaporation–condensation

High speed
No use of toxic chemicals

Purity
Uniform size and shape.

Productivity, high cost,
radiation exposure.

Require high energy,
temperature and pressure,
A large amount of waste
generation, highdilution,
difficult size and shape

tunability, lower stability,
altered surface
chemistry and

physicochemical properties
of nanoparticles.

Arc discharge

Laser Ablation

Hydrothermal

Electron beam
evaporation/lithography

Mechanical grinding

Ball milling

Spray pyrolysis

Vapour-phase synthesis

Inert gaz condensation

Ion implantation

Laser pyrolisis
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Table 1. Cont.

Advantages Disadvantages

Flash spray pyrolysis

Sputtering

Pulse laser deposition

Bottom-up approach

Chemical methods

Chemical reduction

Cost-effective
High versatility in surface

chemistry,
Easy functionalization

High yield
Size controllability
Thermal stability

Reduced dispersity

Difficult large-scale
production

Chemical purification of
nanoparticles required
Low purity, use of toxic
chemicals and organic
solvents, hazardous to

human beings and
the environment.

Irradiation

Electrochemical (electrolysis)
method

Microemulsion

Coprecipitation

Pyrolysis

Irradiation

Sonochemical method

Sol-gel

Solvothermal

Hydrothermal

Plasma-enhanced chemical
vapour deposition

Chemical vapour synthesis

Photoreduction

Biological method

Plant Good reproducibility
High yield
Low-cost

Use of less hazardous
chemicals

Stable nanoparticlesLess
energy

Usually slow

Bacteria

Fungi

2.1. Green Synthesis Using Plants

The usage of living structures in nanoparticle production is a real alternative to physi-
cal and chemical processes owing to its environmental friendliness and cost-effectiveness.
Biosynthesis of nanoparticles using plants has been demonstrated to be green chemistry
that interconnects plant sciences with nanotechnology and helps achieve the synthesis of
nanoparticles at room temperature, neutral pH and a low cost without the use of environ-
mentally harmful chemicals [31]. Plants and their by-products have demonstrated essential
properties in the synthesis process of nanoparticles as their usage is more beneficial than
other systems [34]. They are increasingly being used because they facilitate the develop-
ment of nanoparticles and increase the success rate of synthesis, as researchers strive to
build upscaled processes of monodispersed and stable nanoparticles [35]. The conventional
approach for making metallic nanoparticles from plants employs a reducing agent derived
from dried plant biomass and a metallic salt as a precursor [31]. The photo components
of plant extracts act as reducing as well as stabilizing agents. However, considering the
phytochemistry of plants, it is difficult to precisely tell which chemicals act for the biore-
duction and stabilization of NPs. Nevertheless, biomolecules such as phenolics, alkaloids,
flavonoids, terpenoids, enzymes and proteins have been reported to be involved in the
synthesis reaction [36]. Hence, it has been reported that the hydroxyl groups present in
carbohydrates, amino acids, proteins and nucleic acids of plants act in the stabilization of
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ENPs [37]. Green synthesis of nanoparticles is becoming a very insightful topic nowadays.
There is rising attention to the use of organisms [38]. The biological production of metallic
and metal oxide nanoparticles is less harmful to the environment than the current chemical
or physical approaches. As shown in Figure 1, plant, bacterium, fungus and algae substrates
are utilized to substitute chemical solvents and stabilizers to reduce the toxicity of both the
product and the process [39]. Hence, plants have shown a large interest in expanding the
biosynthesis of nanoparticles on a large scale as the plant-mediated nanoparticles are very
stable and have diverse sizes and shapes compared to the ones produced through other
biological systems [38]. Synthesized nanoparticles can be carbon-based or metal-based.
The most produced and used metal-based engineered nanoparticles are zinc oxide (ZnO),
titanium dioxide (TiO2), gold (Au), silver (Ag), cerium oxide (CeO2) and copper oxide
(CuO) or dioxide (Cu2O) nanoparticles. Other nanoparticles, such as Mn, Fe3O4, CuO, CaO
and Fe3O4, are also widely used and produced [40].
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Figure 1. Summary of the green synthesis process of nanoparticles using the biological route [39].

Many plants have been used in nanoparticle production (Table 2). Based on the
literature, plant-mediated nanoparticle synthesis has gained a reputation. The synthesis
of zinc oxide nanoparticles through Trifolium pratense flower extracts can help to avoid
the use of toxic chemicals. Hence, produced ZnO nanoparticles have proven antibacterial
activities against Pseudomonas aeruginosa and show a larger spectrum than [41]. ZnO
nanoparticles have been manufactured using a variety of plant species, including Moringa
oleifera and Aspalathus linearis [42,43]. Furthermore, other nanoparticles such as pure
massicot phase lead Oxide (PbO) using Sageretia thea [44]; silver nanoparticles with the
capacity of rendering high antimicrobial efficacy against Gram-negative and Gram-positive
bacteria, i.e., Escherichia coli and Staphylococcus aureus and hence has a great potential in
the field of medicine [45]; and gold nanoparticles using extracts of Chrysanthemum and tea
beverages [46], thus making plants a real asset for nanoparticle synthesis.
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Table 2. Summary of the synthesis of nanoparticles using plant extracts as reducing/chelating agents.

Plant Species Nanoparticles Application/Properties Reference

Agatosma betulina ZnO Quasi-spherical nanoparticles with 15.8 nm diameter [47]

Gloriosa superbaL. CuO
5–10 nm spherical nanoparticles.

Antimicrobial activity against Klebsiella aerogenes,
Pseudomonas desmolyticum and Escherichia coli

[48]

Plectranthus amboinicus CuO

Protein denaturation of Egg albumin
Antimicrobial activity against bacteria and fungi

Antioxidant activity
Inhibition of α-Amylase for the treatment of diabetes

Anti-larvicidal activity against mosquito larva

[49]

Lantana camara Fe3O4

Highly stable nanorod crystals
Inhibition of Pseudomonas sp. Growth

Enhancement of Vigna mungo seed germination at a
concentration of 200 ppm

[50]

Laurus nobilis TiO2
Antimicrobial activity against bacteria and fungi
Inhibitory antioxidant activity on DPPH radicals [51]

Solanum nigrum ZnO

29.79 nm nanoparticles.
Antimicrobial (inhibitory) activity against

Staphylococcus aureus, Salmonella paratyphi, Vibrio
cholerae and Escherichia coli

[52]

Bush tea (Athrixia
phylicoides DC.) ZnO Spherical nanoparticles with an average diameter of

24 nm [53]

Simarouba glauca Au
Inhibition of Staphylococcus aureus, Streptococcus

mutans, Bacillus subtilis, Escherichia coli, Proteus vulgaris
and Klebsiella pneumonia growth.

[54]

Origanum majorana L. CeO

Spherically shaped nanoparticles with a size of
10–70 nm.

Antioxidant activity by free radical scavenging activity
against DPPH and ABTS free radicals.

[55]

Capsicum annuum L. Ag The secondary structure of the proteins in the plant
extract changed after the reaction with silver ions. [56]

Lemongrass (Cymbopogon
citratus) Al2O3

Complete growth inhibition of extended-spectrum
β-lactamases and Metallo-β-lactamases isolates. [57]

Populus ciliata Co3O4
Maximum inhibition of Klebsiella pneumoniae and

B. subtillus growth. [58]

Mulberry (Morus alba)
leaves extract Ag Effective antibacterial activity toward Staphylococcus

aureus and Shigella sp. [59]

Citron juice (Citrus
medica Linn.) CuNPs

Significant inhibitory activity against Escherichia coli
followed by Klebsiella pneumoniae, Pseudomonas

aeruginosa, Propionibacterium acnes and Salmonella typhi.
[60]

Rhododendron arboreum CuO Antimicrobial activities against Escherichia coli,
Streptococcus mutans and Proteus vulgaris. [61]

Pisidium guvajava and
Aloe vera MgO Antibacterial activity against E. coli and S. aureus. [62]

2.2. Targeted Elements
2.2.1. Silver Nanoparticles

Silver nanoparticles have been widely used in the medical, industrial and sporting
fields owing to their inhibitory effect on the numerous bacterial strains and microorganisms
commonly present in medical and industrial processes [63]. They present several optical,
electrical and thermal properties, such as high electrical conductivity, and antimicrobial
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and catalytic properties [64]. Moreover, they have been incorporated into composite fibres,
cryogenic superconducting materials, cosmetic products, the food industry and electronic
components due to their unique properties such as chemical stability, good conductivity,
catalyst and most important antibacterial, antiviral, antifungal and anti-inflammatory
activities [65]. When applied, the Ag ions of silver nanoparticles directly react with plants,
improving their morphology and physiology, hence improving their resistance to fungal,
bacterial and nematode attacks [66]. In addition, Ag nanoparticles are believed to have the
ability to improve the germination of plant seeds [67].

2.2.2. Zinc Oxide

Zincite has gained notoriety as it has been used in several industrial sectors. Due
to their potential adaptation, ZnO nanoparticles have been incorporated into solar cell
preparation, gas sensing, chemical absorbents, varistors, hydrogenation catalysts and
photocatalytic degradation, as well as optical and electrical devices [68]. In addition to the
various uses of ZnO nanoparticles, research has demonstrated that they have a stationary
effect on the growth of Escherichia coli [69,70]; Klebsiella pneumonia, Staphylococcus aureus and
Candida albicans and Penicillium notatum [71,72]; Salmonella enterica Typhimurium, Aspergillus
flavus, A. fumigatus and Candida albicans [73], and many more, allowing them to be used
in the agricultural sector and the food industry. The study led by [74] concluded that the
application of ZnO nanoparticles on Sesamum indicum increased both the seeds’ germination
and the plant’s vegetative growth.

The synthesis of ZnO nanoparticles, with different sizes and shapes, has been per-
formed using a significant amount of plant species or their substrates, such as dry gin-
ger rhizome (Zingiber officinale) [71]; the leave of Agathosma betulina and Aspalathus lin-
earis [42,47,75]; orange and pomegranate fruit peel [72,76]; avocado seed extract [77] and
the flowers of Trifolium pratense, Nyctanthes arbor-tristis and Jacaranda mimosifolia [41,78,79].

2.2.3. Copper Nanoparticles

Copper oxide nanoparticles are presented in two forms: copper (II) oxide (CuO)
and copper (I) oxide (Cu2O). The CuO form has been at the centre of numerous fields of
research due to its useful properties, including superconductivity at high temperatures,
spin dynamics and electron correlation, making them elements of choice in gas sensing
devices, catalysis, batteries, high-temperature superconductors, solar energy conversion
and field emission [80]. Due to their high surface-to-volume ratio, continuously renewable
surface and fluctuating microelectrode potential values, nanoparticles are also frequently
used as catalysts. Hence, their activity against microorganisms such as Bacillus subtilis has
made them elements of choice in the field of medicine and wastewater treatment [81,82].

2.2.4. Iron Oxide

Iron is presented in three different forms in nature; most commonly, the oxides found
are magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (Fe2O3). Magnetic iron oxide
nanoparticles, namely magnetite and maghemite, have received significant attention due to
their low toxicity, superparamagnetic properties and simple separation methodology. They
are especially fascinating in biomedical applications for protein immobilization during
diagnostic magnetic resonance imaging, thermal therapy and drug delivery [83].

Iron oxide nanoparticles have a very high magnetism due to four unpaired electrons in
their 3d orbitals, allowing them to be a key component in magnetic seals and inks, magnetic
recording media, catalysts, ferrofluids, contrast agents for magnetic resonance imaging
and therapeutic agents for cancer treatment [84]. The use of iron oxide nanoparticles in
the field of agriculture is a novel technology that has been proven successful, though
some improvements are necessary. For instance, Fe2O3 nanoparticles promoted growth
by regulating phytohormone contents and antioxidant enzyme activity in peanuts, hence
improving the availability of Fe in the soil and its accumulation in the plant cells [85]. Soil
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drenching and foliar application are the most frequently used methods for the application
of iron oxide nanoparticles on plants, usually as a source of Fe nutrition [86].

The preparation of iron oxide nanoparticles is achieved through many methods,
most of which are chemical, physical or biological [83]. The biosynthesis of iron oxide
nanoparticles has been shown to be a cost-effective and environmentally friendly alternative
to the physical and chemical techniques of production. This method produces non-toxic
nanoparticles because sugars, antioxidants, amino acids and proteins present in the plants
are used for the formation of the nanoparticles [86].

2.2.5. Magnesium Oxide

Due to its unique physicochemical properties, such as outstanding refractive index, ex-
cellent corrosion resistance, high thermal conductivity, low electrical conductivity, physical
strength, stability, flame resistance, dielectric resistance, mechanical strength and excellent
optical transparency, magnesium oxide (MgO) is an eco-friendly, economically feasible and
industrially important nanoparticle [87]. It is regarded as a promising high-surface-area
heterogeneous catalyst support, additive, and promoter for a variety of chemical reactions
due to its unique properties, which include stoichiometry and composition, cation valence
and redox properties, acid-base character and crystal and electronic structure [88].

Magnesium oxide nanoparticles are employed as semiconductors, organic catalysts,
sorbents for organic and inorganic pollutants in wastewater, electrochemical biosensors,
photocatalysts and refractory materials. They also naturally have antibacterial, anticancer
and antioxidant properties [87]. Owing to its low toxicity for both plants and humans, and
thermal stability, MgO nanoparticles can be used for plant protection and increased produc-
tion. Furthermore, they possess antimicrobial properties against bacteria and fungi [89].

2.2.6. Calcium Carbonate

Recently, calcium carbonate has been highlighted among the other investigated nano-
materials [90]. Several characteristics have been associated with CaCO3 nanoparticles; they
include affordability, low toxicity, biocompatibility, cytocompatibility, pH sensitivity, sedate
biodegradability and environmental friendliness [91]. CaCO3 is a critical substance in both
fundamental research and industry. It has numerous applications in various industrial
fields such as plastic, paper, rubber, paints, textile, food and beverages. It has been used
as a filler material in paints, pigments, coatings, paper and plastics, and it can be sculpted
into complicated and beautiful shapes by creatures, such as bones, teeth, and shells [92,93].
In the medical field, they have been used for drug delivery, biosensors, bone replacement,
biomineralization and enzyme immobilization [90].

The synthesis of CaCO3 has been performed through many methods, such as aqueous
precipitation [94], mechano-chemical treatment without further heat treatment [95], lysine
biomineralization [96] and plant species such as Myrtus communis [97]. The application
of calcium carbonate (CaCO3) as a drug carrier to cancer cells has been gaining a reputa-
tion owing to its availability, low cost, safety, biocompatibility, pH sensitivity and slow
biodegradability [98]. Hence, it has been proven that CaCO3 can help fight against pests
such as California red scale (Aonidiella aurantii) and Oriental fruit flies (Bactrocera dorsalis)
when sprayed on Citrus tankan leaves [99]. In addition, in a study led by [100], the combina-
tion of calcium carbonate and hydroxyl apatite nanoparticles under full irrigation provided
the highest yield compared to other treatments on soybean plants.

2.2.7. Titanium Dioxide

The oxide form of the titanium metal is TiO2; it is naturally found as anatase, rutile
or brookite minerals. TiO2 nanoparticles have been produced worldwide and are mostly
used in cosmetics, sunscreens, food preparation and drug delivery systems due to their
absorption of ultraviolet light and higher refractive index, which empowers them to
work as a material with various applications [101]. In agriculture, for instance, TiO2
nanoparticles have been used as antimicrobial and growth-regulating agents as well as
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fertilizers. They present great potential as growth-promoting agents for plants and help
prevent human food intoxication. Different plant and fruit pathogens are destroyed by TiO2
nanoparticles. Moreover, TiO2 nanoparticles can achieve the mineralization of residual
pollutants, pesticides and organic compounds in hydroponic cultures and under simulated
conditions [102]. Studies have shown that TiO2 has a beneficial impact on plant growth and
yield. The study led by [103] showed an increase in plant dry weight, chlorophyll content
and photosynthetic rate of spinach plants after seed treatment with TiO2 before planting. In
addition, the application of TiO2 on Zea mays resulted in an increased uptake of micro and
macro-nutrient; however, higher concentrations decreased the dry biomass of plants [104].

3. Application of Nanoparticles on Plants as Fertilizers

Integrating cutting-edge nanotechnology into agriculture, including fertiliser creation,
is considered one of the greatest feasible methods to significantly increase crop yield and
sustain the world’s constantly growing population [105]. The application of nanoparticles
in agriculture as fertilisers is attributed to their improved characterization, absorption
and responsiveness, as well as surface and adhesion effects [106]. Nanofertilizers are
macro- or micro-nutrient fertilisers that are used to increase agricultural yields and have
a particle size of less than 100 nm. Nanofertilizers are nanomaterials responsible for
providing one or more types of nutrients to growing plants, supporting their growth and
improving production [107]. They are presented in two different types. On one hand,
the nanomaterials supply nutrients to plants to improve their development and yield, on
the other, they are the carriers of nutrients and only assist in the transport and release of
nutrients without directly being used as a nutrient source [108].

There is a growing need in the agriculture industry to increase food production
to reduce hunger. Small-scale crop production has been significantly impacted by the
heavy price, limited supply and frequent shortage of inorganic fertilisers, which is partly
attributable to the COVID-19 pandemic outbreak, which has led to rising oil and food
prices. Over the past years, inorganic fertiliser application has been used to improve
plant growth and yields. Nevertheless, crops typically use less inorganic fertiliser than
what is administered, and the surpluses are accessible to be leached into rivers, which
contributes to water contamination [108]. Repeated application of such fertilisers also makes
pollution severe. Therefore, to improve crop yield, it is required to produce fertilisers with
targeted, gradual or controlled release. According to [109], nanotechnology, especially
material nanotechnology, has gained a reputation in the field of agriculture (Figure 2). The
publications in this regard have gone from less than 50 in number between 2009 and 2015
to approximately 200 papers in 2021, demonstrating the interest given to this field.
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Given their distinctive qualities, such as their high surface area to volume ratio, slow
or timed-release characteristics and absorption capacities, nanoparticles are thought to be
suitable for producing fertilisers for use in agriculture [6]. Nanofertilizers’ effectiveness
to promote crop productivity is influenced by how they are applied to plants, as well
as how they are absorbed and accumulated by plants. To promote plant growth and
yield, nanofertilizers can be delivered above or below ground by foliar spray or irrigation.
Additionally, biosynthesized nanoparticles can be added to seeds or primed [110,111]. The
uptake and accumulation of nanoparticles for enhancing crop growth are dependent on the
plant type as well as nanoparticles type, size, concentration, chemical composition, stability
and transformation rate after biological interaction [112,113]. Nanofertilizers penetrate the
aerial regions of the plant by entering the xylem vessels through the root epidermis and
endodermis. Moreover, these nanoparticle nutrients can be delivered to different areas of
the plant through the phloem and leaf stomata [113].

3.1. Application of Silver Nanoparticles

When compared to other nanoparticles, silver nanoparticles are drawing more atten-
tion due to their extensive use in a wide range of products, such as antimicrobial agents,
shampoo, soap, toothpaste, wastewater treatment, food packaging materials, food storage
containers, textiles, air fragrances, detergents and paint [114–116]. Silver nanoparticles
have recently been linked to improved crop productivity in agriculture. According to
numerous studies, the optimal concentration levels of silver nanoparticles are crucial for
promoting seed germination [117,118] and plant growth [119]. In addition, chlorophyll
concentration and photosynthetic quantum efficiency have been enhanced [120,121], as
well as the effectiveness of water and fertiliser utilisation [122]. However, high concentra-
tions of the 25 nm silver nanoparticles were found to tear down the cell wall and harm the
vacuoles of Oryza sativa root cells, having a toxic effect [123]. According to [124], the silver
was unable to infiltrate the root cells of Oryza sativa when present in low concentrations of
up to 30 g/mL; nevertheless, the larger concentrations were effective in obliterating the
cell structure and producing a harmful impact. Several studies reported that various sizes
of silver nanoparticles demonstrate a clear relationship between size and nanoparticles
toxicity to plants; smaller nanoparticles were consistently found to be more hazardous to
plants compared with bigger nanoparticles [125–127].

3.2. Zinc Oxide Nanoparticles

All metallic nanoparticles influence how plants grow and develop; however, ZnO
nanoparticles stand out for their exceptional qualities and wide range of applications [128].
Zinc is a regulatory co-factor and structural component of many enzymes and proteins
and plays an important role in plant metabolic activity, particularly photosynthesis, phyto-
hormone biosynthesis and antioxidant mechanisms [129]. A correct amount of zinc must
be applied and made accessible because both deficiencies and excesses are harmful to
plants. Due to their exceptional qualities, ZnO nanoparticles have been determined to be a
potential particle for maintaining the necessary concentration of zinc in plants [130].

The study of [131] reported that zinc oxide nanoparticles improved both the fresh and
dried weight of Cicer arietinum seedlings. Similarly, [132] stated that a high proportion
of ZnO nanoparticles had a substantial impact on the viability and growth of tobacco.
However, higher concentrations of ZnO nanoparticles at 2000 ppm were found to have
toxic effects on the growth and yield of peanuts [133]. On the other hand, no significant
impacts of ZnO were found on Cucurbita pepo at the investigated concentration [134].
Improved seed germination and root development, as well as plant growth, were observed
on Fenugreek (Trigonella foenum-graecum) plants [135]. Additionally, similar results were
recorded where seed germination was improved on Indian mustard (Brassica juncea) [136].
Increased protein content was observed when ZnO nanoparticles were applied, which
helps with photosynthesis, promoting the viability and development of maize (Zea mays L.)
plants [137]. Zinc oxide nanoparticle treatment at a concentration of 1000 ppm was found
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to enhance seed germination and seedling vigour, which led to initial development in the
soil as evidenced by early flowering and increased leaf chlorophyll concentration [133].

3.3. Iron Oxide Nanoparticles

Iron is a crucial microelement with a variety of physiological and biochemical effects
and is the fourth most prevalent element in terms of value; nonetheless, plants require
large amounts of iron to grow [138]. Iron plays crucial roles in enzyme reactions and
photosynthesis, improving the functionality of the photosynthesis process, DNA trans-
lation, RNA synthesis and auxin activities, all of which are necessary for optimal plant
development [139]. Due to the limited availability of iron-containing minerals, utilising
nanoparticles to address iron shortage is one of the alternative approaches. Nanopar-
ticles can also increase crop production to different environmental stresses [138]. Iron
oxide nanoparticles can enhance nutrient intake by interacting with molecules inside plant
cells [140].

Several studies have reported that the application of iron oxide nanoparticles on
different crops has improved plant growth parameters and dry matter material. According
to [141], iron oxide nanoparticles boosted tomato plant development metrics. Similar results
were observed by [142], who reported that the plant growth performance, photosynthetic
pigments, indole acetic acid, the content of proline, free amino acids and total soluble sugars
were significantly enhanced when iron oxide nanoparticles were sprayed on moringa plants.

3.4. Titanium Dioxide

Titanium dioxide is a well-known nanoparticle that has been used in crop production
as well as human consumption. Titanium dioxide nanoparticles have several noteworthy
effects on the morphologic, biological and physiological characteristics of the crop [143]. In
their study, [144] observed that wheat seedlings treated with titanium dioxide nanoparticles
resulted in enhanced growth and production characteristics, including yield. Further-
more, [145], reported that canola plants treated with titanium dioxide nanoparticles had
increased germination rates and better radicle and plumule growth.

3.5. Calcium Carbonate

One of the most prevalent elements in the geosphere is calcium carbonate (CaCO3).
Calcium carbonate is an essential element in both basic technology and engineering. It al-
ready has a wide range of industrial uses in areas such as polymer, paper, elastomer, paints,
fabrics, foodstuff and refreshments. Calcium carbonate is effective in combating pests such
as oriental fruit flies and California red scales when sprayed on citrus tankan leaves [99].
Additionally, in research by [100], the combination of calcium carbonate and hydroxyl
apatite nanoparticles applied to soybean plants under irrigation showed maximum yield
in comparison to other treatments. In addition, [108] found that the application of calcium
carbonate nanoparticles with a size of 20–80 nm considerably enhanced the seedling growth
and dry biomass in contrast to the control when applied to groundnut seedlings.

3.6. Magnesium Oxide

Magnesium oxide has received significant attention among nanomaterials because
of its simple stoichiometry, high ionic character, crystal structure and surface structural
flaws. Peanut seeds responded favourably to MgO nanoparticle dispersion, which pro-
moted germination, growth and photosynthetic pigments [146]. Additionally, the effects of
applying magnesium oxide nanoparticles at a dosage of 4 mg/L on mung bean seedling
growth revealed rapid germination when compared to other treatments [147]. Furthermore,
maximum germination, seedlings, and vigour index were observed on the green gram
(Vigna radiata) [148].
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4. Nanoparticles’ Adverse Effects

Biosynthesized nanoparticles offer enormous potential to alleviate stress, boost growth
and improve agricultural production. However, the unintentional release of some nanopar-
ticles into the environment poses a threat to both aquatic and land plants [149]. For instance,
in their study, [150] reported the adverse effect of CdSe nanoparticles on the morphology
and peroxidase enzyme of common Duckweed (Lemna minor), with it having an increased
concentration of superoxide dismutase enzyme, catalase, phenols and flavonoids, in con-
trast with the results of [151]. Furthermore, ZnSe nanoparticles have been found to have a
certain toxic effect on the growth of Lemna minor by triggering the plants’ defence system
due to phytotoxicity [152]. Furthermore, carbon nanotubes were found to trigger oxidative
stress in red spinach [153]. In addition, the application of high levels of Ag-NPs can cause
oxidative stress by increasing the accumulation of reactive oxygen species and affecting the
chloroplast structure and function of Spirodela polyrhiza [126]. Hence, it is crucial to mention
that the toxicity of nanoparticles depends on the method used for their production. Sev-
eral studies have shown that plant-mediated nanoparticles present less to no eco-toxicity
towards plants in general and aquatic plants in particular [154–156]. However, further
investigations should be carried out to ascertain the effect of nanoparticles synthesized
using plant species on aquatic plants.

5. Conclusions

To maximize yields and alleviate poverty and malnutrition, nanoparticles have been
recognized as highly beneficial for plant biomass production and enhancement of crop
nutritional quality. This review highlighted the attributes of biosynthesized nanomaterials
as sustainable alternatives to conventional chemical fertilizers.

These potential agro-inputs can be readily absorbed by plants and are environmentally
friendly crop nutrient supplements (Ca, Mg and Fe NPs), with advantages beyond fertil-
ization. Thus, the review also highlighted the use of nanoparticles such as Ti, Ag and Zn,
which can be integrated into cropping systems to enhance the plant’s defence mechanism
against disease attack. However, fewer studies have investigated the broad application of
nanoparticles in pest and disease management, offering an opportunity for future research
in crop protection.
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