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Abstract: In this work, the linearity axiom of irreversible thermodynamics for diffusion and heat
transfer has been re-examined. It is shown that this axiom is compatible with the entropy produc-
tion invariance principle with respect to a reference quantity for diffusion and heat transfer in the
Euclidean space. Moreover, the underlying relations of the other principles of irreversible thermo-
dynamics for multi-component diffusion and heat transfer, such as the quasi-equilibrium and the
Onsager reciprocal relations (ORR) with the entropy production invariance, are re-examined. It was
shown that the linearity principle postulates for diffusion and heat transfer and could be directly
derived from the entropy production invariance axiom. It is believed that this work could not only be
used for the drying of polymer coatings but also for pedagogical purposes. It may also be generalized;
thus, leading to a generalized framework for irreversible thermodynamics.

Keywords: axioms; linearity axiom; irreversible thermodynamics; Onsager reciprocal relations;
pedagogical; equilibrium; coatings; drying; diffusion; heat transfer

1. Introduction

The field of irreversible thermodynamics is a powerful tool for the macroscopic de-
scription of processes with an application not only to the Euclidean space but also to the
relativistic framework [1–3]. Irreversible thermodynamics is based on axioms far and
beyond those of equilibrium thermodynamics. The axiomatic foundation is the subject
of intensive research from the early days of irreversible thermodynamics [4–17]. These
principles were discussed in detail in several textbooks and reviews [4–17]. In particular,
the field of irreversible thermodynamics is crucial for many transport processes, including
nanofluids, fluid mechanics in complex geometries, and heat transfer, etc. [18–23].

Classical irreversible thermodynamics (CIT), often known as linear or the Onsage-
rian thermodynamics, was the earliest and the most successful approach to irreversible
thermodynamics. In 1931, the Onsagerian theory was proposed for the first time with the
definition of a general reciprocity relationship in the mutual interference of two simultane-
ous irreversible processes. The totality of the known theory of irreversible thermodynamics
was based on the application of this one basic theorem. The statistical approach has been
used to derive the Onsager reciprocity theorem, which was originally derived using a
thermodynamic approach. The matrix of resistance coefficients in flux-force interactions
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is symmetrical in the absence of the magnetic fields and assuming linearly independent
fluxes or thermodynamic forces. This is referred to as the Onsager reciprocal relations
postulate. (ORR: Lij = Lji) [24–29].

In particular, Onsager derived, for the first time, these relations by using the concept of
microscopic reversibility [24,25]. Casimir [26] developed further this theory. Experimental
evidence for the ORR was provided by D.G. Miller [27,28]; thus, eliminating any doubt [29]
about the validity of the Onsager reciprocal relations (ORR).

Other than the Onsager reciprocal relations, non-equilibrium thermodynamics close
to the equilibrium is based on the linearity axiom and quasi-equilibrium axiom as well.
Therefore, one of the most important principles for irreversible thermodynamics is the lin-
earity axiom. This principle states that the fluxes (J) are linear functions of thermodynamic
forces (X) (linearity axiom: J = L.X). The quasi-equilibrium axiom states that equilibrium
thermodynamics relations are still valid in a differential (local) form. Equilibrium thermo-
dynamic laws apply to those systems which are not in equilibrium, as long as the gradients
are not too significant, according to quasi-equilibrium. The correlation between entropy
production, fluxes, and forces is described by the axioms of quasi-linear thermodynamics
of irreversible processes.

The aim of this work is to investigate the underlying relation between the axioms of
irreversible thermodynamics for heat transfer and diffusion. Diffusion and heat transfer are
important in many industrial processes, such as coating formation by drying, separations,
etc. Therefore, the clarification of non-equilibrium principles is crucial for deriving the
fundamental laws of these processes [30,31].

Moreover, a vital question arises regarding coating formation by drying: should we
resort to higher order approximations, such as the quadratic approximation, due to steep
polymer concentration gradients observed in the drying of many polymer thin film systems,
such as the acetone/cellulose acetate system and also in the case of glassy polymer coatings
formation [30,31]? A major task of this work is to examine the relation of the linearity axiom
with other principles, such as the entropy production invariance axiom. The motivation of
this research is to re-examine the validity of the linearity axiom, which is crucial for many
processes, such as the drying of polymeric coatings.

The application of the entropy production invariance, however, is not a new idea;
Niven [32], for example, examined the invariance properties of the thermodynamic entropy
production of shear-flow systems in its global (integral), local (differential), bilinear, and
macroscopic formulations, including dimensional scaling, invariance to fixed displace-
ments, rotations or reflections of the coordinates, time antisymmetry, Galilean invariance,
and Lie point symmetry. Subsequently, the underlying relations between the entropy
production invariance and the axioms of irreversible thermodynamics for heat transfer and
diffusion have been re-examined.

2. Theoretical Section and Results

The starting point of this analysis was to define the dissipation function (Ψ) represent-
ing the uncompensated Gibbs free energy transferred to the environment as the product of
the entropy production rate per unit volume (σ) multiplied by the Temperature T: Ψ = σT.
The entropy production rate per unit volume (σ) was further analyzed as the product of
fluxes and the thermodynamic forces.

For example, the thermodynamic forces for heat transfer in an isotropic body in the
absence of elastic contribution, external forces, mass transfer, and chemical reactions are
written as [10]:

• Close to equilibrium: Xq = −∇T
T2

• Extended thermodynamics region: Xq = −∇T
T2 −A ∂Jq

∂t

where, a is a thermodynamic parameter. The Fourier law as well the hyperbolic
Cattaneo equation is directly derived from the above equations by applying the linearity
axiom [10].
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A crucial question arises from the above analysis: what are the theoretical grounds
of the linearity postulate? Or in other words, ‘Why has the linearity postulate been so
successful in deriving the fundamental laws even from far to equilibrium in such cases as
heat transfer or diffusion in the Extended Thermodynamics Framework [10]’?

To answer this question, we had to resort to the other axioms, such as the invariance
of entropy production to a reference quantity. To examine this principle, firstly we had
defined the reference systems. Let us define the body where an irreversible process, such
as heat transfer, is taking place as system I. The system of an observer outside the system I
is defined as the system II. An observer in system II is measuring dissipation energy of
system I as well as the heat flux and the temperature of this system by using proper
instruments. These instruments have to be calibrated relative to a reference temperature
T0. It is reasonable to take as reference temperature the calibration temperature T0. From
the theoretical point of view, one can simply establish the necessity of reference quantity
by using the Taylor expansion of a continuous flux around a reference quantity located at
system II.

The entropy production invariance principle in the local form (differential) for heat
transfer in Euclidean space simply requires that the entropy production in system I is
invariant of the calibration temperature T0:

∂σ

∂T0
=

∂JqXq

∂T0
= 0 (1)

The linearity axiom for heat transfer in an isotropic body is directly derived from the

above equation by separating variables:
∂ ln Jq

∂T0
= − ∂ ln Xq

∂T0
= λ0, or Jq = LqXq; Lq = e2λ0T0 .

The λ parameter does not depend either on Jq or on Xq.
The entropy production invariance for n-component isothermal and isobaric diffusion

in an isotropic body by taking into account that the flux for this case is defined as Ji =
ci(vi − v∗) and requires the entropy production to be invariant by adding to the flux a
constant and uniform velocity v0 (v→ v + v0 ). In other words, the entropy production (σ)
and the dissipation function (Ψ) are invariant in the Euclidean space for an observer located
at the ground (system I) if the diffusing system is placed on a vehicle (system II) moving
with a constant and uniform velocity v0 [5–10]. The entropy invariance for diffusion is not
a new idea; the origin of this idea could be found in the pioneering work of Onsager [33]
for diffusion.

This principle in the local (differential) form is written as:

∂σ

∂v0
=

∂
n
∑

i=1
JiXi

∂v0
= 0 (2)

• Close to equilibrium: Xi = −
(∇µi)T,P

T

• Extended thermodynamics region: Xi = −
(∇µi)T,P

T − bi
∂J*

i
∂t

where, µi is the chemical potential of the i-th component, v* stands for the velocity of
the center of mass, bi is a thermodynamic parameter.

Please note, the quasi-equilibrium principle for isothermal and isobaric multi-component

diffusion (
n
∑

ι=1
ciXi = 0) is also directly derived from the entropy production invariance prin-

ciple (Equation (2)).
At this point, new fluxes, defined relative to an arbitrary reference velocity v 6=, are

introduced [34]:

J 6=i = ci(vi − v 6=); v 6= =
n

∑
i=1

wivi;
n

∑
i=1

wi = 1 (3)
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If these new fluxes are introduced in the dissipation function, then the dissipation
function is invariant under the transformation of the new set of fluxes due to the quasi-
equilibrium principle [34]:

Ψ =
n

∑
i=1

TJ 6=i .Xi (4)

Please note, the fluxes J 6=i are also linearly dependent, since from Equation (3):

n

∑
i=1

J 6=i wi/ci = 0 (5)

For binary diffusion the above equation and the entropy production invariance princi-
ple are written as:

J 6=1 w1/c1 + J 6=2 w2/c2 = 0
∂σ

∂v0
=

∂
(

J 6=1 X1 + J 6=2 X2

)
∂v0

= 0

The linearity axiom for binary diffusion in the Euclidean space could be directly
derived by following similar arguments as for the heat transfer case. In particular, by
taking into account the above equations and eliminating J2 or J1 from the above entropy
invariance equation, the following equations have been derived:

∂σ
∂v0

=
∂
(

J 6=1 X′1
)

∂v0
= 0; X′1 = X1 −w1c2X2/w2c1

∂σ
∂v0

=
∂
(

J 6=2 X′2
)

∂v0
= 0; X′2 = X2 −w2c1X1/w1c2

(6)

or
∂ ln J 6=1

∂v0
= − ∂ ln X′1

∂v0
= λ1

∂ ln J 6=2
∂v0

= − ∂ ln X′2
∂v0

= λ2

(7)

The λi parameter depends neither on J 6=i nor on Xi.
From the above Equation (7) one could directly show that the linearity axiom is

compatible with the entropy invariance principle for binary isothermal diffusion in the
Euclidean space:

J 6=1 = L11X1 + L12X2; L11 = e2λ1v0 ; L12 = −(w1c2/w2c1)e2λ1v0

J 6=2 = L21X1 + L22X2; L21 = −(w2c1/w1c2)e2λ2v0 ; L22 = e2λ2v0
(8)

The generalization to multi-component diffusion by the mathematical induction
method does not create any fundamental difficulty.

The findings of this work for binary diffusion are in accordance with the literature [7–9].
In particular, one could directly derive from the above equations the geometric rule (L12

2 = L21
2

= L11 × L22), which is valid for binary solutions [7–9]. The Fick’s law or the Maxwell–Stefan
equation for diffusion could be directly derived from Equation (4) by further using the linearity
axiom and the quasi-equilibrium axiom.

Regarding the implementation of the theory for multi-component diffusion to a real
system, the example of a ternary isothermal diffusing system placed on a vehicle moving
with a constant and uniform velocity v0 as reported by L. Onsager [33] has been chosen. The

entropy production for this ternary isothermal diffusing system is written as: σ =
3
∑

i=1
J 6=i Xi.
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By using the volume average velocities (wi = CiVi) and the quasi-equilibrium princi-
ple, the following equations could be directly derived [28]:

σ = J 6=1 X1T + J 6=2 X2T

X1T =
(

1 + C1V1
C3V3

)
X1 +

(
C2V1
C3V3

)
X2

X2T =
(

C1V2
C3V3

)
X1 +

(
1 + C2V2

C3V3

)
X2

(9)

where, Vi is the partial molar volume of the i-th substance.
The linearity axiom applied to Equation (9) states:

J 6=1 = L11X1T + L12X2T; J 6=2 = L21X1T + L22X2T (10)

The entropy invariance principle for the above systems requires:

∂
(

J 6=1 X1T + J 6=2 X2T

)
∂v0

= 0 or
∂
(

J 6=1 X1T

)
∂v0

= −
∂
(

J 6=2 X2T

)
∂v0

= λ3 (11)

or
J 6=1 X1T = λ3v0; J 6=2 X2T = −λ3v0 (12)

In the derivation of the above equations the integration constants were set equal to
zero. The Equation (11) could be further transformed as:

J 6=1
∂X1T

∂v0
+ X1T

∂J 6=1
∂v0

= λ3 J 6=2
∂X2T

∂v0
+ X2T

∂J 6=2
∂v0

= −λ3 (13)

By further using Equation (12), the above equations are written as:

∂ ln(X1T)

∂v0
+

∂ ln
(

J 6=1
)

∂v0
=

1
v0

∂ ln(X2T)

∂v0
+

∂ ln
(

J 6=2
)

∂v0
=

1
v0

(14)

By introducing the m parameters, Equation (14) could be written as:

∂ ln(X1T)
∂v0

= m1
v0

∂ ln
(

J 6=1
)

∂v0
= 1−m1

v0

∂ ln(X2T)
∂v0

= m2
v0

∂ ln
(

J 6=2
)

∂v0
= 1−m2

v0

(15)

The m parameters do not depend on v0. By integrating the above equations and by
introducing the integration constants k, the above equations are written as:

X1T = k1v0
m1 X2T = k2v0

m2 J 6=1 = k3v0
1−m1 J 6=2 = k4v0

1−m2 (16)

By comparing Equation (16) with the linearity axiom (Equation (10), the conductivity
coefficients Lij are written as:

L11 = (1− Y1)
k3
k1

v0
1−2m1 L12 = Y1

k3
k2

v0
1−m1−m2

L21 = (1− Y2)
k4
k1

v0
1−m1−m2 L22 = Y2

k4
k2

v0
1−2m2

(17)

where, Y is an adjustable parameter introduced to describe the contribution of each term to
the linearity principle.

Let us now consider the actual diffusing system LiCl/KCl/H20 placed on a vehicle
moving with a constant and uniform velocity. The conductivity coefficients Lij by using the
transformed thermodynamic forces (please see Equations (9) and (10)) were reported by
D.G. Miller [28] in his landmark work for the validity of the Onsager reciprocal relations as:
L11 = −0.200, L12 = 0.0605, L21 = 0.0586, L22 = −0.283.
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These conductivity coefficients were scaled out by 10−8/RT and have the units
molescm−1 s−1. R is the universal gas rate constant. Strongly related to the entropy
production invariance principle is the uniqueness axiom of phenomenological resistance, or
conductivity coefficients with respect to frames of reference in the Euclidean space [35–38].
In other words, the conductivity coefficients of the diffusing system placed on a vehicle
moving with a constant and uniform velocity are identical to the conductivity coefficients
measured at the ground.

Clearly, Equation (17) is very rich in adjustable parameters. For example, by assuming
that the conductivity coefficients are uniquely defined, and by assuming values for the
m1 and m2 parameters, one could directly estimate the pro-exponential parameters (see
Equation (17)) by using standard methods of non-linear regression analysis. In particular,
by assuming a constant uniform velocity ν0 equal to 3 m/s and by setting the m1 and m2
parameters equal to 0.3, the conductivity coefficient data for the system LiCl/KCl/H2O [28]
was exactly reproduced for the following adjustable parameters values:

(1− Y1)
k3

k1
= −0.1289 Y1

k3

k2
= 3.9× 10−2 (1− Y2)

k4

k1
= 3.78× 10−2 Y2

k4

k2
= −0.1824

The above parameters were scaled out by by 10−8/RT.
The strongest evidence for the entropy invariance principle is the fact that this principle

coincides with the Galilean invariance for diffusion. The origin of applying Galilean
invariance to diffusion could be found in the pioneering work of Prigogine [5] for diffusion.
Regarding real processes, such as multi-component diffusion and electrokinetic phenomena,
additional experimental evidence about both the linearity postulate and the Onsager
reciprocal relations could be found in the work of D.G. Miller [27,28].

It was also shown that the Onsager reciprocal relations (ORR) for diffusion close to the
equilibrium were necessarily fulfilled by using the uniqueness resistance coefficient axiom
with respect to the frames of reference and the linearity postulate as well as the entropy
invariance principle [37,38].

Thapliyal et al. [39] applied the entropy production invariance for isothermal and
isobaric diffusion in the linear extended thermodynamics region to further investigate the
validity of Onsager reciprocal relations (ORR) in this area. Verros and Arya [40] showed
that the ORR axiom is also necessarily fulfilled for heat transfer close to the equilibrium in
an anisotropic solid by using the transformation of frames of reference combined with the
uniqueness axiom and the linearity axiom.

Ågren [41] suggested that the Onsager relations should be interpreted as there is a
frame of reference where all the transport processes in diffusion are independent. Moreover,
Zi-Kui Liu [42] showed in a recent work that the ORR could be directly derived by using
only the linearity postulate, and proposed a generalized theory for cross phenomena.

The above work for both ORR and quasi-equilibrium axioms is a clear indication that
these axioms are not only strongly related to each other for the heat transfer and diffusion
case, but they are also both related to the linearity principle. Moreover, this work shows
that the linearity axiom is compatible with more general principles, such as the entropy
production invariance axiom; thus, further validating the linearity axiom for heat transfer
or multi-component diffusion in the Euclidean space. The authors hope that this work will
attract the interest of other colleagues to further investigate the fundamental irreversible
thermodynamics relations in the Euclidean space.

3. Conclusions

In this work, the validity of the linearity postulate for heat transfer and multi-component
diffusion was re-examined. It has been shown that:

• The linearity postulate is a reasonable approximation for both diffusion and heat
transfer in the Euclidean space.

• The linearity postulate for heat transfer and diffusion is compatible with the entropy
production invariance in the Euclidean space.
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This is in accordance to the previous work in the field. This work could be further
used due to its simplicity for further understanding the coating formation by drying and
pedagogical purposes, or even to develop a new framework for irreversible thermodynam-
ics axioms.
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Nomenclature

A,b thermodynamic parameter
Ci molar concentration of the i-th substance
k integration constant
J flux
L phenomenological coefficients relating fluxes with thermodynamic driving forces
R universal gas constant
T absolute temperature
T0 reference absolute temperature
t time
v* velocity of the center of mass
v0 constant and uniform velocity
vi velocity of the i-th substance
v 6= arbitrary reference velocity
Vi partial molar volume of the i-th substance
wi weighting factors whose sum is equal to unity
X thermodynamic driving force
X1T transformed thermodynamic driving force
Greek Letters
λ parameter of the system
µi chemical potential of the i-th substance
σ entropy production rate per unit volume
Ψ dissipation function
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