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Abstract: The outstanding electrical, mechanical, and thermal properties of carbon nanotubes (CNTs)
make them promising materials for a wide range of applications. Numerous theoretical and experi-
mental studies on the diameter-dependent properties of single-walled carbon nanotubes (SW-CNTs)
exist. The incorporation of carbon nanotubes into commercial polymers can alter the properties of
both materials. Herein, we demonstrate polystyrene/SW-CNT composites with different diameters to
check property changes, including radiation-protective characteristics under various doses of gamma
radiation. The intrinsic glassy state of polystyrene disappeared owing to the introduction of SW-CNTs
into the polymer-polymer chain. In addition, when 1.3 nm diameter SW-CNTs were introduced, the
Fourier-transform infrared spectroscopy peaks for alkyl aryl ethers were observed at 10–60 kGy of
gamma irradiation. In this study, the different phenomena that occur when polystyrene/SW-CNT
composites are formed with different SW-CNT diameters (0.78 nm and 1.3 nm) were investigated via
systematic analyses.

Keywords: polymer/CNT composites; radiation resistance; diameter-dependent; radiation protective
characteristics; gamma radiation

1. Introduction

In present times, commercial polymers have gained immense importance in industries
and our daily lives. They have many advantages, such as diverse functionality, low
cost, light weight, ease of processing, and excellent chemical stability [1]. Over the past
few decades, the effects of irradiation on the structural, optical, thermal, and electrical
characteristics of commercial polymers have been reported [2]. Polystyrene (PS) is a
commercial polymer that is affected by gamma radiation. Gamma radiation can induce
styrene polymerization [3]. After polymerization, radiation induces crosslinking of the
polymer main chain [4].

The main consequence of gamma irradiation is the generation of radicals. These radi-
cals can give rise to: chain scission, which proceeds with a decrease in molecular weight;
and chain branching, wherein molecular weight increases up to crosslinking. Usually, un-
der vacuum conditions, gamma-ray irradiation of PS leads to crosslinking. However, under
atmospheric conditions, chain scission reactions predominate at the expense of crosslink-
ing [5–7]. Some of the radicals react with oxygen to form peroxides and subsequently
degrade the main polymeric backbone. This indicates that the main chain degradation of
PS occurs exclusively with oxygen. Thus, it is called oxidative degradation [8,9].

Specifically, some changes in the PS properties observed in the low-irradiation range of
0–70 kGy were reported by C. Albano et al. Owing to the glassy properties of polystyrene,
the radicals generated upon low gamma irradiation doses are trapped and do not change the
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progress of decomposition. Furthermore, the double bond of the aromatic ring disperses or
absorbs energy, preventing further reactions [10–12]. Therefore, the oxidative degradation
of polymers may be related to radical and oxygen diffusion.

In addition, when single-walled carbon nanotubes (SW-CNTs) are combined with
polymers, the unique properties of the two materials, such as mechanical stability, thermal
stability, and radiation resistance, can be modified [13–19]. The evaluation of radiation
effects on SW-CNTs is also being studied, which is necessary to understand the changes
in the unique properties of the composites [20–23]. In the case of SW-CNTs, when irradi-
ated with gamma rays, functional groups such as –OH, –COOH can be generated on the
sidewalls. The average length of the SW-CNTs tends to decrease upon gamma irradiation,
and as the irradiance increases, the straight SW-CNT bundles may become curved or wavy.
Also, theoretical and experimental studies have been reported on SW-CNTs with various
diameter-dependent properties such as chiral wrapping, stability, molecular dynamics,
strength, and stiffness [24,25]. Thus, composites of PS and SW-CNTs with different diame-
ters can be applied in many radiation fields such as radiation shielding, radiation sensors,
and oil-absorbing membranes [26–29].

Herein, we have systematically studied the changes in material properties when SW-
CNTs with two different diameters are introduced into polystyrene. We have investigated
properties such as polymer degradation and radiation resistance characteristics, under
various doses of gamma radiation.

2. Materials and Methods
2.1. Materials

Polystyrene (average Mw~192,000; catalog no. 430102), SW-CNTs ((6,5) chirality, ≥95%
carbon basis, ≥95% as carbon nanotubes) of 0.78 nm average diameter (catalog no.: 773735),
SW-CNTs (≥90% carbon basis, ≥80% as carbon nanotubes) of 1.3 nm diameter (catalog no.:
724777), and tetrahydrofuran (THF, ReagentPlus®, ≥99.0%, containing 250 ppm BHT as
the inhibitor, catalog no.: 178810) were obtained from Sigma-Aldrich Inc. (Milwaukee, WI,
USA) Ethanol (99.5%, catalogue no.: E0236) was purchased from Samchun Chemical Co.,
Ltd. (Seoul, Korea).All the reagents and solvents were used without further purification.

2.2. Preparation of Samples and Gamma Irradiation

The PS (1 g) was dissolved in 3 mL of the THF solvent in each vial. Fifteen polymer
solution vials were then prepared. In another flask, 10 mg of SW-CNTs and 5 mL of
methanol were mixed into a solution. To blend with the PS, 1 mL (2 mg, 0.2 wt%) of the
SW-CNT solution was added and stirred for one day to thoroughly mix the two solutions.
The vial containing the two mixed solutions was placed in a shaker and dried naturally
while maintaining well-mixed conditions.

Gamma irradiation was performed using a gamma 60Co source on the dried composite
samples with different radiation doses (10, 30, 60, and 120 kGy) at a dose rate of 10 kGy/h.
The 60Co source (MDS Nordion, Ottawa, ON, Canada, IR 221 n wet storage type C-188)
was located at the Korea Atomic Energy Research Institute (KAERI) in Jeongeup, Republic
of Korea.

2.3. Thermal Analysis

The thermal properties of the polymers were determined via thermogravimetric
analysis (TGA, TGA2, Mettler Toledo, Seoul, Korea) and differential scanning calorimetry
(DSC, Q100, TA Instruments, New Castle, DE, USA) at a heating rate of 10 ◦C/min under a
nitrogen atmosphere. To confirm the decomposition temperature of the composite, TGA
was performed at 30–800 ◦C. The DSC thermograms of the samples were measured from
30–300 ◦C under a nitrogen atmosphere at a heating rate of 10 ◦C/min.
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2.4. Polymer Molecular Weight

The number-average molecular weight (Mn) and weight-average molecular weight
(Mw) were determined via gel permeation chromatography (GPC, PL-GPC 110, Polymer
Laboratories, Church Stretton, UK) in CHCl3 at a flow rate of 1.0 cm3/min at 40 ◦C.

2.5. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The FT-IR spectra of the gamma-ray-irradiated polystyrene/SW-CNT composites
were obtained using an ATR-FTIR spectrophotometer (Bruker TENSOR 37, Bruker Cor-
poration, Billerica, MA, USA). The spectra were measured in the wavenumber range of
800–4000 cm−1 in the ATR mode and recorded using the Bruker OPUS software (version
8.5, Bruker Corporation, Billerica, MA, USA) at a resolution of 4 cm−1.

3. Results

Two types of SW-CNTs with different diameters, viz. 0.78 nm and 1.3 nm were added
to PS to prepare the composite samples (Figure 1). Owing to its simple and well-known
main backbone structure, PS was selected. The composite containing 0.2 wt.% of the SW-
CNTs was irradiated with different radiation doses (0, 10, 30, 60, and 120 kGy) at a rate of
10 kGy/h to evaluate the effect of the diameter of SW-CNTs on the material properties of
the composite.
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Figure 1. Overview of PS/SW-CNT composites with different diameters of 0.78 and 1.3 nm and
various gamma-irradiation conditions.

After gamma irradiation, TGA and DSC analyses were performed to explore the
thermal characteristics of the as-prepared composite. The TGA analysis confirms that the
high thermal decomposition temperature of 415 ◦C does not change (Figure 2). Thus, the
intrinsic high thermal stability of the basic PS polymer is not inhibited by the addition of
SW-CNTs.

In addition, DSC analysis was performed to analyze the thermodynamic changes
upon formation of the composite. The DSC results confirm that the glass transition peak
of intrinsic PS (102 ◦C) shifts to an increasingly higher temperature range with increasing
total irradiation dose (Figure 3). Moreover, as the total irradiation dose increases, the glass
transition temperature changes into two phases (105 ◦C and 120 ◦C at 60 kGy); when it
was further irradiated, it appeared again as a single peak (120 kGy at 120 ◦C). However,
this intrinsic glass transition phenomenon of PS completely disappears when SW-CNTs
are added to form composites, regardless of their diameter. Thus, the crystalline parts
that can be formed by polymer-polymer interactions disappear, and SW-CNTs are added
therebetween to form an amorphous state [30]. The existing glassy state of PS traps radicals
and also affects oxygen diffusion [10]. Thus, in the case of composites containing SW-
CNTs, the amorphous phase may be strengthened and can affect the radicals and oxygen
diffusion rate.
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PS/SW-CNT composites with a diameter of 0.78 nm (b) and 1.3 nm (c), at different integral doses.

Molecular weight analysis was performed to directly determine whether the polystyrene/
SW-CNT composites were decomposed and/or cross-linked upon the gamma irradiation.
The molecular weights of the two composites are not significantly different from those
of polystyrene without SW-CNTs (Figure 4). Some studies report that at low irradiation
(0–70 kGy), the high resistance to degradation by PS is due to the presence of an aromatic
ring in its molecular structure [10]. This phenomenon of radiation resistance was confirmed
in both, the PS reference and PS/SW-CNTs composites.



Coatings 2022, 12, 1550 5 of 8

Coatings 2022, 12, x FOR PEER REVIEW 5 of 9 
 

 

 
Figure 3. The effect of gamma irradiation on the DSC thermograms (second heating) of PS (a), 
PS/SW-CNT composites with a diameter of 0.78 nm (b) and 1.3 nm (c), at different integral doses. 

Molecular weight analysis was performed to directly determine whether the polysty-
rene/SW-CNT composites were decomposed and/or cross-linked upon the gamma irradi-
ation. The molecular weights of the two composites are not significantly different from 
those of polystyrene without SW-CNTs (Figure 4). Some studies report that at low irradi-
ation (0–70 kGy), the high resistance to degradation by PS is due to the presence of an 
aromatic ring in its molecular structure [10]. This phenomenon of radiation resistance was 
confirmed in both, the PS reference and PS/SW-CNTs composites. 

 
Figure 4. Changes in number-average molecular weight (Mn) of PS (a) and PS/SW-CNT composites 
with diameters of 0.78 nm (b) and 1.3 nm (c) under gamma irradiation. 

The FT-IR technique was used to track the changes in the chemical bonding between 
polystyrene and SW-CNTs (Figure 5). There is no significant change in chemical bonding 
when a 0.78-nm SW-CNT is introduced, but two peaks centered at 1250 cm−1 and 1050 
cm−1 appear from 10–60 kGy when 1.3-nm SW-CNTs were introduced. These peaks ap-
pear in alkyl aryl ethers, and the oxidation reaction occurs in the case of the 1.3-nm SW-
CNTs composites through radiation energy. 

Figure 4. Changes in number-average molecular weight (Mn) of PS (a) and PS/SW-CNT composites
with diameters of 0.78 nm (b) and 1.3 nm (c) under gamma irradiation.

The FT-IR technique was used to track the changes in the chemical bonding between
polystyrene and SW-CNTs (Figure 5). There is no significant change in chemical bonding
when a 0.78-nm SW-CNT is introduced, but two peaks centered at 1250 cm−1 and 1050 cm−1

appear from 10–60 kGy when 1.3-nm SW-CNTs were introduced. These peaks appear in
alkyl aryl ethers, and the oxidation reaction occurs in the case of the 1.3-nm SW-CNTs
composites through radiation energy.
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Figure 5. Fourier-transform infrared spectroscopy spectra for PS (a), and PS/SW-CNT composites
with an SW-CNT diameter (0.78 nm (b) and 1.3 nm (c)) upon gamma irradiation.

The reaction by which PS decomposes into benzoic acid is harsh and complex, even
under photooxidation conditions [31]. In addition, the decomposition products, such as
acetic acid, benzyl alcohol, and benzoic acid, do not appear in their natural state and
can only be obtained through treatments such as UV irradiation [32]. Contrarily, in the
polystyrene/SW-CNT composite having a SW-CNT diameter of 1.3 nm, an intermediate
of the decomposition product is formed even at a low gamma irradiation dose of 60 kGy
or less [32]. Figure 6 shows the general decomposition products of PS under irradiation
conditions. Interestingly, in this study, oxidation intermediates such as alkyl aryl ethers
were formed, which were not the general decomposition products. When SW-CNTs of
0.78 nm diameters are used, this phenomenon occurs with an extremely low probability;
thus, different internal environments may be created in the polymer/SW-CNTs composites
depending on the diameter. Therefore, when the number of irradiated radicals is the same,
the oxygen diffusion into polystyrene/SW-CNT may be the most effective factor inducing
the oxidation reaction.
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Figure 6. Schematic representation of formation of typical PS radiolysis products on irradiation.

In previous studies, polymer-CNT complexes involved a dispersion of the CNT bun-
dles between the polymer, thereby increasing the effective surface area. For this reason, in
a gas sensor, when SW-CNT was introduced rather than the polymer itself, the sensitivity
was amplified more than 10 times [33].

In addition to the large effective surface area, oxygen diffusion into the composites can
also be a key factor in the oxidation reaction. Commercially available SW-CNTs (diameter
of 0.78 nm) have a (6,4) chirality and an effective diameter of ~4 Å (nominally 6.8 Å, but
shrunken due to the van der Waals diameter of carbon atoms). This diameter allows water
molecules to pass through while restricting the passage of chloride (Cl−). In addition,
studies on the possibility of diffusion and permeability of various small ions and molecules
through SW-CNTs are actively being conducted [34–37]. Results of a previous simulation
and experiment on water permeability using 0.78-nm SW-CNTs exist. [34] Based on this, as
shown in Figure 7a, in the case of oxygen (O2) having a larger volume than water (H2O).
Thus, passing through the 0.78-nm SW-CNTs may be more difficult for oxygen than water.
From this point of view, more oxygen can permeate through SW-CNTs with a large diameter
(1.3 nm) than those with a small diameter (0.78 nm).
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Thus, when introducing SW-CNTs into commercial polymers, the diameter of the
SW-CNTs may affect the properties of the composite, which can be tuned to achieve the
desired effect. If SW-CNTs with a diameter <0.78 nm are selected, it is possible to obtain a
robust material, mainly by controlling its glassy properties without being decomposed by
irradiation. However, if SW-CNTs having diameters >1.3 nm are included in the composites,
the oxidative intermediate can be formed through an oxidation reaction.
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4. Conclusions

In summary, we have prepared PS/SW-CNTs composites with two different diameters
of the SW-CNTs (0.78 nm and 1.3 nm) to check the gamma-irradiation effects on the as-
prepared composites. There was no significant change in the thermal stability or molecular
weight of the composites after gamma irradiation. However, the intrinsic glassy state of
polystyrene disappeared when the polymer and SW-CNTs were mixed. Interestingly, when
SW-CNTs of 1.3 nm diameter were introduced, the chemical bonding was affected; this
was evidenced by the oxidative intermediate. When SW-CNTs of diameters <0.78 nm were
introduced into PS, it was possible to maintain radiation resistance while suppressing the
brittle tendency of the polymer. Moreover, when SW-CNTs with diameters >1.3 nm were
introduced, the oxidative reactions were accelerated, which may find immense utility as an
eco-friendly waste plastic treatment method.

Author Contributions: Conceptualization, D.-H.L.; methodology, D.-H.L. formal analysis, H.-E.S.
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