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Abstract: The mold is one of the core components of steelmaking, and its flow field distribution will
directly affect the quality of the casting slab. A three-dimensional nozzle model is built in this work,
and fluid simulation is carried out to investigate the influence of the casting speed, immersion depth,
slab thickness, and width on flow behavior in the mold. This model combined simulation with real
conditions. The casting speed, immersion depth, slab width, and slab thickness are the actual process
parameters used in the steel factory. The results show that when the casting speed increases from 0.6
to 1.0 m/min, the strike positions of the narrow surface are 0.439, 0.476, and 0.480 m below the liquid
level, respectively. When the immersion depth increases from 180 to 220 mm, the impact depth of
the stream at the exit of the nozzle side hole moves down, the lower recirculation zone moves to the
centre and bottom of the slab, and the upper recirculation zone moves downward. When the slab
thickness increases, the strike locations of the narrow face move down. Further, when the slab width
increases, the distance of the strike location from the strike position increases first and then decreases.
From the fluid results, the process parameters can be optimized by considering the strike location
and the change of the surface turbulent kinetic energy. The model proposed in this work provides a
theoretical guidance and optimization for the nozzle.

Keywords: continuous casting; nozzle; mold; flow; impact

1. Introduction

Continuous casting production is a crucial component of the steel industry. The
process involves high-temperature liquid molten steel being injected into a mold from the
tundish through a submerged entry nozzle (SEN), where the initial solidified shell is formed
under the cooling effect of the mold’s copper plate. The mold is known as the heart of the
continuous casting machine and is the key factor determining the quality of the slab [1–6].
The flow of molten steel in the mold has become the focus of research attention in recent
years. Analysis of the complex process in the mold has been facilitated by improvements
in computing power and the rapid development of numerical simulation methods. The
flow of molten steel affects the solidification of the casting slab and the uniformity of the
solidified billet shell, and directly determines the occurrence of defects, such as cracks. In
actual production, the change of process parameters will have a direct impact on the flow
of molten steel; thus, it is meaningful to research the influence of process parameters, such
as pulling speed, immersion depth, slab thickness, and width, on flow behavior in the
mold [7–10].

Many scholars have previously analyzed the flow characteristics in a mold. For
example, Ho et al. [11] studied the effect of flow pattern on the fluid field and inclusions
in the mold. According to their findings, an increase in the pulling speed reduced the
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residence time, which had an adverse effect on the removal of inclusions. The results were
meaningful for the optimization of SEN design. Yang et al. [12] developed a 3D model to
describe molten steel flow, the solidification process, and heat transfer in the mold. They
observed the formation mechanism of macrosegregation, calculated the thickness and the
temperature of the slab at the liquid phase cavity, and, then, verified the findings with the
measured values. The results showed that the temperature in the middle of the fluid steel
was lower than the temperature of the fluid steel at the solidification front due to circulation
in the reflow zone. This made the solidified billet grow unevenly and caused quality
defects, such as shrinkage and segregation of the billet. Thomas and Zhang [13] studied
the mathematical model of the mold flow field in slab continuous casting, employing one-
phase and two-phase model research, water model experiments, particle image velocimetry
digital imaging, and volume of fluid model surface topography simulation. Wang et al. [14]
built a three-dimensional transient model which allowed for the complex phenomenon
in the mold. They researched the parameters, such as temperature, speed, surface profile,
fluid pattern, and so on. The model could enable a deep understanding of the fluid field.
Tian et al. [15] proposed a new method to conveniently measure the speed distribution
in the mold. They considered the temperature, thermoelectric force, and speed through
the Seebeck effect. The online detection was also used to verify the speed distribution.
Domitner et al. [16] calculated the influence of the casting speed on the slab quality; they
believed that the speed influenced the metallurgical length of the slab.

Although many researchers have studied the flow of molten steel in the mold, there
are still few reports which consider the casting speed, immersion depth, slab thickness, and
width on flow behavior [17–19]. The condition parameters are important factors that affect
the slab quality; therefore, this work builds a 3D nozzle model in which the casting speed,
immersion depth, slab thickness, and width can be changed. All the parameters in this
study are the real-condition parameters from the steel factory.

2. Fluid Model

Figure 1 provides a structural diagram of the SEN. The structure is a double-sided
mouth; the inner diameter is 98 mm, and the size of the oval is 54 mm × 90 mm.
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Figure 1. The structures of SEN.

The detailed parameters of the model are shown in Table 1. The mesh of the model is
shown in Figure 2. The time step is 0.01 s and the iterations number is 5000. The grid is
hexahedral mesh and the number is 456,951.
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Table 1. Calculation parameters.

Item Value

Length of mold 900 mm
Liquid level height 100 mm

Immersion depth of nozzle 130 mm
Casting speed 0.8 m·min−1

Steel density 7200 kg·m−3

Steel viscosity 0.0055 kg·m−1·s−1
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Here are the assumptions.

(1) Molten steel is regarded as being in an incompressible steady state;
(2) Ignore the vibration of the mold and slag flow;
(3) The natural convection caused by density changes is ignored. The rapid outflow of

molten steel from the nozzle impinges on the molten steel in the mold, causing forced
convection; however, the density change of molten steel is very small, and the natural
convection caused by the density change is far smaller than the forced convection
caused by the impact of molten steel, so it can be ignored;

(4) The calculation boundary is a no-slip boundary. In general, large-scale flow field
analysis, the wall belongs to a no-slip boundary. For microchannels, slip boundary
conditions can be considered to make the numerical results consistent with the actual
situation. In this paper, the simulation belongs to large-scale analysis, we focus
on the macroscopic flow field results, and there is no need to use a slip boundary.
Almost all the references concerning flow calculation of steel in the mold adopt no-slip
boundary conditions.

Here are the governing equations:

(1) Continuity equation:

ρ
∂(vi)

∂xi
= 0 (1)

where vi denotes the velocity vector, ρ is the density, and xi denotes the coordinate.

(2) Momentum equation:
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ρ
∂(v)

∂t
+∇× (ρvv) = −∇p +∇× (τ) + F (2)

τ = µ
[(
∇v +∇vT

)]
− 2

3
∇× vI (3)

Here, p represents the pressure, F denotes the external volume force, τ denotes the
stress tensor, and I represents the unit tensor.

(3) Energy-conservation equation:

ρ
∂(T)

∂t
+ ρdiv(vT) = div

(
k
cρ

gradT
)
+ ST (4)

Here, cρ, T, K, and ST denote the specific heat capacity, temperature, conductivity, and
viscous dissipation term, respectively.

(4) Standard k-ε equation:

ρ
∂(vjk)

∂xj
=

∂

∂xj
(

µτ

σk

∂k
∂xj

) + Gk − ρε (5)

ρ
∂(vjε)

∂xj
=

∂

∂xj
(

µτ

σk

∂ε

∂xj
) + C1Gk

s
k
− C2ρ

s2

k
(6)

Here are the boundary conditions.

(1) The entry condition is the velocity entry;
(2) The exit condition is the velocity exit;
(3) The fluid level is free, and no shear force exists;
(4) Both the mold wall and nozzle wall are treated as non-slip solid walls, while the flow

field near the wall is treated as a standard wall function.

3. Results and Discussion
3.1. Fluid Distribution under Different Casting Speeds

Figure 3 shows the flow field at three different casting speeds of 0.6, 0.8, and 1.0 m/min.
The increase in casting speed makes the molten steel flow speed in the mold significantly
faster, the momentum of the liquid molten steel increase, and the velocity distribution of the
reflux areas change significantly. Table 2 lists the whirlpool centre locations and the strike
locations of the narrow surface in the upper and lower recirculation zones of the flow field.
The results show that when the casting speed is 0.6, 0.8, and 1.0 m/min, incrementally, the
position of the whirlpool centre in the upper recirculation zone moves toward the nozzle
and is relatively close to the liquid surface, while the position of the whirlpool centre in the
lower reflux zone expands with the increase of the casting speed. The tendency and order
of magnitude of the results are in agreement with the results simulated by Takatani et al.
and Li et al. [20,21], they also agree with the experimental results proposed by Shamsi et al.
and Lu et al. [22,23].
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Table 2. Whirlpool core positions and strike locations under different casting speeds.

Speed Upper Whirlpool
Centre

Lower Whirlpool
Centre Strike Position

0.6 m·min−1 (0.650 m, −0.247 m) (0.596 m, −1.958 m) −0.439 m
0.8 m·min−1 (0.590 m, −0.247 m) (0.613 m, −1.860 m) −0.476 m
1.0 m·min−1 (0.596 m, −0.237 m) (0.605 m, −1.630 m) −0.480 m

Figure 4 shows the flow velocity distribution of the free surface of the slab section
at different casting speeds. When the casting speed increases, the free surface velocity
becomes significantly faster. The distribution of the molten steel flow field is very sensitive
to changes in the casting speed. The liquid level stability of the mold flow field will be
affected when the speed is too low or too fast, which will influence the distribution of
protective slag in the liquid level and result in a reduction in the quality of the casting billet.
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Figure 5 provides a comparison of the turbulent kinetic energy on the free liquid
surface at different casting speeds. When the speed is 0.6 m/min, the turbulent kinetic
energy is low, and the maximum value is only 0.00078 m2·s−2, which shows a parabolic
uniform change where the fluctuation of the liquid surface is small. When the speed is
0.8 m/min, the turbulent kinetic energy on the free liquid surface fluctuates up and down
with a maximum value of 0.000978 m2·s−2, which appears 0.5 m away from the centre of
the nozzle. When the speed is 1.0 m/min, compared with the previous two drawing speeds,
the turbulent kinetic energy changes dramatically, with the maximum value reaching
0.00194 m2·s−2, which is approximately 2.5 times the maximum value at 0.6 m/min. Under
these conditions, the free liquid surface will fluctuate violently, the melting stability of
the slag will be destroyed, and bubbles and inclusions can easily occur. As the quality of
the slab decreases markedly, it is necessary to be very careful when increasing the casting
speed in actual production, and to prepare a reasonable nozzle plan.
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3.2. Fluid Distribution under Different Immersion Depths

Figure 6 shows the flow lines of the molten steel in molds with nozzle immersion
depths of 180, 200, and 220 mm. The location of the whirlpool centres and the strike
locations of the narrow surface are shown in Table 3. It can be seen that when the immersion
depth of the nozzle increases, the impact depth of the stream at the exit of the nozzle side
hole moves down, the lower recirculation zone moves to the centre and bottom of the
slab, and the upper recirculation zone moves downward. Meanwhile, the flow distance
of the molten steel increases, the momentum is consumed, and the speed decreases when
it reaches the free surface. When the immersion depth is small, the mold flux layer is
relatively active, which is more conducive to the slag melting; however, it is easy to entrain
the slag and inclusions under these conditions, and this affects the quality of the slab. If
the immersion depth is large, the activity of the molten steel surface decreases, which is
not conducive to mold flux. The heat transfer between the slag, the slab shell, and the
mold’s copper plate is hindered, and crack bonding is prone to occur. The solidification
bridge of the mold slag between the nozzle and the mold’s copper plate is not conducive to
the normal solidification of the slab, and the temperature of the molten steel is higher at
this point. Therefore, the selection of immersion depth generally follows the principle of
controlling the fluctuation of the free liquid surface within a reasonable range, where the
smaller the immersion depth, the better.
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Table 3. Whirlpool core positions and strike locations under different immersion depths.

Immersion Depth Upper Whirlpool
Centre

Lower Whirlpool
Centre Strike Position

180 mm (0.626 m, −0.218 m) (0.571 m, −1.557 m) −0.438 m
200 mm (0.612 m, −0.236 m) (0.536 m, −1.718 m) −0.476 m
220 mm (0.590 m, −0.247 m) (0.613 m, −1.860 m) −0.499 m

The turbulent kinetic energies at the immersion depths of the three nozzles are com-
pared in Figure 7. The turbulent kinetic energy of the free liquid surface change is inversely
proportional to the immerse depth. The mold with a depth of 180 mm has a relatively large
liquid surface velocity in the flow field, and the stability of the flow field is relatively poor.
Additionally, the liquid surface velocity of the flow field is relatively more stable, and the
average flow velocity is small, which is more conducive to maintaining the stability of the
liquid surface. However, the fluctuation of the liquid surface is low, which is not conducive
to slag, causing the upper part of the shell to solidify too quickly, and the lower part due to
heat flow. Part of the shell melts, the temperature difference between the upper and lower
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sides becomes smaller, and the thickness of the mold shell is reduced, making it prone to
breakout and bulging.
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Here, the principle of immersion depth selection is employed to consider the influence
of the liquid level fluctuation and surface flow velocity on the melting and lubrication
behavior of mold powder. In this example, the appropriate immersion depth is 200 mm.

3.3. Fluid Distribution under Different Slab Thicknesses

Figures 8–10 show the streamline diagram (a) and flow field distribution diagram (b)
at different slab thicknesses of 220, 260, and 320 mm, respectively. Table 4 lists the changes
in the location of the upper and lower return whirlpool centres and the strike locations of
the narrow face. When the slab thickness is 220 mm, the location of the whirlpool centre
in the upper reflow zone is (0.613, −0.199), and the position of the whirlpool centre in the
lower reflow zone is (0.601, −1.727). When the slab thickness is 260 mm, the position of
the whirlpool centre in the upper recirculation zone is (0.590, −0.247), which moves to the
centre of the nozzle and the bottom of the mold; the position of the whirlpool centre in
the lower recirculation zone is (0.613, −1.860), which moves downward. When the slab
thickness is 320 mm, the location of the whirlpool centre in the upper reflow zone is (0.876,
−0.241), which is closer to the narrow face than under the 220 mm thickness. Additionally,
the surface flow velocity is higher, and the location of the whirlpool centre in the lower
reflow zone is (0.660, −1.600), which is the closest to the free surface.
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Table 4. Whirlpool core positions and strike locations under different slab thicknesses.

Slab Thickness Upper Whirlpool
Centre

Lower Whirlpool
Centre Strike Position

220 mm (0.613 m, −0.199 m) (0.601 m, −1.727 m) −0.336 m
260 mm (0.590 m, −0.247 m) (0.613 m, −1.860 m) −0.476 m
320 mm (0.876 m, −0.241 m) (0.660 m, −1.600 m) −0.539 m

Figure 11 shows the change in turbulent kinetic energy. When the slab thickness
increases, the strike locations of the narrow face are 0.336, 0.476, and 0.539 m, respectively,
and the strike locations of the narrow face move downward. This may be due to the
constant casting speed. When the thickness of the slab increases, the liquid molten steel
passing through the cross-section of the slab increases per unit of time; that is, the increase
in the amount of molten steel means that the molten steel enters the mold at a higher speed,
and the main stream flows at a higher rate. The high momentum has an impact on the
narrow face and moves the narrow face strike locations downward; however, due to the
increase in the cross-sectional area of the slab, the molten steel requires more momentum
to reach the meniscus position so that the upper reflux stream has a lower velocity and
the turbulent kinetic energy of the liquid level is reduced. However, when the thickness
increases to 320 mm, the section of the slab is too large, which causes the position of the
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upper recirculation whirlpool to move too far toward the narrow surface; therefore, the
slab with a thickness of 320 mm has a lower turbulent kinetic energy at 0.3–0.6 m from the
centre of the nozzle.
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3.4. Fluid Distribution under Different Slab Widths

Figures 12–14 show the streamline diagram (a) and flow field distribution diagram (b)
of the mold when the slab widths are 2300, 2500, and 2700 mm, respectively. Table 5 lists
the changes in the location of the upper and lower return whirlpool centres and the strike
locations of the narrow face. When the slab width is 2300 mm, the position of the whirlpool
centre in the upper reflow zone is (0.542, −0.222), and the position of the whirlpool centre
in the lower reflow zone is (0.534, −1.851). When the slab width is 2500 mm, the position
of the whirlpool centre in the upper recirculation zone is (0.590, −0.247), and the position
of the whirlpool centre in the lower recirculation zone is (0.613, −1.860), which shows
little change compared with the width of 2300 mm. When the slab width is 2700 mm, the
position of the whirlpool centre in the upper recirculation zone is (0.655, −0.222), which
moves to the narrow surface of the slab with a larger range and has a higher surface velocity.
The position of the whirlpool centre in the lower recirculation zone is (0.652,−1.650), which
is the closest to the free liquid surface. The strike locations of the narrow surface are 0.354,
0.476, and 0.460 m, respectively, and the strike locations increase first and then decrease.

Coatings 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 

surface are 0.354, 0.476, and 0.460 m, respectively, and the strike locations increase first 
and then decrease. 

 
Figure 12. Fluid contours: (a) trajectory line; and (b) flow field at a 2300 mm width. 

 
Figure 13. Fluid contours: (a) trajectory line; and (b) flow field at a 2500 mm width. 

 
Figure 14. Fluid contours: (a) trajectory line; and (b) flow field at a 2700 mm width. 

Figure 12. Fluid contours: (a) trajectory line; and (b) flow field at a 2300 mm width.



Coatings 2022, 12, 1547 12 of 14

Coatings 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 

surface are 0.354, 0.476, and 0.460 m, respectively, and the strike locations increase first 
and then decrease. 

 
Figure 12. Fluid contours: (a) trajectory line; and (b) flow field at a 2300 mm width. 

 
Figure 13. Fluid contours: (a) trajectory line; and (b) flow field at a 2500 mm width. 

 
Figure 14. Fluid contours: (a) trajectory line; and (b) flow field at a 2700 mm width. 

Figure 13. Fluid contours: (a) trajectory line; and (b) flow field at a 2500 mm width.

Coatings 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 

surface are 0.354, 0.476, and 0.460 m, respectively, and the strike locations increase first 
and then decrease. 

 
Figure 12. Fluid contours: (a) trajectory line; and (b) flow field at a 2300 mm width. 

 
Figure 13. Fluid contours: (a) trajectory line; and (b) flow field at a 2500 mm width. 

 
Figure 14. Fluid contours: (a) trajectory line; and (b) flow field at a 2700 mm width. Figure 14. Fluid contours: (a) trajectory line; and (b) flow field at a 2700 mm width.

Table 5. Whirlpool core positions and strike locations under different slab widths.

Slab Width Upper Whirlpool
Centre

Lower Whirlpool
Centre Strike Position

2300 mm (0.542 m, −0.222 m) (0.534 m, −1.851 m) −0.354 m
2500 mm (0.590 m, −0.247 m) (0.613 m, −1.860 m) −0.476 m
2700 mm (0.655 m, −0.222 m) (0.652 m, −1.650 m) −0.460 m

Figure 15 shows the change of free liquid surface turbulent kinetic energy under
different slab widths. When the slab width increases from 2300 to 2500 mm, the free
surface turbulent kinetic energy decreases. However, when it increases to 2700 mm, the
maximum free surface turbulent kinetic energy increases to 0.00245 m2·s−2. This may be
due to the section of the slab being too large, whereby the liquid molten steel with the same
initial velocity moves from the nozzle to the narrow surface of the mold and flows over
a larger distance, which increases the momentum loss. The position of the main stream
impacting the narrow surface moves relatively upward, and the positions of the upper
and lower whirlpool centres move toward the narrow surface and upward. Additionally,
the velocity of the fluid when it reaches the meniscus becomes faster as a whole, making
the turbulent kinetic energy at the free liquid surface larger. This phenomenon does not
occur when the slab section is within a reasonable range. When the slab width changes, the
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change trend of the flow field in the mold is consistent with the thickness change; thus, in
actual production, various factors should be comprehensively considered to formulate a
reasonable slab thickness and width scheme.
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4. Conclusions

(1) When the casting speeds increased from 0.6 to 1.0 m/min, the strike positions of the
narrow surface were 0.439, 0.476, and 0.480 m away from the meniscus, respectively.
The molten steel flow speed in the mold becomes significantly faster, the momentum
of the liquid molten steel increases and the velocity distribution of the upper and
lower reflux zones change significantly;

(2) When the immersion depths increased from 180 to 220 mm, the impact depth of the
stream at the exit of the nozzle side hole moved downward, the lower recirculation
zone moved to the centre and bottom of the slab, and the upper recirculation zone
moved downward;

(3) When the slab thickness increased from 220 to 320 mm, the strike locations of the
narrow face moved downward; so, the quality of the thick slab is not easy to control;

(4) When the slab width increased from 2300 to 2700 mm, the strike locations of the
narrow surface were 0.354, 0.476, and 0.460 m, respectively, and the strike locations of
the narrow surface increased first and then decreased. When the slab width increases
from 2300 to 2500 mm, the free surface turbulent kinetic energy decreases; however,
when it increases to 2700 mm, the maximum free surface turbulent kinetic energy
increases to 0.00245 m2·s−2. So, the quality of the wider slab is more difficult to control
than the quality of the narrower slab.
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