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Abstract: In orthopedics, bone fixation imposes the use of implants in almost all cases. Over time, the
materials used for the implant have evolved from inert materials to those that mimic the morphology
of the bone. Therefore, bioabsorbable, biocompatible, and bioactive materials have emerged. Our
study aimed to review the main types of implant materials used in orthopedics and present their
advantages and drawbacks. We have searched for the pros and cons of the various types of material
in the literature from over the last twenty years. The studied data show that consecrated metal alloys,
still widely used, can be successfully replaced by new types of polymers. The data from the literature
show that, by manipulating their composition, the polymeric compounds can simulate the structure
of the different layers of human bone, while preserving its mechanical characteristics. In addition,
manipulation of the polymer composition can provide the initiation of desired cellular responses.
Among the implanting materials, polyurethane is distinguished as the most versatile polymeric
material for use both as orthopedic implants and as material for biomechanical testing of various
bone reduction and fixation techniques.

Keywords: orthopedic devices; implants materials; biomechanical tests; polyurethane; titanium-
based alloys; biocompatibility; bioceramics

1. Introduction

Over time, for medical purposes, different materials foreign to the human body have
been used, such as hair or cellulose used as a suture material, and wood or horn proved
to be effective as a material for fixing bone fractures [1,2]. Modern times have brought
metals and alloys to the fore as the first choice for the composition of implants, due to
their properties: superior strength, reduced risk of rejection, and, above all, biological
inertness [3]. Since the Second World War, a new type of compounds, namely syntheti-
cally obtained polymers, began to be increasingly used in medical applications, including
orthopedics [3,4]. Over time, synthetic materials have evolved from biocompatible and
biodegradable materials to bioactive materials today. Data from the literature show that, by
manipulating the composition, polymeric compounds can simulate the structure of differ-
ent tissues while maintaining their mechanical characteristics [3,4]. In addition, by choosing
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the appropriate type of composition, polymers can initiate targeted cellular responses that
favor the healing/repair process. Among the synthetic compounds, polyurethane stands
out as one of the most versatile materials, being able to be used as orthopedic implants,
covering materials, drainage devices, but also as a material for biomechanical testing
of different fracture reduction and fixation techniques [5,6]. The diversity of uses those
polyurethanes allow is generated by the fact that, through chemical manipulation, the
resulting polyurethanes can mimic many of the structures of human tissues [7]. Knowledge
of the mechanical properties of materials and their biocompatibility are the key points for
their use in orthopedic surgery.

2. Requirements for Materials Used to Fix Bones

From ancient times, mankind has used different foreign materials for medical purposes,
such as employing hair or cellulose as suture material and using wood or horn for bones
fracture fixation [1,8–11]. In modern times, metals and alloys have become the first choice
in implants utilization, due to their superior strength, lower risk of rejection, and inertness.
Since the Second World War, a new class of compounds, the synthetic polymers, have
rapidly developed and been increasingly used [12–14]. Regardless of the type of material
used, the implant devices must meet general and specific requirements, such as mechanical
and biological characteristics.

2.1. General Requirements of Materials for Orthopedic Implant

The basic requirements for implant materials are the clinical and manufacturing
properties. As clinical criteria, the materials used for implants must neither be rejected by
the body nor generate harmful products [15]. As manufacturing criteria, the materials must
allow for the fabrication of the optimum configuration at an affordable price.

2.2. Specific Requirements of Materials for Orthopedic Implant
2.2.1. Mechanical Requirements

The mechanical requirements for an implant are dictated by its use; e.g., strength for
loading, elasticity for shear stress. In orthopedics, the implant materials must work in
repeated upload/download cycles under different types of forces such as bending, twisting,
and shearing stress. Furthermore, implantation devices are subjected to corrosive condi-
tions over long periods of time, which may affect their properties. Therefore, mechanical
properties must be accurately assessed in order to maintain fracture reduction. The me-
chanical properties of the material are evaluated in terms of deformation (strain) produced
by an applied force (stress) [16]. The applied stress may be produced by loading, bending,
torsion, and compression, or by shear actions. The mechanical properties of an implant
material can be assessed using the general stress-strain diagram for the deformation of a
material under an imposed external force [17]. The diagram indicates two separate regions:
the elastic region, where no deformation occurs, and the plastic region, where deformation
is permanent. In the elastic region, the slope of the curve expresses intrinsic stiffness or
rigidity (also known as Young’s modulus). Rigidity defines the property of a solid body to
resist deformation. As stress increases, micro–fractures accumulate, plastic deformations
appear, and finally the material breaks up [18]. In the specific case of bones, rigidity is not
constant, as is the case for implanted materials. It is said that bone tissue is an anisotropic
material. Anisotropy means that a material exhibits different mechanical properties de-
pending on the direction of their determination. Thus, the mechanical properties of the
bones depend on the direction of the force application. For example, bone tissue is more
rigid when an external force acts in the longitudinal direction of the bone than when it acts
on its surface [19].

In the particular case of a pelvis fracture, the main stress is the loading stress. Here,
the general load-curve can be converted into a load deformation curve [20]. The converted
diagram allows the calculation of the implantation device’s rigidity, in order to compare
it with the rigidity of a healthy bone. It is also useful in the case of a simulation, for the
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assessment of the stiffness of artificial bones that mimic certain bone pathologies; e.g., the
osteoporotic bone. In the plastic region, it is possible to determine the final stress that
causes the breakage of material through fracture. Thus, parameters that are widely used for
characterization of a mechanical implant material are rigidity and failure-load [18,20]. As a
conclusion, using load-deformation diagrams, the mechanical properties of the implant
can be calculated and the implant resistance estimated.

2.2.2. Biological Requirements

The most important property for an orthopedic device is biological inertness, meaning
the lack of reactivity with the biological surroundings. In body conditions, a certain degree
of reactivity takes place; thus, limited implant degradation may occur. This is considered
acceptable if the process does not impair the mechanical strength, or generate harmful
byproducts [21]. Contrary to this initial concept, the most recent approaches consider that a
certain controlled reactivity between the implant material and the biological surroundings
can be used to accelerate the healing process [22]. The introduction of biomaterials has
opened up the possibilities of designing materials with particular properties that facilitate
the adaptation of the implant to the mechanical and morphological characteristics of
the receiving structure. Dolcimascolo et al. [23] consider that biomaterials used in the
last 60 years can be grouped into three generations: bio-inert materials (first generation),
bioactive or biodegradable materials (second generation), and the current third generation.
The design of the third generation intends that the implanted material triggers specific
molecular responses that will accelerate the healing process. In recent studies, a new class of
biomaterials has been presented: the fourth generation [24–27]. Categories of biomaterials
can be seen in Figure 1.
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This classification outlines the conceptual evolution of the requirements for implant
materials. The major requirements pertaining to the first generation had been stiffness
and the biological inertness of the materials. Implantation triggers the absorption of non-
specific proteins on the surface of the material; a fibrous tissue capsule is formed, and the
implant is encapsulated inside, which is a disadvantage for the implant [28]. This led to the
design of the second generation of materials. For the second generation, which occurred
between 1980 and 2000, the major requirements were the development of bio-absorbable
and bioactive materials, while maintaining the mechanical properties of the implant [29,30].
A bio-absorbable material is able to degrade in a progressive manner, allowing the healing
and regeneration of tissues. The bioactive material is designed to generate a layer of
hydroxyapatite (HA), a natural component of the bone, on the surface of the material
instead of the fibrous capsule. It is considered that in vivo stimulation of the production
of a hydroxyapatite layer on the implant surface improves the process of mineralization,
fixation, and bone regeneration [31,32]. The chemical attachment of various reactive groups
on the surface of the polymer causes it to become bio-functional. Thus, this improvement
by the second generation materials was possible by modifying the implant surface to
promote specific cellular responses, instead of nonspecific responses, as was the case with
the first generation [29]. The third generation of biomaterials orientate around the ability
to trigger signals that stimulate specific cellular responses at the molecular level. These
biomaterials are related to tissue engineering, regenerative medicine, tissue transplantation,
and grafting. These biomaterials are designed to be temporary three-dimensional porous
structures that are capable of stimulating tissue regeneration, nutrient supply, and possibly,
angiogenesis [33,34]. The fourth generation of biomaterials elicits a personalized interaction
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with cellular processes and microenvironments, which includes four requirements: inertia,
activity, receptivity, and autonomy [35].

3. Specific Orthopedic Implant Materials
3.1. Metal Materials

The first materials used for implant devices were metals and alloys, due to their
superior strength and a certain biological inertness. Metals selected for the implant include:
iron, cobalt, nickel, titanium, and zirconium. The metal combinations aim to obtain specific
properties in the final mixture, such as: elasticity, strength, ductility (to reduce the risk of
crack failure), and corrosion resistance [36]. Current alloys used in orthopedic metal-based
implants include: stainless steels, cobalt-based alloys, and titanium-based alloys. Table 1
summarizes both the advantages and disadvantages of the most important metal materials
used in orthopedics.

Table 1. Advantages and disadvantages of metal materials used in orthopedic devices.

Metal Materials Advantages Disadvantages References

Stainless steel
(316L)

high resistance,
less expensive,
easy fabrication

allergic reaction,
stress shielding effect [37–39]

Cobalt-chromium-based alloys
(Co-Cr-Mo,
Cr-Ni-Cr-Mo)

high corrosion resistance,
wear resistance

early implant loosening rate,
difficult fabrication [36,40–42]

Titanium –based alloys
(Ti-4Al-4V,
Ti-6Al-7Nb,
Ti-13Nb-13Zr)

biocompatibility,
Young modulus close to bone,
excellent corrosion resistance,
good osteointegration

expensive,
intoxication,
bone resorption, allergy

[43–46]

Mg based alloys biodegradability in vivo,
biocompatibility

low mechanical strength,
fast degradation [36,47,48]

3.1.1. Stainless Steel

Stainless steel 18-8 (18% chromium, 8% nickel) is the most common alloy. It has
superior corrosion resistance obtained through compositional modifications by using
additional metals, especially Cr [37]. The presence of Cr allows Cr2O3 to form a strong and
adherent layer that favors healing. Stainless steel is widely used in removable orthopedic
devices (fracture plates, hip screws) due to its low cost [49,50]. Currently, the new stainless
steel-based alloys contain Co-Cr, Ni, Mn, and a high nitrogen content [50]. These types of
alloys can be used in combination with polyethylene (PE) for disc prosthesis [51].

3.1.2. Cobalt-Based Alloys

Cobalt-based alloys are superior to stainless steel in terms of strength [42,52]. They
have the advantage of better biocompatibility, being more resistant to corrosion than stain-
less steel, but more expensive to manufacture. Some variants of the alloy composed of
cobalt-chromium-molybdenum are especially used for implants in hip prosthesis [22,53].
This alloy version is reserved for metal-to-metal devices due to its high abrasion resis-
tance [54,55].

3.1.3. Titanium-Based Alloys

For orthopedic devices, titanium may be used alone or in alloys with other metals.
The use of pure titanium has the following advantages: low weight, very good corrosion
resistance, especially in saline solution (due to the formation of an adhesive layer of TiO2),
and the ability to become tightly integrated into the bone [56–59]. This last property greatly
improves the long-term behavior of the implant, as well as reduces the risk of loosening
and failure of the device. Though titanium-based alloys have proven to be highly corrosion-
resistant and biocompatible, there are concerns regarding long-term implantation because
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of the release of potentially toxic alloying elements and the risk of stress shielding, as their
elastic modulus values are still relatively high compared to the elastic modulus of bone.
Being an expensive material, titanium-based alloys are currently only used for patients
with hypersensitivity reactions to steel or cobalt-chromium alloys [45,46,60].

In conclusion, even though metallic implants belong to the concepts of the first-
generation, they are still in use and they continuously evolve. Proper features of the
implant surface, such as roughness, wettability, and electrostatic charges that finally dictate
the quality of implant anchorage in bone, can be obtained through a wide variety of surface
treatments applied to the metal alloys.

3.2. Non-Metal Materials
3.2.1. Polymeric Materials

Today, polymeric materials are good replacements for many types of materials in all
medical fields. The increasing use of polymers is dictated by low production costs and
high versatility. Full data on all types of synthetic polymers used in clinical medicine
can be found in Mainz’s review [61]. In the case of orthopedics, the use of polymers is
steadily increasing due to the unlimited possibilities of manipulating their bio-mechanical
properties [6,62]. The polymeric biomaterials belonging to the first generation include:
polyethylene (PE), polymethylmethacrylate (PMMA), and polyurethanes (PU). These mate-
rials are still used today in both the first- and third-generation versions.

Both the advantages and disadvantages of the most important non-metal materials
used in orthopedic devices are presented in Table 2.

Table 2. Advantages and disadvantages of some non-metal materials used in orthopedics.

Non-Metal Materials Advantages Disadvantages References

Polyethylene (PE)/ultrahigh
molecular weight
polyethylene (UHMWPE)

low resistance to
friction,
resistance to wear,
biocompatibility

debris generation
along time as a result
of wear,
osteolysis

[63–70]

Polymethylmethacrylate
(PMMA)

good tensile
properties and tensile
strength

long-term usage can
produce cement
fragmentation

[71–80]

Polyethylene

Polyethylene is used in total hip and knee arthroplasty, insertion of the tibia, or as
a spacer in disc replacement [64,67]. The major benefits of PE use are: low resistance to
friction, resistance to abrasion or to impact, and good biocompatibility. A particular type
of polyethylene polymer, named ultrahigh molecular weight polyethylene (UHMWPE),
associated with metal, is highly used in orthopedic surgery or joint prostheses [70] due to
its high load bearing capacity. The main drawback is the possibility of debris generation
over time as a result of wear.

Polymethylmethacrylate

Polymethylmethacrylate is also known as “acrylic cement”. It is a versatile compound
used in ophthalmology, dentistry, as well as orthopedics. In orthopedics, PMMA is used for
hip arthroplasty, spinal fracture fixation, internal fracture-fixation plates (so-called “luting”),
and as a permanent bone substitute in the treatment of pathologic fractures [81–84]. The
most important feature of PMMA is that it can be molded into particular shapes dictated
by implant requirements, or be polymerized in situ during the time of surgery. The
polymerization process lasts from 6 to 7 min. Used as cement that anchors the prostheses
to the bone, PMMA must ensure bone adhesion. For this purpose, the polymer is filled
with hydroxyapatite particles; thus, providing a homogeneous load transfer from the
implant to the bone [85]. Other advantages of PMMA include good tensile properties,
tensile strength, as well as good flexural rigidity. Although it has many advantages, the
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use of PMMA does have some disadvantages, such as the release of heat and methyl
methacrylate monomer (MMA) in the in situ polymerization process. Released MMA
causes hemodynamic effects (hypotension and hypoxemia). Another disadvantage of
PMMA utilization is its brittleness compared to metal materials. In the particular case of
fragility fractures, such as vertebral or sacral osteoporotic fractures, the injection of PMMA
has the advantage of improving stability and reducing pain [86]. The main disadvantage of
the procedure is the extravasation of the PMMA in the pre-sacral space, spinal canal, sacral
foramen, which may affect sacral nerve root, or sacral spinal canal [86].

Polyurethanes

Polyurethane is a very versatile and inexpensive material and is therefore used for
many medical purposes. It can be produced in various types that offer specific properties de-
pending on the purpose of the implanted device. These include stiffness, flexibility, mechan-
ical strength, or elasticity. However, the most important property is that it can mimic certain
biological structures of the body, especially bone structure. Furthermore, polyurethanes can
be made entirely biocompatible (for permanent implantation) and also biodegradable (ab-
sorbable scaffolds for tissue regeneration) [87]. The medical use of polyurethane includes
vascular catheters [88,89], transparent semipermeable films for wound dressings [90], heart
valves [91], ureteral [92], stents, or orthopedic implants [93]. Third-generation PU are used
for tissue reinforcement scaffolds (as biodegradable material in combination with urea) [94]
or for regeneration of peripheral nerves [95,96]. Polyurethanes are by far the most used
material in mechanical testing of orthopedic fixation devices. Their use is justified by the
fact that, through chemical modification, polyurethanes can faithfully simulate both the
compact structure of the cortical bone and the trabecular structure of the spongy bone.
When tested with an externally applied force, the stress-strain curve of the polyurethane
foam exhibited a similar behavior to the spongy bone. Thompson et al. [97] tested different
types of rigid polyurethane foams and found that the polymer and the spongy bone exhibit
similar behavior in the elastic area. Due to the similarity between the human bone and the
polymer, a standardization of the polyurethane foams was established based on mechanical
behavior for different bone density [98]. As a conclusion, PU foams can be used [99] as
human bone replacements to measure important functional parameters (resistance, stability,
and rigidity) of orthopedic implants in biomechanical tests.

3.2.2. Ceramics

Due to the increase in the life expectancy of the population and the number of surgical
interventions, it is expected that the implants will be very reliable and resistant to breakage
in vivo, so that they can provide a service life of more than 30 years. Because they present
biocompatibility, high hardness, and high resistance to wear, ceramic materials are gen-
erally suitable for bone replacement bearings [36]. The development of ceramics in joint
replacement bearings aims to reduce clinical wear, and consequently, reduce the risk of
debris-induced osteolysis [100]. Bioceramics are classified into three types: bioinert, that do
not interact with living tissues and are non-toxic (zirconia, alumina); biodegradables, that
are absorbed and dissolved inside the body (calcium phosphates and hydroxyapatite); and
bioactive, that are able to form (bioactive glass). Alumina-zirconia ceramic composites show
remarkable stability and mechanical properties, but they have high production costs [101].
Calcium phosphate coatings have been used in orthopedics due to their similarity to the
mineral, the bone phase, and presents the advantage of significant biocompatibility and
osseointegration with the host tissue. Plasma sprayed calcium phosphate coatings are not
uniform, and there is little control over thickness and surface topography, which can lead
to implant inflammation when particles are released from them [102].

4. Future Perspectives for the Materials Used in Orthopedics

Currently, the materials widely used in orthopedics are metal, bioceramics, and poly-
mers [103–110]. Recent data suggest that a special interest is being given to biomedical
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nanotechnology. Ceria nanoparticles or nano-ceria (CeO2-NPs) were presented with an
increased potential for applicability in orthopedics [111–114]. Luo et al. [115] investi-
gated the effect and mechanism of cerium oxide nanoparticles (CeO2 NPs) in MC3T3-E1
mouse osteoblast precursors, and reported that they improved matrix mineralization and
increased osteogenic gene expression. Castiglioni et al. [116] proposed the use of silver
nanoparticles to fight infections in orthopedic implants, because those that show antimi-
crobial activity are smaller than those that exert toxic effects on bone-forming cells in vitro.
Samanta et al. [117] highlighted that gold nanoparticles (Au NPs) have antibacterial action.
These results demonstrate the positive impact that nanomedicine can have on improving
the effectiveness of materials used in orthopedics.

Due to biocompatibility and appropriate mechanical properties, magnesium alloys
have recently become the focus of research. At this moment, Mg-based metal alloys repre-
sent the new generation of biodegradable metal materials, with a good osseointegration
property [105]. In a case study, Holweg et al. [118] focused on intraoperative clinical sites
of human bone stabilized with magnesium screws and reported homogeneous degradation
with good bone-implant interface. Future research must be concentrated on the direction of
alloys with a low degradation rate and an improved mechanical strength, in order to solve
load-bearing zone fractures [119].

Current research focuses on both the development of new materials and surface
modification strategies. The development of new techniques and strategies on composite
coatings to better mimic the structure of human bone would lead to a new generation of
orthopedic implants with improved implant integration and bone healing.

The recent development and use of 3D printing technology is rapidly becoming
more valuable to the field of orthopedics, but the field of orthopedic implants has not
been sufficiently explored. Polymers are one of the most common materials used in 3D-
printed bone replacements because of their potential use as filaments for fused deposition
modeling, solutions for stereolithography apparatus, and gels for direct ink writing [120].
Feltz et al. [121] evaluated the feasibility of using desktop 3D printers to reproduce surgical
implant models using biocompatible materials and reported reduced manufacturing costs,
but did not achieve mechanical properties similar to standard stainless-steel implants.
In orthopedics, 3D printed materials can be made into implants, prostheses, and create
life-size anatomical models [122].

Materials used in orthopedics will continue to evolve in order to reduce implant costs,
maintain patient safety, optimize surgical techniques, and reduce the risk of infection.

5. Conclusions

The challenges encountered in orthopedics are: fractures, broken joints, and already
diseased bone traumas. In order to restore normal bone function or joints, the use of
prosthesis or implantation devices is inevitable. Certain properties of the implant material
are mandatory to ensure a total recovery. Current data show that consecrated metal
alloys, still widely used, can be successfully replaced by new types of polymers. Synthetic
materials based on biocompatible polymers belonging to the latest generation are able
to provide multiple possibilities for reproducing the anatomical structure, reabsorbing
over a period of time, or generating a specific response from the biological environment.
Literature indicates that polyurethanes are the most suitable material for the mechanical
testing of orthopedic devices. We also believe that nanotechnology is very important for the
success of orthopedic implants. Finally, synthetic materials allow simulations to evaluate
the behavior of an implant device; thus, increasing the chances of a successful surgical
implantation procedure.
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