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Abstract: Most investigations of the gamma-shielding abilities of materials are often based on the
Beer-Lambert law including recent studies on clay-polyethylene composites. The findings are usually
silent on the secondary radiation effects that commonly occur due to photon buildup, known as
Energy Absorption Buildup Factor (EABF) and Exposure Buildup Factor (EBF). In this work, the
computation of EABF and EBF in the region of energy 0.015–15 MeV at different penetration depths
or mean free paths up to 40 mfp—and simulation of 100 keV of Cs and Sr ion-penetration profiles of
clay–polyethylene composites (A–G) containing 0–30 wt% low density polyethylene (LPDE)—was
carried out. The buildup factors computation was performed using Phy-X/PSD and EXABCal codes,
and the ion-penetrating profile was studied using a Monte Carlo simulation code called Stopping and
Range of Ions in Matter (SRIM). The EABF and EBF values are functions of the photon energy and the
penetration depth. In the region of intermediate energy, the EABF and EBF values are higher for each
of the samples. For a given mfp, the peak value of either EBF or EABF of each sample increases with
LDPE wt% in the clay matrix. The projected range of both Cs and Sr ions in the samples decreased
with increasing sample bulk densities, with Cs having a higher projected range than Sr in all the
samples. The Cs and Sr ions have the lowest respective projected ranges in sample A (of bulk density
2.03 g·cm−3; 0 wt% of LDPE), while the highest projected ranges were recorded in sample G (of bulk
density 1.34 g·cm−3; with 30 wt% of LDPE), respectively. This study reaffirmed the suitability of clay
composite for gamma-ray shielding applications; however, it may not yet be ready to be used as a
backfill material to mitigate the migration of fission products present in radioactive nuclear wastes.

Keywords: clay-polyethylene composite; buildup factors; ions; Phy-X/PSD; EXABCal; SRIM

1. Introduction

A low carbon-based energy economy development is one of the global priorities. There
are no arguments that nuclear power is an efficient low-carbon energy source. Apart from
being a virile source of clean energy, nuclear technology’s usefulness has spread across
many fields. This has made its benefits to humanity more obvious in recent times than
ever before.

Despite various benefits of nuclear technology, the protection of people from the
inevitable emitting ionizing radiations as well as containment of nuclear waste are some of
the major concerns in nuclear applications. Studies have proven beyond doubt the harmful
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effects of ionizing radiations on humanity and the devastating socio-economic impact of
the release of radiological materials to the urban environment.

Earlier studies on the gamma shielding abilities of clay showed the possibility of
application of clay composites for gamma radiation shielding [1,2]. Nevertheless, these
studies and most studies on other materials are based on the Beer–Lambert law [3,4];

I = Ioe−µx. (1)

The law is based on three assumptions: narrow beam geometry, thin absorbing mate-
rial and monochromatic rays, and any deviation requires the modification of Equation (1).
This modified equation is written as [5];

I = BIoe−µx (2)

where B stands for the buildup factors, namely Energy Absorption Buildup Factor (EABF)
and Exposure Buildup Factor (EBF). The modification accounts for the secondary radiation
effect that commonly occurs because of photon buildup from incident beam collision [6].

Furthermore, the performance of a material exposed to high radiation environments
is a function of energy transfer from energetic heavy ions to the material. The localized
electronic excitations, charging of pre-existing defects and rupture of chemical bonds due to
the electron-hole pair production, and enhancing defect as well as atomic diffusions due to
inelastic energy converts to the electrons (free or bound) are known as the loss of electronic
energy. Usually, the total stopping power S of a material is the loss of energy (E) per unit
path length traveling in the material of an ion and equal to the sum of both electronic
stopping (inelastic energy loss) and nuclear stopping (elastic energy loss). Studies have
shown that nuclear stopping power and electronic stopping power are dominant at high
energy and low energy regions, respectively [7,8].

In this study, the EBF and EABF of clay composite materials were determined using
Phy-X/PSD and EXABCal software, while the range, electronic and nuclear energy losses,
and vacancy files of 137Cs and 90Sr ions (common nuclear waste fission products) were
evaluated using the SRIM code. This study aimed to give more insight about the gamma
radiation shielding capability (GRSC) of the clay composites materials and to provide
information on possible application of the material for nuclear waste containment.

2. Materials and Methods

Olukotun et al. [9–11] reported details about the fabrication, elemental compositions,
bulk densities and other properties of the clay–polyethylene composite materials (sample
A–G) used in this work. The buildup factors computation was performed using Phy-X/PSD
and EXABCal codes. The computational method, the capability and how to use the codes
have been described in detail by Olarinoye et al. [12] and Şakar et al. [13]. In brief, the two
codes used the Geometric Progress (G-P) fitting method to compute buildup factors for the
photon energy range 0.015–15 MeV up to a penetration depth of 40 mfp. The computation
is divided into three steps as mentioned elsewhere [14].

A Monte Carlo simulation code SRIM in full damage cascade mode was used to
simulate Cs and Sr interaction with the clay samples (of different elemental compositions
and substrate densities). Estimated energy of 100 keV was inputted in the SRIM program
(version 2013) for each calculation. This energy would correspond to about 0.2 dpa for
recoiling nuclei in the clay matrix [15]. The SRIM recommended displacement energies (for
the elemental compositions of the clay materials) were assumed in the calculation. Ziegler
et al. [16] gives details about SRIM code.

3. Results and Discussions
3.1. Variation of EBF and EABF with Incident Gamma Energy

The Phy-X/PSD and EXABCal codes were first utilized to evaluate the EABF and EBF
of water and concrete in the same energy range referred to in Section 2 and compared with
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standard data [17] to validate the obtained results. The compared variations of EBF and
EABF with incident gamma energy were shown in Figures 1 and 2, respectively. The results
accord with the stardard data results; this ascertained the correctness of the calculations for
the samples.
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Figure 2. (a) EBF and (b) EABF of concrete obtained compared with those of the standard ANSI/ANS-
6.4.3 at different mfp’s.

The EABF and EBF variations with the range of photon energy 0.015–15 MeV for
each sample (A–H) at different penetration depths are shown in Figures 3 and 4, respec-
tively. These results showed that the obtained value increased as the energy of the photon
increased for the discussed samples. For each sample, the increment continued until
intermediate energies with maximum values, then started decreasing. This follows the
same trend with reports of other materials given by some researchers such as Singh and
Badiger [18,19]; Bursalıoğlu et al. [20]; Sayyed et al. [21]; Obaid et al. [22]. This is due
to the photoelectric effect, Compton scattering and pair production photon interactions
that are dominant at low, intermediate and high energy regions, respectively. For either
photoelectric effect or pair production, a higher number of gamma photons are absorbed
and therefore, EABF and EBF values are decreased. The degradation of photon energy,
mainly by scattering without complete removal of the photon, is dominant with Compton
scattering, hence the values of both factors are invariably high. In addition, increasing
the depth of material penetration increases the thickness of the reactant. This increase in
scattering occurs in the interacting medium, resulting in an increment in both the values of
EABF and EBF as mfp value increases.
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Figures 5 and 6 give the results of EABF and EBF of the discussed samples compared
with water and concrete for 0.015–15 MeV at 1, 20 and 40 mfp, respectively. At a given mfp,
the highest peak value of both factors of the samples increases with LDPE wt% in the clay
matrix. At the 1, 20 and 40 mfp, the peak results of EBF and EABF of the samples are lower
than that of water and concrete, while that of H (recycled LDPE) is the highest. This is in
line with the effects of LDPE on the other gamma shielding parameters, as reported by
Olukotun et al. [9].

3.2. SRIM Simulation Results

The results obtained for each SRIM simulation include range, electronic and nuclear
energy losses, and vacancy files. If clay is suggested as a containment material, it will
continuously be exposed to different irradiations from nuclei decays, including Sr and
Cs. To mimic the exposure of the clay materials to Sr and Cs, the SRIM program was
used to simulate the distribution of Sr and Cs in the polyatomic clay target, as it was in
an ion implantation study. The projected range and straggling were used to monitor the
ion distribution in the clay samples. The clay sample with the lowest projected range is
considered more suitable as a containment material than the one with high projected range.
Figure 7a,b show the range profiles of Cs and Sr interactions with the clay samples A–G.
Accordingly, each profile can be described as a normal distribution since the skewness(γ)
and kurtosis (β) values (given in Table 1) are closer to that of an ideal Gaussian distribution
(the skewness, γ = 0 and kurtosis, β = 3.0). For easy comparison, the projected range(s)
and straggling of Cs and Sr ions were plotted against the sample bulk densities, as shown
in Figure 8. The projected range of both ion types (in the samples A–G) decreases with
increasing sample bulk densities. Compared with the corresponding Sr interaction with the
clay samples, Cs has the highest projected range(s) in all the samples. One would expect
Cs (a massive element) to have a lesser projected range than Sr. The larger projected range
of Cs could have resulted from the complexity of the interaction of heavier projectiles with
a multi-elemental target. However, the Cs and Sr ions have the lowest projected ranges
of 66.5 nm and 80.8 nm recorded in sample A (of bulk density 2.03 g·cm−3), respectively,
as shown in Figure 2. In contrast, Cs and Sr have the highest projected ranges of 96.6 nm
and 117.2 nm in sample type G (of bulk density1.34 g·cm−3), respectively. It is important
to recall that sample A is pure clay while samples B–G are modified clay samples with
0–30 wt% low density polyethylene (LPDE). It is clear from the above that the effect of
LPDE on the clay samples influences the average penetration depths of these two important
radiological fission surrogates (i.e., Cs and Sr). It can also be seen in Table 1 that the
projected range straggling follows a similar trend as the projected range. This observation
would also point to the difference in the microstructure of the samples. It has been reported
by Olukotun et al. [11] that the introduction of LPDE into the clay samples reduces the
crystallinity of the substrates. The implication of these projected range calculations is
that pure clay has a high potential recommendation for use as a diffusion barrier (against
radioactive Cs and Sr) compared to LPDE samples.
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Table 1. Simulation result of the four moments of Cs and Sr ions distribution in different clay samples.

Ion Sample Density
(g·cm−3)

Projected Range
(nm)

Projected Range
Straggling (nm)

Skewness
(γ)

Kurtosis
(β)

S-A 2.030 66.5 21.0 0.40 3.06
S-B 1.975 67.9 21.2 0.40 3.08
S-C 1.688 78.8 24.5 0.38 3.00

Sr S-D 1.633 81.1 25.0 0.40 3.00
S-E 1.567 83.9 25.6 0.30 3.00
S-F 1.501 87.2 26.2 0.35 3.00
S-G 1.341 96.6 28.8 0.34 2.99

S-A 2.030 80.8 29.4 0.37 2.97
S-B 1.975 82.5 29.9 0.37 2.99
S-C 1.688 96.0 34.4 0.35 2.95

Cs S-D 1.633 98.4 35.0 0.34 2.95
S-E 1.567 101.9 35.9 0.33 2.92
S-F 1.501 105.5 36.8 0.32 2.93
S-G 1.341 117.2 40.5 0.31 2.92
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Figure 9 shows the energy loss (keV/nm) of Cs and Sr ions in different clay samples.
The electronic energy loss ranged from 0.11 to 0.13 keV (for Cs), 0.11 to 0.14 keV/nm
(for Sr) and the nuclear energy loss ranged from 0.34 to 0.43 keV/nm (for Cs) and 0.26 to
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0.34 keV/nm (for Sr). The electronic energy loss is dominant from the surface to a maximum
depth of about 40 nm. This implies that the damage created in the samples’ structures
within the 0 to 40 nm range is mainly due to the electronic energy loss. The nuclear energy
loss dominates from 40 nm to about 145 nm. It is clear from Figure 9 that nuclear energy
loss is responsible for most of the damage (dpa) in the samples. The predominant damage
to the clay samples can be attributed to the low irradiation energy (100 keV) of the Cs
and Sr ions. To evaluate the amount of damage in the samples, the vacancies per ion per
angstrom was converted to displacement per atom (dpa) using Equation (3) [23]:

dpa =

(
Vac

/
ion()× 108)× ϕ

(
ion
cm2

)
ρGC

(
atoms
cm3

) (3)

Vac
/

ion() is the vacancy per ion (Angstrom), 108 is a conversion parameter from Angstrom
(Å) to a centimeter (cm), ϕ is the Cs or Sr ion fluence (which has been assumed to be
1 × 1014 ions/cm2), and ρGC is the density of the clay samples, as given in Table 1.
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understanding of legends in Figure 4a,b, EEL-Sam A: electronic energy loss in sample A; NEL:
Nuclear energy loss in sample A, etc.

The peak of each displacement per atom (dpa) curve shown in Figure 10 represents the
maximum dpa, where the bulk of the damage is in the samples. With about 0.2 maximum
critical amorphizationdpa of clay materials [24,25], Cs and Sr completely amorphized all
the clay samples A–G. Sample G will be more damaged upon Cs and Sr interaction than
samples A–F. As stated above, the introduction of LPDE into the clay samples reduces its
crystallinity, and the interaction of Cs and Sr ions with the (LPDE-improved) clay samples
will further enhance the loss of long-range order of the clay sample matrix. Using the
critical dpa of clay materials as a benchmark to compare the damage caused to the clay
samples (by the two ion types), it is clear from Figure 10 that Cs would amorphize the
clay matrix of samples A and G up to depths of 96 nm and 122 nm, respectively, while
the induced damage caused by Sr in samples A and G is at a maximum depth of 116 nm
and 145 nm, respectively. The difference in the magnitude of damage can be related to
the smaller atomic mass of Sr than Cs; Sr is therefore expected to cause more damage to
the clay samples than Cs. The complexity of the interaction of Cs and Sr projectile ions
with multi-elemental target samples (such as clay) is another reason to account for the
differences in the damage profiles.
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4. Conclusions

The computation of EABF and EBF at different penetration depths up to 40 mfp and
simulation of 100 keV of Cs and Sr ions penetration profile of clay–polyethylene compos-
ites, were successfully carried out using Phy-X/PSD, EXABCal codes and a Monte Carlo
simulation code called SRIM. The clay–polyethylene composite materials (A–G) contained
0–30 wt% low density polyethylene (LPDE). In the intermediate energy region, they have
maximum values. This is because at intermediate photon energy, mainly scattering without
complete removal of the photon is dominant with Compton scattering, therefore the values
of both EABF and EBF are invariably high. In addition, it was found that the values of
EABF and EBF increased as the mean free path value (mfp) increases. This is because
the increment in the depth of material penetration increased the thickness of the reactant
which caused more scattering to occur in the interacting medium, giving an increment
in the values of both EABF and EBF as mfp value increased. The trend of these findings
is the same with reports of other researchers on different materials. The obtained results
reaffirmed the suitability of the clay composite for photon shielding applications.

Furthermore, the simulated penetration profiles of Cs and Sr ions revealed that the
projected range of both Cs and Sr ions in the samples decreased as the samples’ bulk densities
increased. The Cs ion has a higher projected range than the Sr ion in all the samples. The Cs
and Sr ions have the lowest projected ranges of 66.5 nm and 80.8 nm in sample A (of bulk
density 2.03 g·cm−3; 0 wt% of LDPE), respectively, while the highest projected ranges of
96.6 nm and 117.2 nm were recorded in sample G (of bulk density 1.34 g·cm−3; with 30 wt%
of LDPE), respectively.

The obtained EABF and EBF results reaffirmed the suitability of the clay composite for
photon-shielding applications. It is worth pointing out that the gamma shielding efficiency
of the clay–polyethylene decreased with the increment in wt% of LDPE in the clay matrix.
Hence, sample A containing 0 wt% of LDPE is the most efficient, while sample G containing
30 wt% of LDPE is least efficient in gamma shielding. This fact is supported by the density
trend of the composites; sample A has the highest bulk density of 2.03 g·cm−3 while sample
G has the lowest, at 1.34 g·cm−3. However, the obtained Cs and Sr depth penetration
profile revealed that the clay–polyethylene composites need to be further improved before
it can be used as a backfill material to mitigate the migration of fission products present in
radioactive nuclear wastes.
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