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Abstract: Improved optical and mechanical properties are required for future infrared windows
working in harsher mechanical and thermal environments than today. Ameliorating the homogeneity
of the phase domain and reducing the size of the phase domain are effective approaches for enhancing
the optical transmittance and mechanical hardness of a nanocomposite. In this work, we reported that
the Gd2O3-MgO nanopowders were prepared by two different processes. The core–shell nanopow-
ders synthesized by urea precipitation have a much lower agglomeration than the nanopowders
prepared by sol–gel. Excellent transmittance (70.0%–84.1%) at 3–6 µm mid-infrared wave range and
a high Vickers hardness value (10.3 ± 0.6 GPa) were maintained using the nanopowders synthesized
by urea precipitation mainly due to its homogenous phase domain distribution.

Keywords: Gd2O3-MgO; core–shell; urea precipitation; nanocomposite; homogenous phase domain
distribution

1. Introduction

Transparent polycrystalline ceramics have attracted widespread attention due to their
wide range of applications such as laser hosts, infrared windows/domes, and transparent
armors, instead of their single-crystal counterparts, mainly due to their processing flex-
ibility and low cost for fabricating items with large sizes and complex shapes [1–3]. In
particular, transparent polycrystalline ceramics have great potential in the application of
infrared windows because of their excellent optical and mechanical properties [4–6]. With
the increasingly harsh service environment of infrared windows, higher requirements are
being suggested for the optical and mechanical properties of infrared windows in extreme
environments [7,8]. Although traditional single-phase infrared transparent ceramics such
as Y2O3, MgF2, and MgAl2O4 have high infrared transmittance, the inevitable grain coars-
ening during the preparation process results in deteriorated mechanical properties, thus
limiting their widespread application [5,9,10].

One way to improve the mechanical properties of the infrared transparent ceramic is
to introduce a second ceramic phase to forming composites. Composites including fiber-
reinforced composites [11], sandwich planet composites [12–14], composite ceramics [15],
and polymers [16] are being applied in many fields. For example, in the field of mid-
infrared windows, second-phase MgO is being introduced into Y2O3 to fabricate the
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Y2O3-MgO nanocomposite with better optical and mechanical properties than any single-
phase polycrystalline ceramics [17]. Y2O3 and MgO (based on the volume ratio of 50:50)
were evenly mixed in order to mitigate grain growth during consolidation due to the fact
that the grains of each phase pin the boundary in the other phase, thus restraining the grain
boundary migration and grain coarsening. The reduced grain size will not only increase
the infrared transmittance of the nanocomposite owing to the reduction in light scattering
but also improve the mechanical strength according to Hall–Petch behavior [18]. Another
example is via the introduction of MgO to consolidate Gd2O3–MgO nanocomposites with
varied crystallographic modifications of the Gd2O3 constituent, and the nanocomposite
has excellent optical and mechanical properties for mid-infrared window applications in
our previous works [19,20].

The successful fabrication of nanocomposites with homogeneous phase domain distri-
bution, fine grain sizes, and phase domain sizes is particularly challenging. Muoto et al.
reported that the particle size and phase domain homogeneity of the initial nanocomposite
powders directly determine the grain size and phase domain uniformity of the sintered
nanocomposite ceramics, thus influencing their optical and mechanical properties [18].
Therefore, it is significant to synthesize nanocomposite powders with good dispersion and
homogenous constituent phase distribution. Among the varied methods for producing
nanopowders, such as spray pyrolysis [21,22], glycine–nitrate process [23,24], sol–gel com-
bustion [24], and hydrothermal method [25], the sol–gel combustion method has always
been favored, mainly due to its reduced synthesis temperature and the atomic-level mixing
of starting reactants [8,17,26]. However, the properties of nanocomposite powders pre-
pared by sol–gel combustion method such as particle size and dispersion are influenced by
various factors such as starting reactants, fuel type, and equivalence ratio Φ. Additionally,
the sol–gel process has long powder preparation cycles which are not conductive to batch
production. Urea precipitation is a powder synthesis method with a simple operation,
uniform system, and controllable precipitation process [27,28]. The introduction of Gd2O3
nanoparticles as the core can induce the Mg2+ precursor to precipitate on the surface of
the nanoparticles via heterogeneous formation, thereby forming Gd2O3-MgO core–shell
nanopowders. This can not only inhibit the grain overgrowth during the nanocomposite
sintering process, but also solve the difficult problem of the complex and difficult-to-control
precipitation variables of double cations.

In this work, to achieve the nanocomposites with homogeneous phase domain distri-
bution, urea precipitation and sol–gel were used to synthesize Gd2O3-MgO nanopowders.
We show that the core–shell nanocomposite powder with good dispersion can be obtained
via the urea precipitation method, and the nanocomposites with homogenous distribution
of constituent phases, higher optical transmittance, and a hardness value can be obtained
after hot-press sintering. The underlying influence mechanism of the nanopowders with
different morphologies on the microstructure of the nanocomposites was discussed.

2. Material and Methods
2.1. Preparation of the Gd2O3-MgO Core–Shell Nanopowders by Urea Precipitation

MgO coating Gd2O3 core–shell nanopowders were synthesized by urea precipitation.
The raw materials were gadolinium oxide nanopowders (5N), urea, and magnesium nitrate
hexahydrate (Mg(NO3)2·6H2O). All the raw materials were of analytical grade (Sinopharm
Chemical Reagent, Shanghai, China). First, the 74.78 mmol Mg(NO3)2 and stoichiometric
urea were dissolved in deionized water into a three-necked flask to form a mixed solution.
Then, 6.99 g Gd2O3 was weighted with a volume ratio of 50:50 to MgO (monoclinic-
Gd2O3:cubic-MgO) into the container via sufficient stirring and dispersing. After that, the
dispersed Gd2O3 was put into the above solution in the three-necked flask. Additionally,
then, the solution in the three-necked flask was heated and stirred at 90 ◦C for 3 h to obtain
the turbid solution. After that, the resulting suspension was obtained by filtration and then
the suspension was put into a 90 ◦C oven for drying, thus obtaining the dried precursors.
Then, the dried precursors were calcined at 850 ◦C to prepare the core–shell nanopowders.
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The nanopowders were ball-milled with Al2O3 balls in a roller ball mill (100 r/min). The
slurry was placed into an 80 ◦C oven for drying. Finally, the nanocomposite powders were
sieved by a 200-mesh screen.

2.2. Synthesis of the Gd2O3-MgO Nanopowders by Sol–Gel Combustion

Nanopowders of Gadolinium oxide–magnesium oxide were synthesized by sol–gel
combustion technique. Commercial Gd(NO3)3·6H2O, Mg(NO3)2·6H2O, C6H10O8, and
ethylene glycol were used as raw reactants (Sinopharm, Shanghai, China). In a typical
synthesis procedure, firstly, distilled deionized water, citric acid, and glycol were mixed to
form an aqueous solution. Secondly, the 0.03854 mol Gd(NO3)3 and 0.07478 mol Mg(NO3)2
solutions were added into the above aqueous solution to prepare a clear sol. The sol was
placed into an oven at 90 ◦C to obtain the precursor. Then, the precursors were calcined at
600 ◦C to obtain the nanopowders. The nanopowders were also obtained via a series of
ball milling, drying, and screening processes consistent with Section 2.1.

2.3. Sintering of the Gd2O3-MgO Nanocomposite

The treated (calcined, ball-milled, and screened) Gd2O3-MgO nanopowders synthe-
sized by two methods were dry-pressed at 100 MPa in a steel-mold (Φdiam = 25 mm)
to obtain the green bodies, and then the green bodies were sintered via hot pressing at
1350 ◦C for 0.5 h. The load was applied at the temperature of 600 ◦C, and gradually in-
creased to 50 MPa at 1000 ◦C. Post-sinter annealing was carried out at 1000 ◦C for 20 h
in air. Both surfaces of the samples were polished, and then thermally etched for the
property characterization.

2.4. Investigation for the Nanocomposite Powders and Sintered Ceramics

Simultaneous thermogravimetric and differential scanning calorimetry analyses of
the precursor synthesized by two different processes were carried out on a TGA-DSC
apparatus (STA449F3, Netzsch, Selb, Germany). The precursor to be analyzed was heated
at 10 ◦C/min in flowing air. The XRD analysis was conducted to identify the structures of
the nanopowders and nanocomposites by X-ray diffraction (X’pert, PANalytical, Almelo,
The Netherlands) using Cukα radiation. The crystal size of the nanocomposite powders
can be calculated by Scherrer’s formula:

DXRD = (Kλ)/(βcosθ) (1)

where K belongs to a constant, taking 0.89; λ represents the wavelength of Cukα wavelength;
the width at half height for diffraction peak of the measured sample is represented by β;
θ is the Bragg diffraction angle; and Dhkl means the crystal size of the nanopowders. The
specific surface area of the nanocomposite powders was determined using a gas sorption
analyzer by the Brunauer–Emmett–Teller (Tri-Star II 3020, Norcross, GA, USA) method.
The mean particle size of the nanopowders was calculated via Formula (2):

DBET = 6000/(ρSBET) (2)

where SBET denotes the specific surface area of the nanopowders; ρ stands for the theoret-
ical density of the nanopowders; and DBET represents the mean particle size. The ratio
of DBET/DXRD was adopted to evaluate the agglomeration factor of the nanocomposite
powders synthesized by a different method. Transmission electron microscopy (JEM-2100F,
JEOL, Tokyo, Japan) determined the morphologies of the nanopowders prepared by differ-
ent techniques. The structures and morphologies of the sintered nanocomposite ceramics
were evaluated via scanning electron microscopy (JSM-7001F, JEOL, Tokyo, Japan). The
statistics of the mean grain size for nanocomposite ceramics were obtained by measuring
at least 200 grains on the BSE images using the line-intercept method. The infrared in-line
transmittance of the nanocomposite was measured using a Fourier transform infrared
spectrometer (Nicolet iS5, Thermo Scientific, Waltham, MA, USA). The test for the Vickers
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hardness was performed via a tester (401 MVD, Wolpert, Norwood, MO, USA), the load
was 500 g, the dwell time was 10 s, and the average of 10 measurements was taken as the
final hardness value of the specimen [29].

3. Results and Discussion
3.1. The Thermal Behaviors of the Precursors Synthesized by Two Processes

Figure 1 shows the simultaneous thermal behaviors of the precursors synthesized by
the two methods. For the precursor synthesized by urea precipitation (shown in Figure 1a),
based on previous research results [30], in the process from room temperature to 1000 ◦C,
the total mass loss is 41.7%, which is divided into four steps. The first stage is from room
temperature to 196 ◦C, with a mass loss of 9.6%, and an endothermic peak at 170 ◦C is
ascribed to the evaporation of absorbed water and the release of bound water. The mass loss
in the second stage is 2.2%, which occurs in the temperature range between 196 and 281 ◦C.
The exothermic peak at 271 ◦C on the DSC curve is mainly due to the decomposition and
oxidation of nitrate. The third period is from 281 to 624 ◦C, and the mass loss is 18.3%; the
endothermic peaks are located at 437, 466, and 614 ◦C, and are related to the decomposition
of hydroxides and carbonates. The 11.6% mass loss occurs in the fourth step, and there is an
exothermic peak at 629 ◦C which is attributed to the crystallization of oxides. No obvious
weight loss was observed after 850 ◦C, indicating that MgO-coated Gd2O3 nanopowders
can be obtained at 850 ◦C. Figure 2a shows that the precursor calcined at 850 ◦C is composed
of Gd2O3 and MgO phases.
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Figure 1. Plot of the differential thermal analysis and thermogravimetry data obtained at a heating
rate of 10 °C/min from the precursors synthesized by different methods: (a) urea precipitation; and
(b) sol–gel.

For the precursor synthesized by sol–gel (shown in Figure 1b), it can be clearly seen
that four-period weight loss occurred. The first weight loss period over the temperature
ranging from room temperature to 178 ◦C is assigned to residual water volatilization. The
DSC curve has two remarkable endothermic peaks at 68 and 161 ◦C. A sudden drop was
observed in the second period weight loss, which was from 178 to 222 ◦C. In this period,
there was a sharp exothermic peak at 197 ◦C, since the precursor was ignited. This is
because there is a redox reaction between nitrate and citrate, thus generating intermediate
products and releasing carbon oxide and nitrogen oxide gases [31,32]. The third period
occurred between 222 and 510 ◦C and there are three exothermic peaks (296, 376, and
432 ◦C) being caused by the decomposition of the intermediate products. An exothermic
peak at 587 ◦C emerged in the fourth period, which is ascribed to the decomposition of the
remaining organics and the oxide crystallization. The XRD result in Figure 2a proves that
the precursor heated at 600 ◦C consists of Gd2O3 and MgO. The thermal decomposition
process of the precursor is consistent with our previous results [20].
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3.2. Effects of Preparation Process on the Performances of Nanocomposite Powders

Figure 2a shows the XRD patterns of the nanopowders synthesized from a different
method. Obviously, the composite nanopowders were cubic Gd2O3 and MgO phases,
regardless of the synthesis methods. The diffraction peaks of the sample synthesized by
urea precipitation are much more intense and sharper than that of the sample synthesized
by sol–gel. Table 1 shows the particle size (DBET), crystal size (DXRD), and agglomeration
factor calculated. Although the crystal sizes of the nanocomposite powders synthesized
by sol–gel are finer than that of the nanopowders synthesized by urea precipitation, the
agglomeration factor has an obvious increase. TEM results further verified the conjecture
for the morphologies for the two nanocomposite powders synthesized by different methods.
The sample synthesized by urea precipitation has a larger particle size and better dispersion
than those synthesized by sol–gel. The diffuse amorphous rings in the insets selected area
diffraction patterns (SADPs) are consistent with the XRD data (shown in Figure 2a) which
indicate that the nanopowders synthesized by urea precipitation have better crystallinity.
In addition, the sample shown in Figure 2b exhibits a clear interface between core and shell,
indicating that the Gd2O3, as a core, is successfully cladded with MgO as a shell.

Table 1. Characterization of the Gd2O3-MgO nanocomposite powders synthesized from differ-
ent methods.

Experiment Method DBET (nm) DXRD (nm) Agglomeration Factor

Precipitation 59.8 32.3 1.9
Sol–gel 29.7 9.1 3.3

Clearly, the above results demonstrate that the properties of the composite nanopow-
ders are greatly affected by the synthesis method. With the variation of the synthesis
method, the crystal size and the agglomeration state for nanocomposite powders varied
remarkably. The discrepancies can be related to the thermal decomposition processes of the
precursors exhibited in the TG-DSC curves. For sol–gel process, the sharp exothermic peak
of 197 ◦C in the DSC data and the sudden weight loss on the TG indicate that the decom-
position process is instantaneous. The rapid reaction rate can restrict particle growth and
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eventually form extremely fine crystallite sizes [18,24,33]. In the sol–gel reaction system,
excessive fuel will generate a lot of heat in the later decomposition process, leading to the
agglomeration of nanocomposite powder. Therefore, although the crystallite size of nano
powders synthesized by sol–gel method is much finer, the agglomeration of nanopowders
is more serious. In addition, Figure 1b shows that the peaks at 296, 376, and 432 ◦C in the
DSC data also verified that the reaction at the later stage was very intense. Such a result
is similar to our previous study [20]. For urea precipitation, the entire reaction process
is gentle without violent decomposition and abrupt weight loss, since no extra heat is
required for nanopowder agglomeration. Therefore, the nanopowder synthesized by urea
precipitation has a lower agglomeration state.

3.3. Effects of Synthesis Process on the Phase, Microstructure, Optical, and Mechanical Properties
of Nanocomposites

Figure 3 shows the structures of the Gd2O3-MgO nanocomposite ceramics. The
characteristic monoclinic Gd2O3 and cubic MgO peaks emerged without any detectable
impurity phase, irrespective of the two synthesis methods. It is worth noting that the Gd2O3
powders exhibited a cubic phase (shown in Figure 2a), but it turned into a monoclinic
phase after sintering at 1350 ◦C. It is reported that Gd2O3 undergoes a cubic to monoclinic
transformation above 1250 ◦C [34]. It is worth noting that the high-temperature monoclinic
Gd2O3 is unstable in thermodynamics. However, the two samples are still retained in a
monoclinic Gd2O3 phase at room temperature. The reason for the absence of the monoclinic-
cubic reverse transition can be attributed to the slow atom spread dynamics and rapid
cooling after hot pressing [35,36].
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The effect of nanocomposite powders synthesized by different methods on the mi-
crostructure of the hot-pressed nanocomposites was characterized via BSE images. Figure 4
shows the representative BSE images. There is no significant difference in the grain size of
the two samples; however, the structure and distribution of the phase domain are quite dif-
ferent. For the nanocomposite sintered using the urea precipitation nanopowders (shown
in Figure 4a), the grain sizes of Gd2O3 (bright phase) and MgO (dark phase) are 160 and
120 nm, respectively, and the sample has a very even microstructure and a homogenous
two-phase distribution. For the nanocomposite sintered using the sol–gel nanopowders, the
grain sizes of Gd2O3 and MgO become slightly finer—140 and 130 nm. However, the clus-
ters in each phase are large, which leads to a large-sized phase domain and inhomogeneous
phase domain distribution.

One of the major goals of improving the phase domain homogeneity in synthesized
nanopowder is to suppress the grain coarsening during the subsequent sintering processing
of the nanopowders. It can be seen from Figures 2 and 4 and Table 1 that the agglomeration
state of the initial nanopowders has a significant effect on the microstructure of the sintered
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nanocomposite. The speculative schematic diagrams of the microstructure evolution
process of the nanopowders prepared by two different processes during the sintering
process are shown in Figure 5. For the nanopowders synthesized by urea precipitation,
Gd2O3 as a core is effectively coated by MgO as shell, and the Gd2O3 grains are pinned by
the MgO grains; thus, due to the core–shell structure constrains and the effective pinning
effect, the microstructure will be stable until the coarsening of the one-phase domain can
occur. However, the severe agglomeration of nanopowders prepared by sol–gel may cause
each phase domain in the powder to contain multiple homophase particles. During the
sintering process, the homophase particles in each phase domain will rapidly combine and
grow. The reason for this phenomenon is that the agglomerated homophase particles only
need to cross the homophase grain boundary, so the grains only undergo a short-distance
rearrangement of atomic positions; eventually, resulting in large grain and phase domain
sizes and inhomogeneous phase domain distribution.
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As can be seen from the above analysis, initial nanocomposite powders with slight
agglomeration, fine phase domain size, and homogenous phase domain distribution are
conductive to exert pinning effect and restrain grain growth in the subsequent sintering
process. This hypothetical microstructure evolution was well verified in this work. The
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agglomeration state of the core–shell nanopowders synthesized by urea precipitation
is slighter than that of the nanopowders synthesized by sol–gel (as shown in Figure 2
and Table 1). After hot pressing, the homogeneity of the phase domain of the former
is obviously superior to that of the latter. This phenomenon of the agglomeration state
of nanocomposite powder affecting the phase domain uniformity of the nanocomposite
after sintering was observed in the previous fabrication of Y2O3-MgO and MgO-ZrO2
nanocomposites [18,33,37].

Figure 6 shows the optical transmittance in the infrared band of the Gd2O3-MgO
nanocomposites sintered using the nanopowders synthesized by two methods. The mi-
crostructure, such as the porosity, grain size, size, and homogeneity of the phase domain
greatly affects the infrared transmittance of the sample. On the one hand, the porosity
is the main factor affecting the transmittance when the ceramic bulk is at a low relative
density, because light scattering from a large number of pores will seriously deteriorate
the light transmission because of the different refractive index of MgO, Gd2O3, and air.
Additionally, the infrared transmittance also degrades when the relative density of the
sample is high due to grain overgrowth and uneven phase domain distribution. As shown
in Figure 4, there is no significant difference in the grain size between the two samples, and
there are no obvious pores. Therefore, the distribution and uniformity of the phase domain
play a dominant role in affecting the infrared transmittance in this work. As expected,
the sample sintered using the core–shell nanopowders showed excellent transmittance
(70.0%–84.1%) at 3–6 µm mid-infrared thanks to the more homogeneous phase domain
distribution. Moreover, the two specimens have several absorption peaks at approximately
7 µm due to the asymmetrical and symmetrical stretching vibrations of the carboxylate
groups, forming in the starting powders or subsequent sintering process because of the
remaining carbon-containing groups. This is detrimental to the optical performance of a
nanocomposite in the infrared wavelength range [38]. Therefore, the production of carbon-
free nanocomposite powders with good dispersion and a uniform phase domain is key to
further improving the infrared transmittance performance of nanocomposites. The detailed
results will be described in the subsequent paper.
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The mechanical hardness of the sintered Gd2O3-MgO nanocomposites using nanopow-
ders with different methods were measured. As Figure 7 shows, the Vickers hardness of
the sample sintered using the core–shell nanopowders synthesized by urea precipitation is
higher than that of the sample sintered using the nanopowders prepared by sol–gel due to
a more homogeneous phase domain distribution. The hardness value of 10.3 ± 0.6 GPa is
significantly higher than that of pure dense MgO and Y2O3 ceramics (5–7 GPa) [39,40], and
the hardness value is similar to that of Y2O3-MgO reported by Xu et al. (10.0 ± 0.1 GPa) [7]
or Ma et al. (10.6 ± 0.2 GPa) [24]. In addition, the optical and mechanical properties will
be further improved for adapting to a much harsher environment in the future when the
microstructure is further optimized. There is still room to homogenize the phase domain
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distribution and reduce the grain size via the optimization of the nanopowders’ preparation
and sintering process.
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4. Conclusions

The Gd2O3-MgO nanopowders with different morphologies were synthesized by urea
precipitation and citric sol–gel, respectively. The thermal behaviors of the precursors pre-
pared by two processing methods influenced the agglomeration state of the nanopowders.
The Gd2O3-MgO nanopowders with a core–shell structure have lower agglomeration, and
are make it easy to obtain nanocomposites with a homogeneous phase domain distribution
after hot-press sintering. For the Gd2O3-MgO nanocomposite sintered at 1350 ◦C and
50 MPa using the core–shell nanopowders, the average sizes of Gd2O3 and MgO are 160
and 120 nm, respectively. The nanocomposite with even two-phase distribution exhibits an
outstanding transmission (70.0%–84.1%) in the mid-infrared range and a high hardness
value (10.3 ± 0.6 GPa). The results indicate that core–shell nanopowder is conductive to
restraining the growth of the phase domain size and the formation of an inhomogeneous
phase domain for nanocomposites.
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