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Abstract: The paper proposes a surface plasmon resonance (SPR) biosensor utilizing MXene and a
Molybdenum Disulfide (MoS2) material layer, placed on the Ag metal-based conventional biosensor
to detect disease in human teeth. The SPR biosensor works on the principle of attenuated total
reflection. The transverse matrix method was utilized for the reflectivity calculation. The thickness of
the Ag layer, MXene, and MoS2 were taken as 45, 0.993, and 0.375 nm, respectively. Single-layer MoS2

and two layers of MXene were taken, and the highest sensitivity of the sensor for the enamel, dentin,
and cementum was obtained at 83.219 deg/RIU, 91.460 deg/RIU, and 104.744 deg/RIU. MoS2 was
used to enhance the biocompatibility of the analyte with the sensing layer. The aqueous solution had
been considered as sensing medium.

Keywords: human dental disease detection; sensitivity improvement; MoS2; MXene; biosensor

1. Introduction

For decades, surface plasmon-based biosensors have been employed in biochemical
sensing. They are suitable for sensing-based applications due to their qualities such as
dependability, label-free detection, increased sensitivity, and immediate detection capabil-
ities [1–3]. SPR biosensors based on prisms [4], optical fibres [5], and Bragg gratings [6]
have been implemented. Based on the attenuated total reflection (ATR) phenomena [7,8],
Kretschmann proposed a prism-based configuration [9]. In this configuration, a layer
of metal has been placed over the prism (also known as a traditional biosensor). At the
prism-metal contact in this configuration, the transverse magnetic (TM) polarised input
wave generates evanescent waves. These waves decay exponentially at the metal prism
interface [10]. Finally, a surface plasmon is generated at the metal-prism interaction. Due
to the formation of large surface plasmons, a change in the RI of the sensing medium pro-
duces a shift in the resonance angle [11]. The performance characteristics of the traditional
biosensor setup (Kretschmann’s configuration) are poor. 2D materials are placed between
the metal and the sensing layer to increase the biosensor’s performance [12]. Besides
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SPR biosensors, other optical devices such as metal-dielectric-metal (MDM) waveguide
structures have also gained a lot of attention among different plasmonic guiding structures.
This is due to its features of sustaining zero-bend, deep subwavelength modes with the
ease of fabrication and losses [13,14].

Besides conventional caries detection methods, some other methods used to detect
diseases in human teeth include: diagnodent, electrical caries monitor (ECM), Fiber-optic
Transillumination (FOTI), Digital Imaging Fiber-optic Transillumination (DIFOTI), Quanti-
tative Light Induced Fluorescence (QLF), digital radio graphs, etc. [15]. These detection
methods have been tabulated in Table 1, demonstrating their advantages and disadvan-
tages. Proposed SPR biosensor can diagnose common diseases of the oral cavity. It has
great potential for the clinical diagnosis of early dental caries. Dental caries is the most
prevalent chronic disease worldwide.

Table 1. Advantages and disadvantages of some detection methods for human teeth disease detection.

Detection Methods Classification Advantages Disadvantages

Diagnodent

Point techniques (dental
caries)

Trouble-free and rapid test,
accurate, flexible, and mobile

operated

In order to give a treatment plan, the
laser device Diagnodent cannot

determine the degree of
demineralization.

ECM

Helps dentists to monitor,
demineralize, and treat

patients’ root caries lesions, as
well as assists in a thorough
examination of the tooth’s

structural details.

Its performance relies upon a tooth’s
temperature, tissue width, hydration,

and surface area of the material.

FOTI

Light property technique

Compact and
battery-operated devices,

observations of cusp fractures
and cracked teeth, and

diagnoses of early
carious lesion

Moderate sensitivity (85%) and
specificity are around 99%, detects

only the occlusal caries on premolars
and molars teeth.

DIFOTI
Diagnosis in real-time, greater

sensitivity for early
lesions detection.

Its camera is very heavy. Fitting
inside a younger person’s mouth is a

complex process.

QLF Light emitting devices User friendly, easily fits inside
children’s mouths, etc.

The light source used is a laser, size
is bulky.

Digital Radiographs Radio graphs
Real time analysis, rapid

method so it saves time and is
also quite cheaper.

Can be dangerous to humans because
it uses ionizing radiation, width,

and rigidity.

MoS2 has a great 1.8 eV band gap, a high absorption efficiency of 6%, and a broad
5.1 eV work function [16–18]. Due to its hydrophobic nature, MoS2 has a high affinity
for absorbing biomolecules, which can be used in biological sensing [19] and used as
a protective layer for the metal’s oxidation [20,21]. According to various studies, work
has been performed on the design of SPR sensors based on graphene, BP, and transition
metal dichalcogenides (TMDCs) materials [22–24]. BP-MoS2 materials are used as the
primary 2D material in the SPR biosensor that Srivastava and Jha described, which has
a sensitivity of 110 deg/RIU [25]. Singh and Raghuvanshi proposed a gas detection SPR
sensor with a sensitivity of 245.5 deg/RIU using a bi-Au layer and BP layers [26]. A
biosensor with a sensitivity of 279 deg/RIU had been proposed by Wu et al. The proposed
design contained graphene, black phosphorus, and Au as a metal layer [27]. A gold grating
over gold-aluminium metal layers was used to build a 279.6 deg/RIU sensitivity SPR
biosensor by Bijalwan et al. [28]. Karki et al. proposed a biosensor with 352 deg/RIU
sensitivity, consisting of franckeite nanosheets and nickel and silver metal films [29]. Liu
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et al. developed an SPR biosensor based on a tilted fibre Bragg grating (TFBG) for the
detection of environmental estrogens (EEs) [30]. The idea of a pressure sensor was first out
by Sun et al. Their main findings included the device’s 45 ms reaction time and 14,000 cycles
of astonishing cyclic repeatability [31]. Du et al. proposed a reliable optical fibre-based
photodetector, based on vertical ZnO-P3HT heterostructure to accomplish a self-powered
and ultra-fast UV sensing [32]. They were able to obtain a response and recovery time
of under 40 milliseconds and a customizable photo response. A gas sensor based on the
ZnO-Bi2O3 structure was introduced by Liu et al. and may be used to identify diabetes
early on [33]. Shangguan et al. and Wu et al. proposed RI-based absorption sensors and
attained greater terahertz absorption rates [34,35]. MXene is a new emerging 2D material
that has recently gained popularity among researchers due to its electrical properties, such
as high conductivity, and optical properties such as the ability to easily access hydrophilic
surfaces [36,37], greater spacing between interlayers, higher thermal stability, and surface
area [38]. It features a hexagonal crystal structure with optical qualities, such as bandgap
correction, increased light, and matter interactions. Mn+1XnTx is the generic formula, with
M, Xn, and Tx being transition metals, C or/and N, where n is an integer between 1 and
3, and surface functional groups, respectively [39]. MXene has previously been used in
sensing-based applications such as gas, electrochemical, etc. Other uses included energy
storage, water purification, photo detector, and chemical catalysts, etc.

Since the sensor reports greater sensitivity, Ag was the favoured plasmonic metal
in the SPR sensor [40,41]. The primary disadvantage of silver was that it oxidised easily,
which may be mitigated to a higher amount using the sensor’s bimetallic layer [42,43]. The
Au-prism-based SPR sensor had limited sensitivity to the analyte since gold had superior
chemical stability but a low capacity to bind molecules [44]. Another disadvantage of
Au metal-based sensors was that their SPR curves were broader. As a result, measuring
sensitivity accurately was difficult, and the full width half maximum (FWHM) parameter
was large.

The following is how the manuscript is organized: Section 2 describes the biosensor’s
suggested design. The results and discussions are reported in Section 3. Section 4 brings
the proposed work to a close.

2. Proposed Structure and Design Methodology

As illustrated in Figure 1, the suggested sensor is comprised of three layers, with the
SF11 prism acting as the foundation material. The He-Ne laser source had been used as
the optical source [45]. After the input wave was reflected from the prism-metal contact in
the output portion, the signal was received by a photodetector. Due to its high RI [42], the
SF11 prism was an excellent candidate. The sensor design consisted of a silver (Ag) layer
thickness of d2 = 45 nm above the prism base, followed by layers of MoS2 and MXene
with d3 = P ∗ 0.375 nm d4 = G ∗ 0.993 nm, respectively. The sensing layer was where
bio-molecular interactions between immobilized ligands and analytes occurred. Enamel,
dentin, and cementum have refractive indexes of 1.631, 1.540, and 1.582, respectively [43].

Using the Sellmeier equation, the coupling prism’s RI is expressed as [46]:

nprism =

(
α1λ2

λ2 − β1
+

α2λ2

λ2 − β2
+

α3λ2

λ2 − β3
+ 1
)1/2

(1)

The constants α1, α2, α3 have the values 1.73759695, 0.313747346, and 1.89878101,
respectively, and other constants β1, β2 and β3 have values 0.013188707, 0.0623068142 and
155.23629, respectively. The RI of silver metal is calculated by the formula [47]:

nAg =

(
1− λ2 ∗ λc

λ2
p(λc + λ ∗ i)

)1/2

(2)
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where the λc is the collision wavelength whose value is equal to 8.9342 × 10−6 m, and λp is
the plasma wavelength whose value equals 1.6826 × 10−7 m [45]. The other layers (MoS2
and MXene) RI are taken as 5.0805 + 1.1723 ∗ i and 2.38 + 1.33 ∗ i, respectively, at 633 nm.
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The problem of indigestion is caused if we do not chew food properly. Therefore, as a
concern, its early detection of dental caries is necessary. Although these are the suspended
particles, and a small amount (concentration) of the enamel, dentin and cementum particles
are added to the sensing layer for the sensing purpose; the sensing layer’s RI changes. The
biochemical reaction process occurs between the enamel, dentin, and cementum and water,
changing the RI of the solution as the concentration of these particles is added. This RI
change can be mathematically expressed as:

∆ns = n2
s − n1

s = C
δn
δc

, (3)

here n2
s = n1

s + C
δn
δc

, here C represents the concentration of particles added. (4)

The n2
s and n1

s represents RI of the sensing layer after the particle’s adsorption and RI
of the solution before adding the particles into the sensing layer. Let us consider 100 nM of
the molecular particle concentration has been added into the sensing layer, i.e., C = 100 nM.
The fraction δn

δc indicates the increasing value of RI due to the inclusion of the particles.
This increment parameter value of RI is δn

δc = 0.182 cm3/g. The propagation constant of
surface plasmon wave (SPW) alters with alteration in SPR angle given by [48]:

kS =
2 ∏
λ

µpsinθSPR (5)

The reflectance computation without approximation was completed by the transfer
matrix method. An N-layer structure was defined using a characteristics matrix shown here:

S =
N−1

∏
X

S =

[
S11 S12
S21 S22

]
(6)

as SX =

[
cosβx −isin

(
βx
qx

)
−iqxsinβx cosβx

]
(7)

where, SX is the Xth layer matrix, and βx and qx are the optical admittance and phase factor,
respectively.
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βx = 2π
λ dx

2
√

Єx − n2
1sin2θ1 and qx=

2
√

Єx−n2
1sin2θ1

Єx

θ1 denotes the incident angle and Єx denotes the dielectric constant.
The reflection coefficient for the p-polarized wave has been calculated by:

Rp =
∣∣rp
∣∣2 =

(
(S11 + S12qN)q1 − (S21 + S22qN)

(S11 + S12qN)q1 + (S21 + S22qN)

)
(8)

The performance parameters are used to describe an SPR sensor’s performance. Sensi-
tivity (S), detection accuracy (DA), full width half maximum (FWHM), and figure of merit
are crucial performance characteristics (FOM). The maximum values for S and DA should
indicate that the suggested sensor is performing satisfactorily. The FWHM value should
be as low as possible. S = ∆θR

∆n is the formula for an SPR sensor’s sensitivity calculation.
Degree/RIU is its unit. It can be characterised as the change in the resonance angle (∆θR)
in relation to the change in the RI of the sensing medium (∆n). The SPR curve is used to
calculate this factor. When DA = 1/FWHM, the detection accuracy is calculated. It has the
degree: 1 unit. The SPR curve is used to calculate this factor. The mathematical formula
for the full-width half maxima (FWHM) is FWHM = θb − θa, and the unit is degree. This
parameter provided information about the reflectance curve’s width and sharpness. The
Figure of Merit (FOM) was written as FOM = S ∗ DA. RIU−1 is its unit. FOM represented
the SPR sensor’s resolution.

2.1. Numerical Modelling

As demonstrated in this research, the proposed model was created and evaluated using
a numerical simulation based on the finite element technique (FET). In order to simulate
the given model, we simulated the 2D geometry of the suggested sensor using COMSOL
Multiphysics version 5.5. The suggested (BK7/ Ag/ MoS2/ MXene) SPR biosensor is shown
in Figure 2b, with a light source incident at a 633 nm wavelength on the top of prism BK7.
Once more, the periodicity boundary conditions and periodic port conditions (indicated in
red in Figure 2) were applied [49]. A very fine physics-controlled sized mapped mesh with
elements as small as 5 × 10−5 µm and as large as 0.025 µm had been selected for this FEM
model, as seen in Figure 2a. Additionally, we used the parametric sweep operation to carry
out the angular interrogation technique, while altering the incident angle of the source.
With an incremental deviation of 0.1 degrees, the incident angle had been simulated from 53
to 90 degrees. The reflectance intensity for each entering angle was calculated to obtain the
resonance angle. Then, by examining the minimum reflectance intensity at the output, the
resonance angle was ascertained from the output intensity curve. The frequency-domain
solver was used to solve the model at a frequency of 3 × 108⁄λ Hz.

The shift in the output reflection intensity curve for the analyte layer refractive index
fluctuation was calculated to determine the sensors sensitivity and performance. In order
to show the suggested model in SPR circumstances, we also displayed the electric field
strength and magnetic field propagation at the resonance angles, as shown in Figure 3. Due
to the intense localization and maximal excitations of surface plasmons in the plasmonic
layer, the electric field and magnetic field were increased in the resonance state [50,51].
When resonance was present, as shown in Figure 3, the plasmonic gold layer showed an
increased electric field intensity.
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Figure 3. The electric field normal distribution and magnetic field propagation of the suggested
hybrid (BK7/ Ag/ MoS2/ MXene) SPR biosensor structure are as follows: On the surface of gold, the
distribution of the electric field exhibits an amplified field at a resonance angle.

2.2. Field Distribution Computation

The field distribution of the input TM polarised wave within each layer for the pro-
posed SPR sensor provided information about the augmentation of the evanescent field
under various circumstances. The generation of the evanescent field over the analytical
interface was crucial for the SPR phenomena. It is due to this that the analytes interface
was where the sensing was completed. The distribution of the field components with the
top layer was defined by the overall characteristics matrix. Its expression is [52]:[

Hy1(z)
−Ex1(z)

]
= P1(z)·

[
1 + rp

q1
(
1− rp

)]Hinc
y , z1 ≤ z ≤ z2 (9)

where, Hy1(z) , Ex1(z) denotes the magnetic and electric fields, respectively.
Hinc

y denotes the incident magnetic field amplitude and rp denotes the reflection
coefficient.

where, P1(z) =

 cos
(
βk(at z)

)
i/q1 sin

(
βk(at z)

)
iq1 sin

(
βk(at z)

)
cos
(
βk(at z)

)  (10)
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Next, these field distributions within the layer j ≥ 2 are given by:[
Hyj(z)
−Exj(z)

]
= Pj(z) ∗

1

∏
j−1

P(z = zi + di) ∗
[

1 + rp
qj
(
1− rp

)]Hinc
y , zj ≤ z ≤ zj+1 (11)

where, Propagation matrix, Pj(z) =

 cos
(
βk(at z=z−1)

)
i/qj sin

(
βk(at z=z−1)

)
iqj sin

(
βk(at z=z−1)

)
cos
(
βk(at z=z−1)

)  (12)

3. Results and Discussion

The sensitivity of a biosensor with a modified Kretschmann configuration that in-
cluded MoS2 and graphene is discussed here in this section. The transfer matrix method
was used to create reflectance curves that demonstrated how the reflectivity of light changed
with incident angle. Figure 4A showed the conventional sensor design, M = 0, G = 0.
Figure 4B,C demonstrated the modified conventional designs with layer combinations
M = 0, G = 1, and M = 1, G = 0, and Figure 4D gave the reflectance spectra for the
proposed sensor design (M = 1, G = 1). The RI range of sensing media varies from 1.33
to 1.631. For Figure 4A–D, the values of minimum reflectance and change in SPR angle (∆θ)
calculated have been shown in Table 2.
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Table 2. Computed minimum reflectance and change in SPR angle values.

RI Layers Min. Reflectance ∆θ (deg)

1.33

M = 0, G = 0

0.19109

1.54 0.19935 16.104

1.582 0.17701 20.896

1.631 0.06476 28.988

1.33

M = 0, G = 1

0.19109

1.54 0.19935 16.534

1.582 0.17701 21.566

1.631 0.06476 30.382

1.33

M = 1, G = 0

0.06071

1.54 0.05924 16.498

1.582 0.04069 21.521

1.631 0.00521 30.473

1.33

M = 1, G = 1

0.000711776

1.54 0.00488 16.967

1.582 0.01825 22.263

1.631 0.26247 31.446

As a result, we may infer that adding one MoS2 and one MXene layer to our biosensor
greatly increased its sensitivity, compared to the current design. To better understand
how MoS2 and MXene layers increased the sensitivity of the biosensor, we also plotted the
relationship between the sensitivity of the biosensor and the RI of the sensing layer (see
Figure 5).
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It can be seen that as the sensing layer’s RI rose from 1.54 to 1.64, the sensitivity rose
dramatically. Figure 6A gave the impact of the addition of MoS2 layers with mono MXene
on the sensitivity by varying the RI of the sensing layer. For (M = 1, G = 1), (M = 2, G = 1),
and (M = 3, G = 1), the sensitivity increased, but in another case (M = 4, G = 1) the
sensitivity increased until 1.58 RI of sensing layer, then the values remained almost constant.
The maximum value of sensitivity obtained was 104.471 deg/RIU. A similar trend was
obtained for another case, in which the MXene layers varied from 1 to 4 with a monolayer
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of MoS2 as shown in Figure 6B. These sensitivity values for both cases have been tabulated
in Tables 3 and 4.
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Table 3. Sensitivity computation when the number of MXene layers varies with a single MoS2 layer.

RI Sensitivity
(M = 1, G = 1)

Sensitivity
(M = 2, G = 1)

Sensitivity
(M = 3, G = 1)

Sensitivity
(M = 4, G = 1)

1.33 - - - -

1.54 80.795
deg/RIU

83.219
deg/RIU

85.814
deg/RIU

88.757
deg/RIU

1.582 88.345
deg/RIU

91.460
deg/RIU

94.920
deg/RIU

98.484
deg/RIU

1.631 104.471
deg/RIU

104.744
deg/RIU

102.458
deg/RIU

99.441
deg/RIU

Table 4. Sensitivity computation when the number of MoS2 layers varies with a single MXene layer.

RI Sensitivity
(M = 1, G = 1)

Sensitivity
(M = 1, G = 2)

Sensitivity
(M = 1, G = 3)

Sensitivity
(M = 1, G = 4)

1.33 - - - -

1.54 80.795
deg/RIU

83.166
deg/RIU

85.680
deg/RIU

85.880
deg/RIU

1.582 88.345
deg/RIU

91.452
deg/RIU

94.380
deg/RIU

94.380
deg/RIU

1.631 104.471
deg/RIU

102.671
deg/RIU

99.189
deg/RIU

99.196
deg/RIU

3.1. Detection

This section has theoretically investigated the detection of tooth particles using an
SPR sensor. The tooth particles’ concentration (C) was added to the sensing layer using
the input unit of the flowcell. The concentration added amounts were 0 nm, 25 nm, 50 nm,
100 nm, and 200 nm. Adding these concentrations resulted in an alteration in the RI of the
sensing layer. These RI changed in response to the amount of concentration added, giving
rise to different SPR curves at different incident angles (Figure 7).
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The value of minimum reflectance and incident angle for these concentrations has
been shown here using Table 5.

Table 5. Rmin and incident angle values for different target concentrations.

Concentration Added (nM) Minimum Reflectance (Rmin) Incident Angle

0 nM, immobilizer probe 0.000712 52.778 deg

25 nM, detectable target 0.000717 53.241 deg

50 nM detectable target 0.000715 53.009 deg

100 nM, detectable target 0.000713 52.893 deg

200 nM, detectable target 0.000712 52.835 deg

The performance of the existing SPR work with the present study has been summa-
rized in Table 6. As the sensitivity of an SPR biosensor is the most important parameter
for evaluation of its performance, a comparison is made on its basis. The wavelength
considered was 632.8 or 633 nm.

Table 6. Performance comparison for current work with existing SPR literatures.

References Design Sensitivity

Present study Prism/Ag/MoS2/MXene 104.744 deg/RIU

[53] Prism/Au/graphene/Affinity layer 33.98 deg/RIU

[54] Prism/Ag/Au 54.84 deg/RIU

[55] Prism/Airgap/Ti/Ag/Au/InP 70.90 deg/RIU

[56] Prism/Au/graphene/MoS2 89.29 deg/RIU

3.2. Electric Field Analysis

We used the electric field distribution of the suggested BK7/Ag/MoS2/MXene sensor
construction at a resonance angle to further demonstrate the significant SPR excitation at
52.835 degrees and at analyte 1.631 in Figure 8. As can be observed, the sensing surface pro-
duced a considerable electric field augmentation, and the target biomolecules were present
in the sensing medium where the electric field strength exponentially diminished [53].
The field strength indicating a larger interaction volume of the field in the sensing. There-
fore, while utilising our suggested sensor, the electric probing field close to the MXene
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layer [57] was very strong and highly sensitive to biomolecule interactions. Similar to few
optical sensors [58,59], the proposed sensor was promising for betterment aids in dental
applications.
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4. Conclusions

The modified Kretschmann configuration was proposed to measure disease in the
human teeth, employing Ag, MXene, and the MoS2 layer. MXene was a 2D material used
in the sensor to improve the performance and also work as a protective layer for the Ag
to prevent oxidation. MoS2 was enhancing the bio-interaction ability of the sensor. The
designed hybrid biosensor was highly sensitive, and a sensitivity of 104.744 deg/RIU had
been observed.
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