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Abstract: For the micro-milling of hard and brittle materials, to avoid crack formation, a tool with
ductile milling mode is required. Composite electrodeposition technology was used to prepare a
Ni–diamond coating on the surface of brass. The surface microstructure, composition and surface
roughness of the coating were studied with a scanning electron microscope, X-ray diffractometer and
roughness tester. The adhesion strength was studied by scratch test, the wear resistance was analyzed
by wear test, and the corrosion resistance was investigated by Tafel curves and electrochemical
impedance spectra (EIS). It was found that the distribution of diamond particles of the Ni–diamond
coating was relatively uniform, and the content was relatively high. The internal stress of the coating
prepared by the composite electrodeposition technology was very low. With the incorporation of the
diamond particles, the surface roughness of the coating tended to decrease. The wear experiment
showed that the wear scar diameter of the corresponding glass ball for the Ni coating was 1.775 mm
and the roughness was 13.88 ± 2.811 µm, while that for the Ni–diamond coating was 2.680 mm and
8.35 ± 0.743 µm, respectively, indicating that the tool coating with uniform diamond particles had a
strong ability to process workpieces with significantly improved surface quality. The particle press-in
mechanism not only improved the wear resistance of the coating, but helped to prolong the service
life of the tool. The results of the EIS test and Tafel curves showed that the Ni–diamond coating had
a lower corrosion current, and the corrosion resistance of the coating surface was improved. The
experimental results showed that the micro-diamond coating prepared by the composite electrodepo-
sition technology had good bonding strength, low internal stress, and significantly improved wear
resistance and corrosion resistance.

Keywords: composite electrodeposition; Ni–diamond; wear; corrosion resistance

1. Introduction

Traditional tool materials have poor wear resistance, short life and an easy-to-collapse
blade, which cannot meet the processing of hard and brittle materials and easily crack or
chip the workpiece [1,2]. Hence, it requires a tool that can produce microfeatures with
ductile mode material removal to avoid crack formation and achieve high surface quality;
composite coating on the tool is a good solution [3]. Due to the good toughness of brass,
it is suitable as the tool substrate during the milling of hard and brittle materials. If the
tool surface is properly modified, it can improve the wear resistance of the surface. Inert
particles with a Ni-matrix coating were a good solution [4,5]. Diamond is the hardest
material in nature, with high hardness, high strength, high wear resistance, small line
expansion coefficient, good corrosion resistance and other excellent physical and chemical
properties. As an ideal enhanced phase, it is also a special material for the grinding head [6],
drill head [7], wire saw [8], grinding wheel [9] and so on, which are widely used in machin-
ery, electronics, construction, drilling, optical glass processing and other industrial fields.
Among the preparation methods of Ni-matrix coatings, the electrodeposition technique is
commonly used owing to its low operating temperature, high efficiency, low internal stress
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and moderate cost [10–12] compared to other coating methods, such as chemical vapor de-
position [13,14], physical vapor deposition [15], laser cladding [16] and sputtering [17]. The
papers showed that the Ni–diamond coating had good wear resistance [18–21], corrosion
resistance [22–24] and was a suitable micro-milling tool for hard and brittle materials.

Huang [18] prepared a high-particle-content Ni–diamond composite coating with a
strong abrasive ability using the electrophoretic deposition and electrodeposition tech-
niques. Bao [19] fabricated Ni–diamond composite coatings with burying co-deposition
techniques. They found the Vicker’s indentation hardness increased with effectively en-
hanced diamond content in the Ni–diamond coatings, whereas the scratch hardness de-
creased. Because diamond particles can form lattice distortion and defects, which can
significantly enhance the internal stress of the composite coating, the internal stress has
a great impact on the scratch performance of the coating. Wang [20] found that the wear
resistance of Ni–P–Diamond coatings increased as the diamond particle sizes increased. On
the other hand, the larger diamond particles could work as a larger cutter to machine an
increased amount of material on the ball and displayed a high wear resistance. Zhang [21]
presented a flow chart for the enhancement mechanism of wear resistance for Ni–diamond
composite coatings. Modified, the diamond composite condition and the optimal nickel
grain size of the composite coating could further increase the microhardness. At the same
time, the friction coefficient of the composite coating was decreased by the decreased
surface roughness in conjunction with the increased diamond content. The promotion of
microhardness combined with the decreased friction coefficient eventually reduced the
wear rate of coatings and simultaneously improved the cutting ability, thereby enhancing
the overall tribological properties. Zhang [22] and Li [23] proposed an electrochemical
co-deposition mechanism. The co-electrodeposition process contains the steps of transfer,
weak adsorption, reduction, strong adsorption and continued growth. Wang [25] proposed
a micron diamond tool which improved wear resistance, extended the life of the tool,
increased yield and reduced cost. The press-in mechanism for diamond particles was
originally proposed.

Although many scholars carried out research on Ni–diamond coatings, fewer have
applied it as a micro-milling tool surface which is suitable for the processing of hard
and brittle materials. In this paper, the surface morphology, composition and surface
roughness of the coatings were analyzed with a scanning electron microscope (SEM), X-
ray diffractometer (XRD) and roughness tester. The wear resistance was investigated by
wear test, and the corrosion resistance was studied by Tafel curves and electrochemical
impedance spectra (EIS). By comparing the Ni and the Ni–diamond coatings, it was found
the Ni–diamond coating electrodeposited on a good toughness brass substrate not only
enhanced surface hardness and wear resistance, but could also easily absorb the vibration
in processing. Meanwhile, the binding strength, the wear resistance of the coating and
the surface friction characteristics were analyzed and validated through the scratch and
wear tests. The press-in mechanism of diamond particles was further studied and provided
strong support for improving the wear resistance of micro-milling tool surfaces.

2. Experiment

The experiment was divided into two stages, shown in Figure 1. In the first stage,
the Cu interlayer was electrodeposited on the brass substrate for 3 min in an electrolyte
containing 250 g/L CuSO4·5H2O and 0.5 M H2SO4 by applying a current density of
5 A/dm2, as described in our previous works [25,26]. A 200 mL beaker was used as the
coating bath. The stirrer was rotated at 100 rpm and the temperature of the solution was
kept at 25 ◦C. The pH value was approximately 0.6. A copper plate of 80 mm × 15 mm ×
0.8 mm was used as the anode. Brass sheets of 50 mm × 15 mm × 0.8 mm were used as
the cathode, which was sequentially ground by #400, #600, and #800 sandpapers in water,
rinsed in deionized water and ultrasonically cleaned in 95 vol% alcohol solution for 5 min.
After being dried in air, they were pasted with electroplated insulating tape (Tape Type:
NITTO No. 360) to leave an exposed 15 mm × 15 mm area for the deposition. The distance
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between the anode and the cathode was 50 mm. Afterward, the sample was flushed
with deionized water to remove the electrolyte and temporarily attached materials on the
surface. In the second stage, nickel and diamond were compositely electrodeposited on the
plated copper [27] in an electrolyte containing 280 g/L NiSO4·6H2O, 5 g/L NiCl2·6H2O,
40 g/L H3BO3 and 5 g/L Saccharin [28–32] with a different current density of 0.67 A/dm2,
1.33A/dm2, 2A/dm2 and 4A/dm2, respectively, as described by Wang [25]. A nickel
plate of 50 mm × 25 mm × 0.8 mm was used as the anode and the immersion area was
35 mm × 25 mm. Diamond particles of 2–4 µm were evenly distributed in a porous filter
cup (inner diameter: 30 mm, outer diameter: 35 mm, height: 120 mm, aperture: 1 µm; made
by Toyo Roshi Kalsha in Japan) with 480 rpm stirring speed, and the concentration was
10 g/L. The brass sample coated with Cu interlayer in the last step was used as the cathode.
The overall thickness of the coatings was approximately 8 µm. There were no diamond
particles in the solution for the electrodeposited Ni coating, and with diamond particles for
the electrodeposited Ni–diamond solution.
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Figure 1. Two stages of the composite electrodeposition.

A scratch tester Anton Paar RST3 (ANTON PAAR, Graz, Switzerland) was used to
test the adhesion strength of the coating; the scratch length was 5 mm, the scratch speed
was 10 mm/min and the initial load was 500 mN, with a final load of 20,000 mN and a
loading rate of 39,000 mN/min. The friction and wear tests were carried out on a wear
test machine using a ball-on-disk pair under the lubrication of deionized water. The test
ball was made of soda–lime silica glass with 6 mm diameter, the Vickers hardness was
481 kgf mm−2 and the applied load and the rotating speed were 5.88 N and 90 rpm for
45 min, respectively. The surface roughness of the glass balls was measured with a high-
revolution optical microscope (ZETA INSTRUMENTS, San Jose, CA, USA). Eight parallel
straight lines were evaluated from the wear scar of the glass ball. The average values and
the standard deviations of the roughness along these lines were obtained.

The electrochemical impedance spectrum (EIS) was carried out at the maximum open-
circuit voltage (OCP) in a 6.5 g/L solution of potassium hexacyanoferrate (potassium
ferricyanide) a CHI 6273 (CH INSTRUMENTS, Austin, TX, USA) electrochemical work-
station. The Tafel curves were measured in a 5 wt.% NaCl solution with a voltage setting
range of OCP voltage ± 200 mV; the time was 600 s. The OCP measurement time was
1800 s, and each test sample used a replaced solution.

3. Results and Discussion
3.1. The Comparison of Surface Morphology

Figure 2 shows the surface morphology of the Ni coating and the Ni–diamond coating
when the current density was 1.33 A/dm2. Figure 2a shows the surface morphology of the
Ni coating, and Figure 2b is a magnified view of Figure 2a. Figure 2c shows the surface
morphology of the Ni–diamond coating, and Figure 2d is the magnified view of Figure 2c,
with a more uniform and higher content of diamond particles. It can be seen that the
diamond particles were tightly surrounded by the nickel matrix and were well bound.
Figure 3 shows the distribution of carbon elements of the Ni–diamond coating by EDX
at different current densities. It was found that with an increase in current density, the
diamond particles in the coating increased and then decreased. When the current density
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was 1.33 A/dm2, the content of diamond particles was the highest, and the distribution
was the most uniform, the same as the reference [25].
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3.2. The Comparison of XRD Spectra

Figure 4a,b show the XRD spectra for the Ni coating and the Ni–diamond coating,
respectively. The crystallization of the Ni coating and the Ni–diamond coating were
fundamentally the same, with a face-centered cubic (FCC) lattice and consistency with the
diffraction standard card of a Ni plate. The crystallization direction was (111), (200) and
(220), where (111) was the preferred direction. The peak and crystallization directions of
diamond in the Ni–diamond coating corresponded with the JCPDS card number 00-006-
0675, the crystallization directions were (111) and (220), the corresponding 2angles were
43.917◦ and 75.304◦, respectively, and they were the cubic crystallization structure. The
difference between Figure 4a,b is that (200) of the Ni–diamond coating is significant. The
relationship between the X-ray diffraction broadening effect and the crystallite size can be
expressed in the Scherrer Equation (1):

D =
Kλ

β cos θ
(1)

where D is the crystallite size, λ = 1.54056 Å is the wavelength of the X-ray, β is the full
width at half maximum of the dominant diffraction peak at 45◦, θ is the diffraction angle
and K is the constant with a value of 0.9.
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Based on the XRD data, half-height width and 2θ angle were calculated. The crystallite
sizes were calculated using the Scherrer formula, shown in Table 1. As can be seen from
Table 1, with an increased current density, the crystallite size of the Ni coating and the
Ni–diamond coating tended to decrease, but the current density could not be too large;
otherwise, the coating quality deteriorated and had pinhole bubbles. At the same current
density, the crystallite sizes of the Ni coating and the Ni–diamond coating were nearly the
same. By the comparison of the 2θ angle of the crystallization direction (111) and Figure 4,
it can be concluded that the angle offset of the Ni coating and the Ni–diamond coating
was minimal, proving that the internal stress was very low and showing the advantage of
composite electrodeposition.
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Table 1. The comparison of grain sizes of the Ni coating and the Ni–diamond coating at different
current densities (0.67 A/dm2, 1.33 A/dm2, 2 A/dm2, 4 A/dm2).

(<111>) β (Radian) 2θ (◦) Crystallite Size D (nm)

Ni 0.3634 44.47 23.64
Ni-0.67 0.4705 44.53 18.26
Ni-1.33 0.4682 44.53 18.35

Ni-2 0.4988 44.53 17.22
Ni-4 0.5258 44.53 16.34

Ni–diamond-0.67 0.4638 44.51 18.52
Ni–diamond-1.33 0.4458 44.51 19.27

Ni–diamond-2 0.4539 44.57 18.93
Ni–diamond-4 0.5443 44.55 15.78

3.3. The Comparison of Surface Roughness

Figure 5a shows the surface roughness of the Ni coating and the Ni–diamond coating.
It was found that the roughness of the Ni–diamond coating was greater than that of the Ni
coating at the current density of 0.67 A/dm2, but when the current density was 1.33 A/dm2

and 2 A/dm2, the roughness of the Ni–diamond coating was less than that of the Ni
coating, which may be due to the diamond particles filling the unevenness of the Ni coating.
Therefore, the evenness of the Ni coating could be improved at the suitable current density
due to the decreased surface roughness [20] and uniform morphology shown in Figure 3.
Figure 5b shows the roughness measurement positions, where 3 point was in the center,
and others were 2 mm from the edge. The roughness value is the average of five positions.
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3.4. The Results of Scratch Tests

Figure 6 shows the end scratch depths for the Ni coating and the Ni–diamond coating.
The end scratch depths were 26,864.59 nm and 21,720.15 nm, respectively. By comparison,
the scratch depth of the Ni–diamond coating was lower than that of the Ni coating because
the surface hardness and scratch resistance of the coating increased with the addition of
diamond, limiting the scratch depth. Figure 7a,b show the scratch tracks of the Ni coating
and the Ni–diamond coating. Figure 7c,d show the scratch tracks of the Ni coating at
the one-third and end positions of the scratch length, respectively. Figure 7e,f show the
magnified image of Figure 7c,d, respectively. Figure 7g,h show the scratch tracks of the
Ni–diamond coating at the one-third and end positions of the scratch length, respectively,
and Figure 7i,j show the magnified image of Figure 7g,j, respectively. It could be seen from
Figure 7i that the diamond particles were abundant and distributed uniformly. Although
the end of the scratch depth was scratched to the substrate, which was much deeper than
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the coating thickness, many diamond particles were still seen in the topography of Figure 7j,
indicating that the diamond particles were pressed into the substrate during the scratching
process. The press-in mechanism of the particles helped to prolong the service life of the
tool as well as improve the wear resistance of the coating. On the other hand, when the
coating was scratched through, there was no obvious critical load, which also showed that
the bonding of the coating was strong.
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3.5. The Results of Wear Tests

The pin-on-disk wear test was conducted, and a glass ball was used as the counterpart.
Figure 8 shows the results of the wear test for the Ni coating and the Ni–diamond coating.
Figure 8a shows a surface image of the glass ball of the Ni coating; the diameter of the
wear track was 1.775 mm, and the surface roughness was 13.88 ± 2.811 µm. Figure 8b
shows the magnification of Figure 8a. Figure 8c shows the worn morphology of the Ni
coating; it can be seen that the outstanding Ni grain was flattened, but the surface evenness
was poor, resulting in the uneven surface of the glass ball. Figure 8f shows the surface
image of the glass ball for the Ni–diamond coating; the diameter of the wear track was
2.680 mm. The wear track of Figure 8f is larger than Figure 8a, which may mean that the
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diamond particle in the matrix can not only act as a load-bearing phase but also act as
micro-cutters. Meanwhile, the existence of diamond particles will reduce the direct contact
between the Ni matrix and the ball during the sliding process, which will weaken the
adhesion wear between the tribo-pairs and prevent the wear process [19]. Figure 8g shows
the magnification of Figure 8f, with uniform and plowed grooves; the width was nearly
the same as the diamond particle size, indicating that the surface morphology was the
result of diamond milling; the surface roughness was 8.35 ± 0.743 µm. Figure 8h shows
the worn morphology of the Ni–diamond coating. After the wear process, there were still
many diamond particles on the surface, indicating that the particles were pressed into the
coating during the wear test [18]. The press-in mechanism improved the wear resistance
of the coating, which was consistent with a previous study [25]. The surface machining
quality of the glass ball worn by the Ni–diamond coating was better than that of the Ni
coating. Figure 8d,e, as well as Figure 8i,j, show the compositions of the glass balls and the
coatings; it was found that the Ni composition was not transferred to the glass ball, but
the compositions of the glass ball (Si Ca Mg O, etc.) were transferred to the coating, which
indicated that the coating did not contaminate the workpieces and was consistent with a
previous paper [25].
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Figure 8. Results of the wear test for the Ni coating and the Ni–diamond coating. (a) The surface
image of the glass ball of Ni coating, (b) the magnification of (a,c) the worn morphology of Ni coating.
(d,e) the compositions of the glass balls and the Ni coatings respectively. (f) The surface image of the
glass ball of Ni-diamond coating, (g) the magnification of (f,h) the worn morphology of Ni-diamond
coating. (i,j) the compositions of the glass balls and the Ni-diamond coatings respectively. A glass
ball was the wear counterpart. The operational parameters of the wear test were 5.88 N and 90 rpm
with 4000 cycles.
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Figure 9 shows the change in the friction coefficient for the Ni coating and the Ni–
diamond coating during the wear tests. It was found that the coefficient of friction of the
Ni–diamond coating was lower than that of the Ni coating, which was consistent with
Awasthi [33] and Hou [34]; there were two reasons for this. On the one hand, the 2–4 um
diamond particles filled the pit on the coating surface, making the surface smoother, and
reduced the coefficient of friction. On the other hand, in the wear test, the diamond particles
were pressed into the Ni matrix or the brass substrate and reduced the surface coefficient
of friction, which was contrary to the results of Huang [18] and Bao [19]. We think that
the different diamond sizes and sliding conditions may be the reason for the opposite
results because the small diamond size could easily cause particle aggregation and affect
the quality of the coating. The friction coefficient was consistent with the surface roughness
due to the uniform morphology, so the surface machining quality was better.
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3.6. Results of Electrochemistry Test

Figure 10 shows the fitting results of the EIS test and the equivalent circuit for the Ni
coating and the Ni–diamond coating. Table 2 shows the impedance value of the equivalent
circuits. C1 was the double layer capacitance, and Rsol was the solution resistance. R1 was
the charge transfer resistance, which could reflect the corrosion resistance. The value of R1
and corrosion rate changed in inverse proportion, and a higher R1 meant better corrosion
resistance [22]. The surface impedance of the Ni–diamond coating was slightly increased
compared to the Ni coating, which was due to the non-conductivity of the diamond
particles. Therefore, the addition of diamond particles has the tendency to increase surface
impedance.

Tafel curve was carried out in a 5 wt.% NaCl solution. Figure 11 shows the Tafel curve
of the Ni coating and the Ni–diamond coating; it was found that the Ni–diamond coating
had a lower corrosion current and better corrosion resistance. There are two factors that can
explain an increase in corrosion resistance. First, the incorporated diamond particles play
a major role and act as an inert physical barrier to the initiation and development of the
corrosion attack [35]. Second, the closely packed (111) crystallization probably contributed
to an increase in the corrosion resistance because dense and close-packed crystallization
often shows a higher dissolution resistance due to the total energy required for breaking of
the bonds, and the subsequent dissolution of atoms is high [35,36].
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4. Conclusions

In this study, the Ni–diamond coating was prepared by composite electrodeposition
technology, and the surface morphology, composition, surface roughness, wear resistance
and corrosion resistance were investigated.

(1) With an increase in current density, the diamond particles and the distribution unifor-
mity increased and then decreased. The angle offset of the crystallization direction
of the Ni–diamond coating was minimal, indicating the low internal stress and the
advantage of composite electrodeposition. In addition, the Ni–diamond coating had
a tendency to be less rough than the Ni coating, which helped to improve surface
evenness.

(2) The results of the scratch test and the wear test showed that the Ni–diamond coating
had a strong processing capacity and high surface-machining quality. The press-in
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mechanism of particles improved the wear resistance and helped to extend the service
life of the tool.

(3) The results of the EIS test and Tafel curve showed that the Ni–diamond coating had
a lower corrosion current, which demonstrated that the corrosion resistance was
enhanced.
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