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Abstract: In this work, MnO2/TiO2 coating on metallic porous titanium was prepared through a
hydrothermal-based chemical method, followed by a chemical precipitation reaction of KMnO4 and
MnSO4 aqueous solutions. The surface of the MnO2/TiO2/Ti was uniform and compact, with a
high load capacity. The corrosion resistance and electrochemical properties of the MnO2/TiO2/Ti
coating were investigated in comparison with those of pure Ti and TiO2 coatings. Cyclic voltammetry
and constant current charge–discharge measurements showed that the MnO2/TiO2/Ti electrode
presented good electrochemical performance. The MnO2/TiO2/Ti electrode had the highest capacitor
performance compared to the other electrodes, and the nano-MnO2 coating significantly decreased
the corrosion current densities. The nano-MnO2 coating exhibited excellent anti-corrosion properties
at room temperature and better capacitance performance compared with pure Ti and TiO2 coatings.
After surface modification, TiO2/Ti-coated MnO2 had better electrochemical behavior and signif-
icantly improved corrosion resistance than the TiO2/Ti nanocomposites. Its specific capacitance
reached 314 F/g, which was 3.5 times that of the TiO2/Ti electrode material.

Keywords: MnO2/TiO2; nano-coating; capacitance performance; corrosion resistance

1. Introduction

With the advent of the 5G era, environmental pollution and the clean energy crisis
have become serious social problems in the process of economic and social progress, and in-
creasingly more research is focused on the development of new energy storage systems [1].
As an important energy storage system, supercapacitors have been widely studied for their
high power density and fast charge and discharge [2–5]. Supercapacitors are generally
divided into double-layer capacitors (EDLCs) and pseudocapacitors. EDLCs store energy
electrostatically through surface ion adsorption/desorption at the electrode/electrolyte
interface, while pseudocapacitors utilize fast and reversible superficial Faradaic reactions
between electrolyte ions and electroactive materials [6–8]. In general, the value of an EDLCs
is much less than that of a psedocapacitor [9]. Manganese dioxide (MnO2) is a promis-
ing pseudocapacitive material that has attracted widespread attention for use in many
electroactive materials due to its low cost, low natural abundance, wide electrochemical
potential window, and high theoretical capacitance value (1370 F/g) [10,11]. However,
the inherently poor conductivity and easy dissolution of manganese dioxide hinder the
realization of its high electrochemical properties. In contrast, TiO2 has a higher electrical
conductivity and electrochemical stability compared with MnO2 [12].

Combining manganese dioxide with other materials (such as titanium dioxide [13],
zinc oxide [14], and diferric trioxide [15]) to improve the conductivity and stability of
the electrode material and leverage its advantages [13,16–19] may be an effective way to
overcome these problems. Compared to manganese dioxide, titanium dioxide has higher
electrical conductivity and electrochemical stability [20]. The use of binary metal oxide
nanocomposite electrode materials has received widespread attention due to their special
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physical properties and potential applications [21]. Titanium dioxide is one of the most
studied non-silicon mesoporous metal oxides due to its wide applications in photocatalysis,
solar cells, chemical sensors, and bioanalytical chemistry [22–25]. Furthermore, Kaseem
and co-workers reported the importance of TiO2 coating in electrochemical and biomedical
applications based on plasma electrolytic oxidation or micro-arc oxidation coating treat-
ment [26–29]. However, due to the high price of titanium raw materials and the difficulty
of manufacturing, these are not often used in daily life. Titanium matrix composites have
the advantages of being lightweight with high strength, good corrosion resistance, and
good biocompatibility. TiO2 nanomaterials have a high degree of order and a large specific
surface area, so that the transmission path between ions and other electrons is reduced. This
reduces the disadvantage of its poor conductivity. Furthermore, MnO2 can be deposited on
its surface, thereby increasing the capacitance. In addition, the electrochemical performance
of MnO2 is limited by the electronic conductivity of densely packed matter without a
porous structure [30].

In this paper, we successfully prepared a novel MnO2/TiO2/Ti sandwich nanostruc-
ture by a chemical co-precipitation reaction of potassium permanganate (KMnO4) and
manganese sulfate (MnSO4) with an alternating immersion method. First, we placed
purchased commercial foam titanium into a reactor for a hydrothermal reaction after anhy-
drous ethanol treatment, followed by annealing the titanium at 600 ◦C in a muffle furnace,
and finally used a KMnO4, H2O, and MnSO4 for alternating soaking treatments to obtain a
nanocomposite electrode material with good conductivity through a further redox deposi-
tion reaction. The prepared MnO2/TiO2/Ti nanocomposites exhibited excellent corrosion
resistance, specific capacitance, and cycle stability.

2. Experimental
2.1. Metallic Porous Titanium Processing

In this study, metallic porous titanium (with a thickness of about 1.0–1.20 mm,
Ti purity > 99.9 wt%, Suzhou Terry Foam Metal Factory, China) was used as the raw mate-
rial. The porous titanium was cut into small rectangular pieces with the specifications of
width × length × thickness = 20 mm × 40 mm × 1 mm. The porous Ti plates were then ul-
trasonically cleaned with acetone, ethanol, and ultrapurified water for 15 min sequentially
and then dried at room temperature [31].

2.2. Preparation of TiO2/Ti Nanomaterial

The TiO2/Ti nanomaterial was prepared via a facile alkaline hydrothermal method,
which was derived from the method proposed for constructing a porous titanate layer on
the surface of a titanium foil [31]. First, 20 mL of aqueous NaOH (98.0%, Jiangyin Runma
Electronic Materials Co., Ltd., Jiangyin, China) solution (10 mol/L) was prepared. The
aqueous NaOH solution was cooled to room temperature, and the cooled NaOH solution
and foaming titanium were placed in a reaction kettle successively. The reaction kettle
was placed in a vacuum-drying oven for hydrothermal treatment at 110 ◦C for 24 h. The
kettle was removed under ambient pressure, cooled to room temperature, and the samples
were removed with clean forceps. The samples were washed with deionized water to
thoroughly remove the porous Ti to obtain the Na2Ti3O7 nanomaterials. The nanomaterials
were then immersed in 0.1 M HCl (36.0% to 38.0%, Chongqing Chuandong Chemical Group
Co., Ltd., Chongqing, China) aqueous solution for 24 h at room temperature. The acid-
treated Na2Ti3O7 nanomaterials were thoroughly washed with deionized water to obtain
the H2Ti3O7 nanomaterials [32]. The crucible was soaked in nitric acid (60%, Chongqing
Chuandong Chemical Group Co., Ltd., China) for 15 min, and the acid-treated crucible
was neutralized with NaOH solution. The treated crucible was cleaned with deionized
water until the pH of the cleaning solution was neutral. The H2Ti3O7 nanomaterials were
placed in the treated crucible and heated in a muffle furnace at 600 ◦C for 2 h for annealing
to finally obtain the TiO2 nanoelectrode materials.
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2.3. Preparation of MnO2/TiO2/Ti nanocomposite Electrode Materials

The MnO2/TiO2/Ti nanocomposite electrode material was prepared using an alter-
nating immersion method. The previously annealed TiO2 electrode nanomaterials were
immersed in 0.15 mol/L manganese sulfate (99.0%, Tianjin Dengfeng Chemical Reagent
Factory, Tianjin, China) solution for 30 s, then removed and immersed in deionized water
for 30 s, then immersed in 0.1 mol/L potassium permanganate (analytically pure, Group
Chemical Reagent Co., Ltd., Shanghai, China) solution for 30 s, and finally immersed
in deionized water for 30 s to complete an alternating immersion cycle. The operation
was repeated six times. At the end of the complete process, the samples were thoroughly
cleaned with deionized water by soaking in the water for 15 min and then rinsing with
running deionized water. The samples were dried in a constant-temperature drying oven
for 2 h at 60 ◦C. At the end of the process, the samples were sealed and stored for future use.

2.4. Material Property Characterization and Electrochemical Testing

The crystalline structures of the products were characterized by X-ray diffraction (XRD)
in a Bruker D8 Advance powder X-ray diffractometer with Cu Kα radiation (λ = 0.15406 nm).
Raman scattering has been applied previously to the structural characterization of man-
ganese dioxides; therefore, a Laba RAM HR Evolution UV Raman spectrometer (Horiba,
France) was used to analyze the Raman spectra of the experimental samples. The data
point acquisition time was 30 s. The excitation was performed under a diode laser with
an excitation wavelength of 532 nm and a laser power of 9.1 mW, and the spectral region
was 50–900 nm. The morphologies of the prepared electrode materials were characterized
using a scanning electron microscope (SEM). The SEM images were taken using an SU3800
microscope. The properties of the prepared samples were tested using Tafel curves, cyclic
voltammetry (CV), and electrochemical impedance spectroscopy (EIS) using a CHI760E
electrochemical workstation. The tests were performed using a standard three-electrode
system with titanium foam, TiO2/Ti, and MnO2/TiO2/Ti as the working electrodes, a
platinum electrode as the auxiliary electrode, and a saturated glycogen electrode as the
reference electrode. The electrolyte system of the test sample was a 0.5 mol/L KOH solution,
the scanning potential was from −0.2 to 0.7 V, the scanning speed was 10 mV/s, and the
number of scanning turns was 10.

3. Results and Discussion

The crystal phases of the commercialized Ti and the structure of the prepared TiO2/Ti
and MnO2/TiO2/Ti nanocomposite membrane materials were characterized by XRD. As
can be seen from Figure 1, porous titanium and standard titanium metal (PDF#44-1924)
corresponded very well, with no stray peaks. Except for the peaks corresponding to metal
titanium, the diffraction peaks of TiO2/Ti corresponded well to TiO2 anatase phase peaks
(PDF#21-1272). The strongest peaks at 2θ = 25.4◦, 37.8◦, 48.0◦, 53.9◦, and 55.1◦ corresponded
to the (101), (004), (200), (105), and (211) surfaces of the anatase phase, respectively [33].
The diffraction peak of MnO2 was not clearly evident in the XRD pattern, and further
characterization was required to determine the presence of MnO2.
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Figure 1. X-ray diffraction patterns of commercialized metal porous Ti, surface-modified TiO2/Ti,
and MnO2/TiO2/Ti nanocomposites.

Raman spectroscopy was performed on the metal porous Ti and the prepared TiO2/Ti
and MnO2/TiO2/Ti nanocomposite samples. The Raman peaks shown in the Ti and
TiO2/Ti curves of Figure 2 were found at 144 cm−1, 196 cm−1, 394 cm−1, 515 cm−1,
519 cm−1, and 636 cm−1 and confirmed that the surface-modified TiO2/Ti nanocomposite
conformed to the crystal form of anatase [32], consistent with the diffraction results of
the X-ray analysis in Figure 1. In addition to the Raman peaks of the anatase phase
of TiO2, the Raman peak of MnO2 can be observed at 575 cm−1, which can be seen in
the MnO2/TiO2/Ti curve. At 575 cm−1, the peak strength of the MnO2/TiO2/Ti curve
was significantly increased compared with the 636 cm−1 Raman peak of the TiO2/Ti
curve, which may contain both MnO2 and TiO2. This suggested that the substance in the
MnO2/TiO2/Ti nanocomposite sample prepared by alternating immersion deposition was
MnO2 particles.
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The microstructures of the metallic porous Ti, surface-modified TiO2/Ti, and MnO2/
TiO2/Ti nanocomposites were elucidated by scanning electron microscopy. The results are
shown in Figure 3. It can be clearly seen that the internal structure of the metal titanium
foam was porous, its surface was uneven (Figure 3a), and there were micropores with
irregular shapes and different sizes (Figure 3b). The microstructure of the TiO2/Ti prepared
by the alkaline hydrothermal method is shown in Figure 3c,d. Here, H2Ti3O7 was annealed,
and local chemical reactions and dehydration processes occurred to generate an anatase-
type TiO2 [34]. The surface of the TiO2/Ti electrode material was more flattened than
the surface of the foam titanium, and small TiO2 nanocrystals formed, which clustered to
form a 3D nanowires network (Figure 3d), providing spaces for the subsequent loading
of the MnO2 nano-coating. Moreover, the surface structure of the TiO2 was conducive to
the transfer of ions in the redox Faraday reaction [35]. Often, different synthesis methods
affect the forming structure of the material, and the growth mechanism of the crystals
in the solution is actually quite complex and therefore not fully explained. With regard
to the hydrothermal process, classical nucleation, orientation aggregation, and Ostwald
ripening have been proposed [36,37]. Here, KMnO4 and MnSO4 were uniformly deposited
on the TiO2/Ti formed by a co-proportionation reaction. With Ostwald maturation, MnO2
would be converted into small nanoparticles [38], and Figure 3e,f is consistent with the
findings above. The uniformity of the ultra-thin manganese dioxide overlaid on the porous
nanoelectrode enables the rapid transport of electrolyte ions and provides a continuous
path for charge transfer [39]. The surface of the coating was uniform and compact, with
a high load capacity. In summary, a nano-coating structure based on porous Ti provides
good surface energy, which is conducive to the higher circulation performance of the
electrode material.
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The Tafel polarization curve is used to compare the relationship between the corrosion
potential of the coating and the corrosion current density, which allows the corrosion resis-
tance of the electrode material to be explored. Xavier et al. verified that the incorporation
of MnO2 nanoparticles reduced the corrosion rate [40]. The presence of MnO2 nanopar-
ticles helps to clog pores and cracks in the coating, hindering the initiation of corrosion
at the coating/metal interface. The Tafel curves of the Ti, TiO2/Ti, and MnO2/TiO2/Ti
electrodes are shown in Figure 4 and Table 1, and it can be seen that the corrosion current
density (Icorr) of the surface-modified MnO2/TiO2/Ti electrode was significantly reduced
compared with that of the Ti and TiO2/Ti electrodes. In the presence of MnO2, the self-
corrosion potential (Ecorr) value shifted in the positive direction, which indicated that
MnO2/TiO2/Ti significantly delayed the dissolution process of the electrode and improved
its anti-corrosion performance [41]. This is consistent with the above conclusions.
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Table 1. Results of the Tafel texts of the porous Ti, surface-modified TiO2/Ti, and MnO2/TiO2/Ti
nano composites.

Sample

Tafel Polarization

Icorr (uA) Ecorr (mV)
Cathodic Tafel

Slope
(V/Decade)

Anodic Tafel
Slope

(V/Decade)

Ti 36.08 −320 −8.221 3.019

TiO2/Ti 23.93 −260 −9.633 2.873

MnO2/TiO2/Ti 80.41 −100 −8.224 3.091

To better understand the electrochemical properties of the electrode material, an
electrochemical impedance analysis was performed. EIS measurements were made in
the frequency range of 1 Hz–100 kHz, and the resulting Ti, TiO2/Ti, and MnO2/TiO2/Ti
Nyquist curves and Bode plots are shown in Figure 5. The Nyquist diagram (Figure 5a)
consisted of a low-frequency slash and a semicircular arc phase of a medium and high
frequency, the semicircular arc of the high frequency region represented the charge transfer
resistance, and the Z′ and Z′′ at the interface of the electrolyte and electrode were the real
and imaginary parts of the impedance, respectively. The results obtained by the Bode plots
(Figure 5b) were consistent with the Nyquist diagram. The equivalent circuit diagram is
shown in Figure 5 [41], where Rs is the solution resistance, Rct is the interfacial charge
transfer resistor, where the size of the Rct depends on the electrode area that the electrolyte
can access and the conductivity of the electrode, the smaller the Rct indicates the faster the
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electron transfer and ion diffusion, and CPE is the constant phase angle. The capacitance
values for Ti, TiO2/Ti, and MnO2/TiO2/Ti were 1.556 F, 1.315 F, and 1.573 F, respectively,
and the results showed that the capacitance values of MnO2/TiO2/Ti were significantly
higher than those of both of the former. As can be seen from Table 2 and Figure 5, the Rs
values (15.34 Ωcm2) of the MnO2/TiO2/Ti electrodes were smaller than those of surface-
modified TiO2/Ti (64.99 Ωcm2) and Ti (98.02 Ωcm2) nanocomposites, while the charge
transfer resistance (4.20 Ωcm2) of the MnO2/RGO electrodes was also much smaller than
that of TiO2/Ti (37.94 Ωcm2) and porous Ti (92.11 Ωcm2). In the low-frequency range,
the electrode reaction kinetics were mainly controlled by diffusion (Warburg) [42], and
the slope of the Nyquist plot curve of the electrode was increasing, indicating rapid ion
diffusion and good capacitor performance [43–45].
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Figure 5. (a) Nyquist diagram and (b) Bode plots of metal porous Ti, surface-modified TiO2/Ti and
MnO2/TiO2/Ti nanocomposites and equivalent circuits.

Table 2. Results of the EIS fitting texts of the porous Ti, surface-modified TiO2/Ti, and MnO2/TiO2/Ti
nano composites.

Sample Rs (Ωcm2) Rct (Ωcm2) CPE1-T CPE-P Rct dl
(Ωcm2) CPE2-T CPE2-P

Ti 98.02 92.11 2.7 × 10−3 0.453 194.4 1.1 × 10−3 1.10

TiO2/Ti 64.99 37.94 3.0 × 10−4 0.580 986.1 2.2 × 10−4 0.74

MnO2/TiO2/Ti 15.34 4.20 3.17 × 10−5 0.853 691.7 3.5 × 10−4 0.72

The electrochemical properties of the electrode material were further studied by
performing CV tests. Figure 6 shows the test results of commercialized metal foam Ti,
surface-modified TiO2/Ti, and MnO2/TiO2/Ti nanocomposites in a KOH solution with
an electrolyte system of 0.5 mol/L. The scanning potential was from −0.2 to 0.7 V, and
the scanning speed was 10 mV/s. As shown in Figure 6a, all the CV curves in the voltage
range had a symmetrical shape. Each of the three samples were analyzed by taking ten
turns. Figure 6b presents the graph of the test results for one cycle of each sample, which
showed that the MnO2/TiO2/Ti curve was shaped relative to a rectangle with a small redox
peak with TiO2/Ti (Faraday reaction) [13], indicating the pseudo-capacitance behavior of
the electrode. Compared with the TiO2/Ti nanocomposite, the MnO2/TiO2/Ti electrode
exhibited a larger CV integration area, indicating that the MnO2/TiO2/Ti nanocomposites
had a higher area capacitance, showing their superior electrochemical properties and the
high capacitance behavior of MnO2.
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The quality of the capacitance performance of the electrode material can be seen from
the closed area of the curve. Titanium dioxide was intended to improve the manganese
dioxide loading, although the presence of titanium dioxide did not contribute to the
capacitance of the final electrode material; only the loaded manganese dioxide contributed
to the capacitance. The area of the closed curve of the MnO2/TiO2/Ti nanocomposite, as
shown in Figure 6b, changed greatly with the addition of MnO2, producing the largest
closed curve. The specific capacitance (Cp) of the porous Ti, surface-modified TiO2/Ti, and
MnO2/TiO2/Ti nanocomposites can be estimated using Equation (1):

Cp =
A

2mk(V2 −V1)
(1)

where Cp is the specific capacitance (F/g), A is the CV curve area (V), m is the mass of
the active substance (g), k is the scanning rate of the CV curve (V/s), and (V2 − V1) is
the scanning potential range of the CV curve test. The histogram of the Ti, TiO2/Ti, and
MnO2/TiO2/Ti specific capacitance values is shown in Figure 7, and the specific capacitance
values of the above three samples were obtained according to the CV curve area of Figure 6b,
which were 181.9F/g, 88.9F/g, and 314F/g, respectively. The specific capacitance value
of the MnO2/TiO2/Ti composite electrode material was significantly higher than that of
both of the former, which was 3.5 times larger than that of the TiO2/Ti electrode material.
Therefore, loading MnO2 to the TiO2/Ti electrode material had better specific capacitance
behavior than the TiO2/Ti and pure Ti electrode materials. The CV results showed that the
MnO2/TiO2/Ti nanocomposite resistance was small, and the capacitance performance was
improved by the additional MnO2 nano-coating.
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4. Conclusions

In summary, a compact MnO2/TiO2 coating on metallic porous Ti was prepared
successfully through an alternating immersion method of a chemical precipitation reaction
of KMnO4 and MnSO4 aqueous solutions. The morphologies of the coatings and chemical
compositions were studied by XRD, Raman, and SEM. The electrochemical behavior
of the MnO2/TiO2/Ti nanocomposites was studied via CV, Tafel curves, and EIS. The
results revealed that the MnO2/TiO2/Ti exhibited better electrochemical properties and
significantly improved the corrosion resistance than those of the pure porous Ti and the
surface-modified Ti. In addition, the capacitance performance was improved strongly,
and the specific capacitance value reached 314 F/g. MnO2/TiO2/Ti nanocomposites are
therefore a promising composite electrode material for supercapacitor applications.
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