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Abstract: Various types of materials have been traditionally used to restore damaged bones. In the
late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their
biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics.
Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium
orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones
and teeth. During the past 50 years, there have been a number of important achievements in this
field. Namely, after the initial development of bioceramics that was just tolerated in the physiological
environment, an emphasis was shifted towards the formulations able to form direct chemical bonds
with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible
to choose whether the CaPO4-based implants would remain biologically stable once incorporated into
the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a
new concept of regenerative bioceramics was developed, and such formulations became an integrated
part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone
formation and vascularization. These scaffolds are usually porous and harbor various biomolecules
and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial
bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease
repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug
delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth
factors, bioactive peptides, and various types of cells.

Keywords: calcium orthophosphates; hydroxyapatite; tricalcium phosphate; bioceramics; biomaterials;
grafts; biomedical applications; tissue engineering

1. Introduction

One of the most exciting and rewarding areas of the engineering discipline involves
development of various devices for healthcare. Some of them are implantable. Examples
comprise sutures, catheters, heart valves, pacemakers, breast implants, fracture fixation
plates, nails and screws in orthopedics, various filling formulations, orthodontic wires,
total joint replacement prostheses, etc. However, in order to be accepted by the living
body without any unwanted side effects, all implantable items must be prepared from a
special class of tolerable materials, called biomedical materials or biomaterials, in short.
The physical character of the majority of the available biomaterials is solids [1,2].

From the material point of view, all types of solids are divided into four major groups:
metals, polymers, ceramics, and various blends thereof, called composites. Similarly, all
types of solid biomaterials are also divided into the same groups: biometals, biopolymers,
bioceramics, and biocomposites. All of them play very important roles in both replacement
and regeneration of various human tissues; however, setting biometals, biopolymers, and
biocomposites aside, this review is focused on bioceramics only. In general, bioceramics
comprise various polycrystalline materials, amorphous materials (glasses), and blends
thereof (glass-ceramics). Nevertheless, the chemical elements used to manufacture bioce-
ramics form just a small set of the periodic table; namely, bioceramics might be prepared
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from alumina, zirconia, magnesia, carbon, silica-contained, and calcium-contained com-
pounds, as well as from a limited number of other compounds. All these compounds might
be manufactured in both dense and porous forms in bulk, as well as in the forms of crystals,
powders, particles, granules, scaffolds, and/or coatings [1–3].

As seen from the above, the entire subject of bioceramics is still rather broad. To
specify it further, let me limit myself by a description of calcium orthophosphate (abbre-
viated as CaPO4)-based formulations only. If compared with other types of bioceramics
(such as alumina, zirconia, calcium silicates, calcium sulfate, etc.), the main feature and
superiority of CaPO4 is based on their chemical similarity to the composition of calcified
tissues of mammals (bones, teeth, and deer antlers) and the need for versatile and risk-
free bone substitute biomaterials immediately available without the constraint of bone
grafts. One of the major properties of most types of CaPO4 is their osteoconductivity, an
ability to favor bone healing and to bind firmly to bone tissues. In addition, some types
of CaPO4 have been shown to be able to initiate bone formation de novo in nonosseous
sites [1–3]. Therefore, CaPO4 bioceramics are widely used in a number of different applica-
tions throughout the body, covering all areas of the skeleton. The examples include healing
of bone defects, fracture treatment, total joint replacement, bone augmentation, orthopedics,
cranio-maxillofacial reconstruction, spinal surgery, otolaryngology, ophthalmology, and
percutaneous devices [1–3], as well as dental fillings and periodontal treatments [4]. Fur-
thermore, they are also used in nonosseous applications, such as ocular implants, allowing
eye movements. Depending upon the required properties, different types of CaPO4 might
be used. For example, Figure 1 displays some randomly chosen samples of the commer-
cially available CaPO4 bioceramics for bone graft applications. One should note that the
global bone grafts and substitutes market was valued at USD 2.65 billion in 2020 and is
projected to reach USD 3.36 billion by 2028, registering a cumulative annual growth rate
of ~4.3% from 2021 to 2028 [5]. This clearly demonstrates the biomedical perspectives of
CaPO4-based bioceramics.

Figure 1. Several examples of the commercial CaPO4-based bioceramics.

A list of the available CaPO4, including their standard abbreviations and major prop-
erties, is summarized in Table 1 [3,6]. To narrow the subject further, with a few important
exceptions, bioceramics prepared from undoped and unsubstituted CaPO4 will be con-
sidered and discussed only. Due to this reason, CaPO4-based bioceramics prepared from
biological resources, such as bones, teeth, corals, antlers, etc. [7–14], including food [15]
and animal wastes [16], as well as various types of ion-substituted CaPO4 [17–41], includ-
ing rhenanite NaCaPO4 and chlorapatite Ca10(PO4)6Cl2, are not considered. The readers
interested in both topics are advised to study the original publications.
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Table 1. Existing calcium orthophosphates and their major properties [3,6].

Ca/P Molar
Ratio

Compounds and Their
Typical Abbreviations Chemical Formula Solubility at

25 ◦C, -log(Ks)
Solubility at

25 ◦C, g/L

pH Stability Range
in Aqueous

Solutions at 25 ◦C

0.5 Monocalcium phosphate
monohydrate (MCPM) Ca(H2PO4)2·H2O 1.14 ~18 0.0–2.0

0.5 Monocalcium phosphate
anhydrous (MCPA or MCP) Ca(H2PO4)2 1.14 ~17 [c]

1.0
Dicalcium phosphate

dihydrate (DCPD),
mineral brushite

CaHPO4·2H2O 6.59 ~0.088 2.0–6.0

1.0
Dicalcium phosphate

anhydrous (DCPA or DCP),
mineral monetite

CaHPO4 6.90 ~0.048 [c]

1.33 Octacalcium phosphate
(OCP) Ca8(HPO4)2(PO4)4·5H2O 96.6 ~0.0081 5.5–7.0

1.5 α-Tricalcium phosphate
(α-TCP) α-Ca3(PO4)2 25.5 ~0.0025 [a]

1.5 β-Tricalcium phosphate
(β-TCP) β-Ca3(PO4)2 28.9 ~0.0005 [a]

1.2–2.2 Amorphous calcium
phosphates (ACP)

CaxHy(PO4)z·nH2O,
n = 3–4.5; 15%–20% H2O

[b] [b] ~5–12 [d]

1.5–1.67
Calcium-deficient

hydroxyapatite (CDHA
or Ca-def HA) [e]

Ca10-x(HPO4)x(PO4)6−x(OH)2−x
(0 < x < 1) ~85 ~0.0094 6.5–9.5

1.67 Hydroxyapatite (HA, HAp,
or OHAp) Ca10(PO4)6(OH)2 116.8 ~0.0003 9.5–12

1.67 Fluorapatite (FA or FAp) Ca10(PO4)6F2 120.0 ~0.0002 7–12

1.67
Oxyapatite (OA, OAp, or

OXA) [f], mineral
voelckerite

Ca10(PO4)6O ~69 ~0.087 [a]

2.0
Tetracalcium phosphate

(TTCP or TetCP), mineral
hilgenstockite

Ca4(PO4)2O 38–44 ~0.0007 [a]

[a] These compounds cannot be precipitated from aqueous solutions. [b] Cannot be measured precisely. However,
the following values were found: 25.7 ± 0.1 (pH = 7.40), 29.9 ± 0.1 (pH = 6.00), 32.7 ± 0.1 (pH = 5.28). The
comparative extent of dissolution in acidic buffer is ACP >> α-TCP >> β-TCP > CDHA >> HA > FA. [c] Stable
at temperatures above 100 ◦C.[d] Always metastable. [e] Occasionally, it is called “precipitated HA (PHA)”.
[f] Existence of OA remains questionable.

2. General Knowledge and Definitions

A number of definitions have been developed for the term “biomaterials”. For example,
by the end of the 20th century, the consensus developed by the experts was the following:
biomaterials were defined as synthetic or natural materials to be used to replace parts of a
living system or to function in intimate contact with living tissues [42]. In September 2009,
a more advanced definition was introduced: “A biomaterial is a substance that has been
engineered to take a form which, alone or as part of a complex system, is used to direct, by
control of interactions with components of living systems, the course of any therapeutic or
diagnostic procedure, in human or veterinary medicine” [43]. Further, in 2018, the term
biomaterial was redefined as “a material designed to take a form that can direct, through
interactions with living systems, the course of any therapeutic or diagnostic procedure” [44].
According to the Williams, “The two critical parts of this definition relate to the objectives
of the systems in which a biomaterial is used and the fact that the material has to interact
with living systems, in most cases parts of the human body, in order for these objectives to
be realized. This definition, and indeed, the whole concept of biomaterials science, applies
equally to situations involving implantable devices, artificial organs, tissue engineering
templates, nonviral gene vectors, drug delivery systems and contrast agents” [45]. The
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definition alterations were accompanied by a shift in both the conceptual ideas and the
expectations of biological performance, which mutually changed in time. However, one
should stress that any artificial materials that are in contact with skin, such as hearing aids
and wearable artificial limbs, are not included in the definition of biomaterials since the
skin acts as a protective barrier between the body and the external world [1,2].

In general, the biomaterials discipline is founded in the knowledge of the synergistic
interaction of material science, biology, chemistry, medicine, and mechanical science and it
requires the input of comprehension from all these areas so that potential implants perform
adequately in a living body and interrupt normal body functions as little as possible [46]. As
biomaterials deal with all aspects of the material synthesis and processing, the knowledge
in chemistry, material science, and engineering appears to be essential. On the other
hand, since clinical implantology is the main purpose of biomaterials, biomedical sciences
become the key part of the research. These include cell and molecular biology, histology,
anatomy, and physiology. The final aim is to achieve the correct biological interaction of
the artificial grafts with living tissues of a host. Thus, to achieve the goals, several stages
have to be performed, such as material synthesis, design, and manufacturing of prostheses,
followed by various types of tests. Furthermore, before clinical applications, any potential
biomaterial must also pass all regulatory requirements [47].

The major difference between biomaterials and other classes of materials lays in their
ability to remain in a biological environment while neither damaging the surroundings
nor being damaged in that process. Therefore, biomaterials must be distinguished from
biological materials because the former are the materials that are accepted by living tis-
sues and, therefore, they might be used for tissue replacements, while the latter are just
the materials being produced by various biological systems (wood, cotton, bones, chitin,
etc.) [48]. Furthermore, there are biomimetic materials, which are not made by living organ-
isms but have composition, structure, and properties similar to those of biological materials.
Concerning the subject of the current review, bioceramics (or biomedical ceramics) are de-
fined as biomaterials having a ceramic origin. Now, it is important to define the meaning
of ceramics. According to Wikipedia, the free encyclopedia: “The word ceramic comes
from the Greek word κεραµικóς (keramikos), “of pottery” or “for pottery”, from κέραµoς
(keramos), “potter’s clay, tile, pottery”. The earliest known mention of the root “ceram-”
is the Mycenaean Greek ke-ra-me-we, “workers of ceramics”, written in Linear B syllabic
script. The word “ceramic” may be used as an adjective to describe a material, product
or process, or it may be used as a noun, either singular, or, more commonly, as the plural
noun “ceramics”. A ceramic material is an inorganic, nonmetallic, often crystalline oxide,
nitride or carbide material. Some elements, such as carbon or silicon, may be considered
ceramics. Ceramic materials are brittle, hard, strong in compression, weak in shearing and
tension. They withstand chemical erosion that occurs in other materials subjected to acidic
or caustic environments. Ceramics generally can withstand very high temperatures, such
as temperatures that range from 1000 to 1600 ◦C (1800 to 3000 ◦F). Glass is often not consid-
ered a ceramic because of its amorphous (noncrystalline) character. However, glassmaking
involves several steps of the ceramic process and its mechanical properties are similar to
ceramic materials” [49]. Similar to any other type of biomaterials, bioceramics can have
structural functions as joint or tissue replacements, and be used as coatings to improve the
biocompatibility, as well as function as resorbable lattices, providing temporary structures
and frameworks that are dissolved and/or replaced as the body rebuilds the damaged
tissues [50–53]. Some types of bioceramics feature a drug-delivery capability [54–57].

In medicine, bioceramics are needed to alleviate pain and restore functions of diseased
or damaged calcified tissues (bones and teeth) of the body. A great challenge facing its
medical application is, first, to replace and, second, to regenerate old and deteriorating
bones with a biomaterial that can be replaced by a new mature bone without transient loss
of a mechanical support [1,2]. The excellent performance of the specially designed bioce-
ramics that have survived these clinical conditions represents one of the most remarkable
accomplishments of research, development, production, and quality assurance before the
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end of the past century [50]. Regarding CaPO4 bioceramics, a surface bioactivity appears
to be its major feature. It contributes to a bone bonding ability and enhances new bone
formation [58].

3. Bioceramics of CaPO4

3.1. History

The detailed history of HA and other types of CaPO4, including the subject of CaPO4
bioceramics, as well as description of their past biomedical applications, might be found
elsewhere [59,60], where the interested readers are referred. One should just note that the
earliest book devoted to CaPO4 bioceramics was published in 1983 [61].

3.2. Chemical Composition and Preparation

Currently, CaPO4 bioceramics can be prepared from various sources [7–16]. Nev-
ertheless, up to now, all attempts to synthesize bone replacement materials for clinical
applications featuring the physiological tolerance, biocompatibility, and a long-term sta-
bility have had only relative success; this clearly demonstrates both the superiority and a
complexity of the natural structures [62].

In general, a characterization of CaPO4 bioceramics should be performed from var-
ious viewpoints such as the chemical composition (including stoichiometry and purity),
homogeneity, phase distribution, morphology, grain sizes and shape, grain boundaries,
crystallite size, crystallinity, pores, cracks, surface roughness, etc. From the chemical point
of view, the vast majority of CaPO4 bioceramics are based on HA [63–67], both types of
TCP [68–78], and various multiphasic formulations thereof [79]. Biphasic formulations
(commonly abbreviated as BCP–biphasic calcium phosphate) are the simplest among the
latter ones. They include β-TCP + HA [80–88], α-TCP + HA [89–91], and biphasic TCP (com-
monly abbreviated as BTCP), consisting of α-TCP and β-TCP [92–97]. In addition, triphasic
formulations (HA + α-TCP + β-TCP) have been prepared as well [98–101]. Further details
on this topic can be found in a special review [79]. Leaving aside a big subject of DCPD-
forming self-setting formulations [102,103], one should note that just a few publications on
bioceramics prepared from other types of CaPO4 are available [104–112].

The preparation techniques of various types of CaPO4 have been extensively reviewed
in the literature [6,113–117], where the interested readers are referred. Briefly, when com-
pared to both α- and β-TCP, HA is a more stable phase under the physiological conditions,
as it has a lower solubility (Table 1) and, thus, slower resorption kinetics [118–120]. There-
fore, the BCP concept is determined by the optimum balance of a more stable phase of HA
and a more soluble TCP. Due to a higher biodegradability of the α- or β-TCP component,
the reactivity of BCP increases with the TCP/HA ratio increasing. Thus, in vivo bioresorba-
bility of BCP can be controlled through the phase composition [81]. Similar conclusions
are also valid for the biphasic TCP (in which α-TCP is a more soluble phase), as well as for
both triphasic (HA, α-TCP, and β-TCP) and yet more complex formulations [79].

As implants made of sintered HA are found in bone defects for many years after implan-
tation (Figure 2, bottom), bioceramics made of more soluble types of CaPO4 [68–112,121,122]
are preferable for the biomedical purposes (Figure 2, top). Furthermore, the experimental
results showed that BCP had a higher ability to adsorb fibrinogen, insulin, or type I collagen
than HA [123]. Thus, according to both observed and measured bone formation parameters,
CaPO4 bioceramics have been ranked as follows: low sintering temperature BCP (rough
and smooth) ≈medium sintering temperature BCP ≈ TCP > calcined low sintering temper-
ature HA > non-calcined low sintering temperature HA > high sintering temperature BCP
(rough and smooth) > high sintering temperature HA [124]. This sequence was developed
in the year 2000 and, thus, neither multiphase formulations nor other CaPO4 are included.
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Figure 2. Soft X-ray photographs of the operated portion of the rabbit femur. Four weeks (a),
12 weeks (b), 24 weeks (c), and 72 weeks (d) after implantation of CDHA; 4 weeks (e), 12 weeks (f),
24 weeks (g), and 72 weeks (h) after implantation of sintered HA. Reprinted from Ref. [121] with permission.

3.3. Forming and Shaping

In order to fabricate CaPO4 bioceramics in progressively complex shapes, scientists
are investigating the use of both old and new manufacturing techniques. These techniques
range from an adaptation of the age-old pottery techniques to the newest manufactur-
ing methods for high-temperature ceramic parts for airplane engines; namely, reverse
engineering [125,126] and rapid prototyping [127–129] technologies have revolutionized a
generation of physical models, allowing the engineers to efficiently and accurately produce
physical models and customized implants with high levels of geometric intricacy. Com-
bined with computer-aided design and manufacturing (CAD/CAM), complex physical
objects of the anatomical structure can be fabricated in a variety of shapes and sizes. In a
typical application, an image of a bone defect in a patient can be taken and used to develop
a three-dimensional (3D) CAD computer model [130–134]. Then, a computer can reduce
the model to slices or layers. Afterwards, 3D objects and coatings are constructed layer-
by-layer using rapid prototyping techniques. The examples comprise fused deposition
modeling [135,136], selective laser sintering [137–142], laser cladding [143–146], 3D printing
and/or plotting [73,147–153], robocasting [154–156], solid freeform fabrication [157–162],
stereolithography [163–166], and direct light processing [167]. More advanced techniques,
such as 4D [168,169] and 5D [170] printing techniques, have been introduced as well. Three-
dimensional printing of the CaPO4-based self-setting formulations is known as well [151].
Additional details of these techniques are available in the literature [171–174].

In the specific case of ceramic scaffolds, a sintering step is usually applied after
printing the green bodies (see Section 3.4. Sintering and Firing below). Furthermore, a
thermal printing process of melted CaPO4 was proposed [175], while, in some cases, laser
processing might be applied as well [176,177]. A schematic of the 3D-printing technique as
well as some 3D-printed items are shown in Figure 3 [56]. A custom-made implant of actual
dimensions would reduce the time it takes to perform the medical implantation procedure
and subsequently lower the risk to the patient. Another advantage of a prefabricated,
exact-fitting implant is that it can be used more effectively and applied directly to the
damaged site rather than a replacement, which is formulated during surgery from a paste
or granular material [158,177–179].
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Figure 3. A schematic of 3D printing and some 3D-printed parts (fabricated at Washington State
University) showing the versatility of 3D-printing technology for ceramic scaffolds fabrication with
complex architectural features. Reprinted from Ref. [56] with permission.

In addition to the aforementioned modern techniques, classical forming and shaping
approaches are still widely used. The selection of the desired technique depends greatly on
the ultimate application of the bioceramic device, e.g., whether it is for a hard-tissue replace-
ment or an integration of the device within the surrounding tissues. In general, three types
of processing technologies might be used: (1) employment of a lubricant and a liquid binder
with ceramic powders for shaping and subsequent firing; (2) application of self-setting and
self-hardening properties of water-wet molded powders; (3) materials are melted to form a
liquid and are shaped during cooling and solidification [180–182]. Since CaPO4 are either
thermally unstable (MCPM, MCPA, DCPA, DCPD, OCP, ACP, CDHA) or have a melting
point at temperatures exceeding ~1400 ◦C with a partial decomposition (α-TCP, β-TCP,
HA, FA, TTCP), only the first and the second consolidation approaches are used to prepare
bulk bioceramics and scaffolds. The methods include uniaxial compaction [154,183,184],
isostatic pressing (cold or hot) [87,185–191], granulation [192–198], loose packing [199],
slip casting [75,200–205], gel casting [163,206–211], pressure mold forming [212–214], in-
jection molding [215–218], polymer replication [219–226], ultrasonic machining [227], ex-
trusion [228–234], and slurry dipping and spraying [235]. In addition, to form ceramic
sheets from slurries, tape casting [207,236–240], doctor blade [241], and colander methods
can be employed [180–182]. In addition, flexible, ultrathin (of 1 to several microns thick),
freestanding HA sheets were produced by a pulsed laser deposition technique, followed
by thin film isolation technology [242]. Various combinations of several techniques are
also possible [77,207,243–245]. Furthermore, some of those processes might be performed
under the electromagnetic field, which helps crystal aligning [201,204,246–249]. Finally, the
prepared CaPO4 bioceramics might be subjected to additional treatments (e.g., chemical,
thermal, and/or hydrothermal ones) to convert one type of CaPO4 into another one [226].

To prepare bulk bioceramics, powders are usually pressed damp in metal dies or dry
in lubricated dies at pressures high enough to form sufficiently strong structures to hold
together until they are sintered [250]. An organic binder, such as polyvinyl alcohol, helps
to bind the powder particles altogether. Afterwards, the binder is removed by heating in
air to oxidize the organic phases to carbon dioxide and water. Since many binders contain
water, drying at ~100 ◦C is a critical step in preparing damp-formed pieces for firing. Too
much or too little water in the compacts can lead to blowing apart the ware on heating
or crumbling, respectively [180–182,186]. Furthermore, removal of water during drying
often results in subsequent shrinkage of the product. In addition, due to local variations in
water content, warping and even cracks may be developed during drying. Dry pressing
and hydrostatic molding can minimize these problems [182]. Finally, the manufactured
green samples are sintered.

It is important to note that forming and shaping of any ceramic products require a
proper selection of the raw materials in terms of particle sizes and size distribution; namely,
tough and strong bioceramics consist of pure, fine, and homogeneous microstructures. To
attain this, pure powders with small average size and high surface area must be used as the
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starting sources. However, for maximum packing and least shrinkage after firing, mixing
of ~70% coarse and ~30% fine powders have been suggested [182]. Mixing is usually
carried out in a ball mill for uniformity of properties and reaction during subsequent
firing. Mechanical die forming or sometimes extrusion through a die orifice can be used to
produce a fixed cross-section.

Finally, to produce the accurate shaping, necessary for the fine design of bioceram-
ics, machine finishing might be essential [132,180,251,252]. Unfortunately, cutting tools
developed for metals are usually useless for bioceramics due to their fragility; therefore,
grinding and polishing appear to be the most convenient finishing techniques [132,180]. In
addition, the surface of CaPO4 bioceramics might be modified by various supplementary
treatments [253,254], and CaPO4 bioceramics might be subjected to post-processing actions,
such as immersing into special solutions [255].

3.4. Sintering and Firing

After being formed and shaped, the CaPO4 bioceramics are commonly sintered. A
sintering (or firing) procedure is a thermal process in which loosely bound particles are
converted into a consistent solid mass under the influence of heat and/or pressure without
melting the particles. This process is of great importance to manufacture bulk bioceramics
with the required mechanical properties. Usually, this technique is carried out according
to controlled temperature programs of electric furnaces in adjusted ambience of air with
necessary additional gasses; however, always at temperatures below the melting points of
the materials. The firing step can include temporary holds at intermediate temperatures to
burn out organic binders [180–182]. The heating rate, sintering temperature, and holding
time depend on the starting materials. For example, in the case of HA, these values are in the
ranges of 0.5–3 ◦C/min, 1000–1250 ◦C, and 2–5 h, respectively [256]. In the majority of cases,
sintering allows a structure to retain its shape. However, this process might be accompanied
by a considerable degree of shrinkage [257–259], which must be accommodated in the
fabrication process. For instance, in the case of FA sintering, a linear shrinkage was found
to occur at ~715 ◦C and the material reached its final density at ~890 ◦C. Above this
value, grain growth became important and induced an intra-granular porosity, which was
responsible for density decrease. At ~1180 ◦C, a liquid phase was formed due to formation
of a binary eutectic between FA and fluorite contained in the powder as impurity. This
liquid phase further promoted the coarsening process and induced formation of large pores
at high temperatures [260].

In general, sintering occurs only when the driving force is sufficiently high, while the
latter relates to the decrease in surface and interfacial energies of the system by matter
(molecules, atoms, or ions) transport, which can proceed by solid, liquid, or gaseous phase
diffusion. Namely, when solids are heated to high temperatures, their constituents are
driven to move to fill up pores and open channels between the grains of powders, as
well as to compensate for the surface energy differences among their convex and concave
surfaces (matter moves from convex to concave). At the initial stages, bottlenecks are
formed and grow among the particles (Figure 4). Existing vacancies tend to flow away from
the surfaces of sharply curved necks; this is an equivalent of a material flow towards the
necks, which grow as the voids shrink. Small contact areas among the particles expand and,
at the same time, a density of the compact increases and the total void volume decreases.
As the pores and open channels are closed during a heat treatment, the particles become
tightly bonded together, and density, strength, and fatigue resistance of the sintered object
improve greatly. Grain boundary diffusion was identified as the dominant mechanism for
densification [261]. Furthermore, strong chemical bonds are formed among the particles,
and loosely compacted green bodies are hardened to denser materials [180–182]. Further
knowledge on the ceramic sintering process can be found elsewhere [262].
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Figure 4. A schematic diagram representing the changes occurring with spherical particles under
sintering. Shrinkage is noticeable.

In the case of CaPO4, the earliest paper on their sintering was published in 1971 [263].
Since then, numerous papers on this subject have been published, and several specific pro-
cesses have been found to occur during CaPO4 sintering. Firstly, moisture, carbonates and
all other volatile chemicals remaining from the synthesis stage, such as ammonia, nitrates,
and any organic compounds, are removed as gaseous products. Secondly, unless powders
are sintered, the removal of these gases facilitates production of denser ceramics with sub-
sequent shrinkage of the samples (Figure 5). Thirdly, all chemical changes are accompanied
by a concurrent increase in crystal size and a decrease in the specific surface area. Fourthly,
a chemical decomposition of all acidic orthophosphates and their transformation into other
phosphates (e.g., 2HPO4

2− → P2O7
4− + H2O) takes place. In addition, sintering causes

toughening [66], densification [67,264], partial dehydroxylation (in the case of HA) [67], a
partial evaporation and condensation of phosphates [265], and grain growth [261,266], as
well as a mechanical strength increasing [267–269]. The latter events are due to presence of
air and other gases filling gaps among the particles of unsintered powders. At sintering,
the gases move towards the outside of powders, and green bodies shrink owing to decrease
of distances among the particles. For example, sintering of biologically formed apatites
was investigated [270,271] and the obtained products were characterized [272,273]. In all
cases, the numerical value of the Ca/P ratio in sintered apatites of biological origin was
higher than that of the stoichiometric HA. One should mention that in the vast majority of
cases, CaPO4 with Ca/P ratio < 1.5 (Table 1) are not sintered, since these compounds are
thermally unstable, while sintering of nonstoichiometric CaPO4 (CDHA and ACP) always
leads to their transformation into various types of biphasic, triphasic, and multiphase
formulations [79].

Figure 5. Linear shrinkage of the compacted ACP powders that were converted into β-TCP, BCP
(50% HA + 50% β-TCP), and HA upon heating. According to the authors: “At 1300 ◦C, the shrink-
age reached a maximum of approximately ~25, ~30 and ~35% for the compacted ACP powders
that converted into HA, BCP 50/50 and β-TCP, respectively” [258]. Reprinted from Ref. [258]
with permission.
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An extensive study on the effects of sintering temperature and time on the properties
of HA bioceramics revealed a correlation between these parameters and density, porosity,
grain size, chemical composition, and strength of the scaffolds [274]. Namely, sintering
below ~1000 ◦C was found to result in initial particle coalescence, with little or no densifi-
cation and a significant loss of the surface area and porosity. The degree of densification
appeared to depend on the sintering temperature, whereas the degree of ionic diffusion
was governed by the period of sintering [274]. To enhance sinterability of CaPO4, a variety
of sintering additives might be added [275–278].

Solid-state pressureless sintering is the simplest procedure. For example, HA bioceram-
ics can be pressurelessly sintered up to the theoretical density at 1000–1200 ◦C. Processing
at even higher temperatures usually lead to exaggerated grain growth and decomposition
because HA becomes unstable at temperatures exceeding ~1300 ◦C [6,113–117,279–281].
The decomposition temperature of HA bioceramics is a function of the partial pressure
of water vapor. Moreover, processing under vacuum leads to an earlier decomposition of
HA, while processing under high partial pressure of water prevents the decomposition. On
the other hand, the presence of water in the sintering atmosphere was reported to inhibit
densification of HA and accelerate grain growth [282]. Unexpectedly, an application of a
magnetic field during sintering was found to influence the growth of HA grains [266]. A
definite correlation between hardness, density, and a grain size in sintered HA bioceramics
was found; despite exhibiting high bulk density, hardness started to decrease at a certain
critical grain size limit [283–285].

Since grain growth occurs mainly during the final stage of sintering, to avoid this, a
new method called “two-step sintering” (TSS) was proposed [286]. The method consists
of suppressing grain boundary migration responsible for grain growth, while keeping
grain boundary diffusion that promotes densification. The TSS approach was successfully
applied to CaPO4 bioceramics [77,86,287–290]. For example, HA compacts prepared from
nanodimensional powders were two-step sintered. The average grain size of near full
dense (>98%) HA bioceramics made via conventional sintering was found to be ~1.7 µm,
while that for TSS HA bioceramics was ~190 nm (i.e., ~9 times less) with simultaneous
increasing of the fracture toughness of samples from 0.98± 0.12 to 1.92± 0.20 MPa m1/2. In
addition, due to the lower second-step sintering temperature, no HA phase decomposition
was detected in the TSS method [287].

Hot pressing [285,291–297], hot isostatic pressing [87,185,190,191], or hot pressing
with post-sintering [298,299], as well as “cold sintering” (which is very similar to hot press-
ing) [300] processes make it possible to decrease the temperature of the densification process,
diminish the grain size, and achieve higher densities. This leads to finer microstructures,
higher thermal stability, and subsequently better mechanical properties of CaPO4 bioceram-
ics. In addition, microwave [301–306], spark plasma [69,104,307–315], flash [316,317], and
ultrafast high-temperature [318] sintering techniques are alternative methods to the con-
ventional sintering, hot pressing, and hot isostatic pressing. Both alternative methods were
found to be time- and energy-efficient densification techniques. Further developments are
still possible. For example, a hydrothermal hot pressing method was developed to fabricate
OCP [105], CDHA [319], HA/β-TCP [294], and HA [295–298,320] bioceramics with neither
thermal dehydration nor thermal decomposition. Further details on the sintering and firing
processes of CaPO4 bioceramics are available in the literature [115,321,322].

To conclude this section, one should note that the sintering stage is not always neces-
sary. For example, CaPO4-based bulk bioceramics with the reasonable mechanical proper-
ties might be prepared by means of self-setting (self-hardening) formulations (see Section 6.1.
Self-setting (Self-hardening) Formulations below). Furthermore, the reader’s attention is di-
rected to an excellent review on various ceramic manufacturing techniques [323], in which
various ceramic processing techniques are well described.
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4. The Major Properties
4.1. Mechanical Properties

The modern generation of biomedical materials should stimulate the body’s own
self-repairing abilities [324]. Therefore, during healing, a mature bone should replace the
modern grafts and this process must occur without transient loss of the mechanical support.
Unluckily for material scientists, a human body provides one of the most inhospitable
environments for the implanted biomaterials. It is warm, wet, and both chemically and
biologically active. For example, a diversity of body fluids in various tissues might have a
solution pH varying from 1 to 9. In addition, a body is capable of generating quite massive
force concentrations, and the variance in such characteristics among individuals might be
enormous. Typically, bones are subjected to ~4 MPa loads, whereas tendons and ligaments
experience peak stresses in the range of 40–80 MPa. The hip joints are subjected to an
average load of up to three times the body weight (3000 N), and peak loads experienced
during jumping can be as high as 10 times the body weight. These stresses are repetitive
and fluctuating depending on the nature of the activities, which can include standing,
sitting, jogging, stretching, and climbing. Therefore, all types of implants must sustain
attacks of a great variety of aggressive conditions [325]. Regrettably, there is presently no
artificial material fulfilling all these requirements.

Now it is important to mention that the mechanical behavior of any ceramics is rather
specific; namely, ceramics is brittle, which is attributed to high-strength ionic bonds. Thus,
it is not possible for plastic deformation to happen prior to failure, as a slip cannot occur.
Therefore, ceramics fail in a dramatic manner. Namely, if a crack is initiated, its progress
will not be hindered by the deformation of material ahead of the crack, as would be the case
in a ductile material (e.g., a metal). In ceramics, the crack will continue to propagate, rapidly
resulting in a catastrophic breakdown. In addition, the mechanical data typically have a
considerable amount of scatter [181]. Alas, all of these are applicable to CaPO4 bioceramics.

For dense bioceramics, the strength is a function of the grain sizes. Namely, finer-
grain-size bioceramics have smaller flaws at the grain boundaries and thus are stronger
than ones with larger grain sizes. Thus, in general, the strength for ceramics is proportional
to the inverse square root of the grain sizes [326]. In addition, the mechanical properties
decrease significantly with increasing content of an amorphous phase, microporosity, and
grain sizes, while a high crystallinity, a low porosity, and small grain sizes tend to give a
higher stiffness, a higher compressive and tensile strength, and a greater fracture toughness.
Furthermore, ceramics strength appears to be very sensitive to slow crack growth [327].
Accordingly, from the mechanical point of view, CaPO4 bioceramics appear to be brittle
polycrystalline materials for which the mechanical properties are governed by crystallinity,
grain size, grain boundaries, porosity, and composition [328]. Thus, it possesses poor
mechanical properties (for instance, a low impact and fracture resistances) that do not allow
CaPO4 bioceramics to be used in load-bearing areas, such as artificial teeth or bones [50–53].
For example, fracture toughness (this is a property that describes the ability of a material
containing a crack to resist fracture and is one of the most important properties of any
material for virtually all design applications) of HA bioceramics does not exceed the value
of ~1.2 MPa·m1/2 [329] (human bone: 2–12 MPa·m1/2). It decreases exponentially with
increasing porosity [330]. Generally, fracture toughness increases with grain size decreasing.
However, in some materials, especially noncubic ceramics, fracture toughness reaches the
maximum and rapidly drops with decreasing grain size. For example, a fracture toughness
of pure hot-pressed HA with grain sizes between 0.2–1.2 µm was investigated. The authors
found two distinct trends, where fracture toughness decreased with increasing grain size
above ~0.4 µm and subsequently decreased with decreasing grain size. The maximum
fracture toughness measured was 1.20 ± 0.05 MPa·m1/2 at ~0.4 µm [291]. Fracture energy
of HA bioceramics is in the range of 2.3–20 J/m2, while the Weibull modulus (a measure
of the spread or scatter in fracture strength) is low (~5–12) in wet environments, which
means that HA behaves as a typical brittle ceramics and indicates a low reliability of HA
implants [331]. Porosity has a great influence on the Weibull modulus [332,333]. In addition,
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the reliability of HA bioceramics was found to depend on deformation mode (bending or
compression), along with pore size and pore size distribution: reliability was higher for
smaller average pore sizes in bending but lower for smaller pore sizes in compression [334].
Interestingly, three peaks of internal friction were found at temperatures of about –40, 80,
and 130 ◦C for HA but no internal friction peaks were obtained for FA in the measured
temperature range; this effect was attributed to the differences of F− and OH− positions
in FA and HA, respectively [335]. Differences in internal friction values were also found
between HA and TCP [336].

Bending, compressive, and tensile strengths of dense HA bioceramics are in the ranges
of 38–250, 120–900, and 38–300 MPa, respectively. Similar values for porous HA bioceramics
are substantially lower: 2–11, 2–100, and ~3 MPa, respectively [331]. These wide variations
in the properties are due to both structural variations (e.g., an influence of remaining
microporosity, grain sizes, presence of impurities, etc.) and manufacturing processes,
and they are also caused by a statistical nature of the strength distribution. Strength was
found to increase with Ca/P ratio increasing, reaching the maximum value around Ca/P
~1.67 (stoichiometric HA) and decreasing suddenly when Ca/P > 1.67 [331]. Furthermore,
strength decreases almost exponentially with increasing porosity [337,338]. However, by
changing the pore geometry, it is possible to influence the strength of porous bioceramics.
It is also worth mentioning that porous CaPO4 bioceramics are considerably less fatigue-
resistant than dense ones (in materials science, fatigue is the progressive and localized
structural damage that occurs when a material is subjected to cyclic loading). Both grain
sizes and porosity are reported to influence the fracture path, which itself has little effect
on the fracture toughness of CaPO4 bioceramics [328,339]. However, no obvious decrease
in mechanical properties was found after CaPO4 bioceramics had been aged in the various
solutions during the different periods of time [340].

Young’s (or elastic) modulus of dense HA bioceramics is in the range of 3–120 GPa [341,342],
which is more or less similar to those of the most resistant components of the natural
calcified tissues (dental enamel: ~74 GPa, dentine: ~21 GPa, compact bone: ~18–22 GPa).
This value depends on porosity [343,344]. Nevertheless, dense bulk compacts of HA
have mechanical resistances of the order of 100 MPa versus ~00 MPa of human bones,
drastically diminishing their resistances in the case of porous bulk compacts [345]. Young’s
modulus measured in bending is between 44 and 88 GPa. To investigate the subject in more
detail, various types of modeling and calculations are increasingly used [346–350]. For
example, the elastic properties of HA appeared to be significantly affected by the presence
of vacancies, which softened HA via reducing its elastic modules [350]. In addition, a
considerable anisotropy in the stress–strain behavior of the perfect HA crystals was found
by ab initio calculations [347]. The crystals appeared to be brittle for tension along the z-axis
with the maximum stress of ~9.6 GPa at 10% strain. Furthermore, the structural analysis of
the HA crystal under various stages of tensile strain revealed that the deformation behavior
manifested itself mainly in the rotation of PO4 tetrahedrons with concomitant movements
of both the columnar and axial Ca ions [347]. Data for single crystals are also available [351].
Vickers hardness (a measure of the resistance to permanent indentation) of dense HA
bioceramics is within 3–7 GPa, while the Poisson’s ratio (the ratio of the contraction or
transverse strain to the extension or axial strain) for HA is about 0.27, which is close to
that of bones (~0.3). At temperatures within 1000–1100 ◦C, dense HA bioceramics were
found to exhibit superplasticity with a deformation mechanism based on grain boundary
sliding [312,352,353]. Furthermore, both wear resistance and friction coefficient of dense
HA bioceramics are comparable to those of dental enamel [331].

Due to a high brittleness (associated with a low crack resistance), the biomedical
applications of CaPO4 bioceramics are focused on production of non-load-bearing implants,
such as pieces for middle ear surgery, filling of bone defects in oral or orthopedic surgery,
and coating of dental implants and metallic prosthesis (see below) [62,354,355]. Therefore,
methods are continuously sought to improve the reliability of CaPO4 bioceramics. Namely,
the mechanical properties of sintered bioceramics might be improved by changing the
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morphology of the initial CaPO4 [356]. In addition, diverse reinforcements (ceramics,
metals, or polymers) have been applied to manufacture various biocomposites and hybrid
biomaterials [357], but that is another story. However, successful hybrid formulations
consisting of CaPO4 only [358–365] are within the scope of this review. Namely, bulk
HA bioceramics might be reinforced by HA whiskers [359–363]. Furthermore, various
biphasic apatite/TCP formulations were tested [358,364,365] and, for example, a superior
superplasticity of HA/β-TCP biocomposites to HA bioceramics was detected [364].

Another method to improve the mechanical properties of CaPO4 bioceramics is to
cover the items by polymeric coatings [366–368] or infiltrate porous structures by poly-
mers [369–371]; however, this is another topic. Other approaches are also possible [154].
Further details on the mechanical properties of CaPO4 bioceramics are available else-
where [330,331,372], where interested readers are referred.

4.2. Electric/Dielectric and Piezoelectric Properties

Recently, an interest in both electric/dielectric [301,373–385] and piezoelectric [386,387]
properties of CaPO4 bioceramics has been expressed. In addition, some types of CaPO4
bioceramics (namely, HA) appear to be electrets [388,389]. An electret is a dielectric material
that has a quasi-permanent electric charge or dipole polarization. An electret generates
internal and external electric fields, and is the electrostatic equivalent of a permanent
magnet [390]. For example, a surface ionic conductivity of both porous and dense HA
bioceramics was examined for humidity sensor applications, since the room temperature
conductivity was influenced by relative humidity [374]. Namely, the ionic conductivity
of HA is a subject of research for its possible use as a gas sensor for alcohol [375], carbon
dioxide [373,382], or carbon monoxide [378]. Electric measurements were also used as a
characterization tool to study the evolution of microstructure in HA bioceramics [376]. More
to the point, the dielectric properties of HA were examined to understand its decomposition
to β-TCP [375]. In the case of CDHA, the electric properties, in terms of ionic conductivity,
were found to increase after compression of the samples at 15 t/cm2, which was attributed to
establishment of some order within the apatitic network [377]. The conductivity mechanism
of CDHA appeared to be multiple [380]. Furthermore, there are attempts to develop HA
and/or CDHA electrets for biomedical utilization [379,388,389].

The electric properties of CaPO4 bioceramics appear to influence their biomedical
applications. For example, there is an interest in polarization of HA bioceramics to generate
a surface charge by the applying a constant DC electric field of 0.5–10.0 kV/cm at elevated
temperatures (300–1000 ◦C) to samples previously sintered at ~ 1000–1250 ◦C for ~2 h.
This technique is called thermally stimulated polarization and its results indicated that the
polarization effects were a consequence of electrical dipoles associated with the formation
of defects inside crystal grains, such as thermally-induced OH− vacancies, and of the space
charge polarization that originated in the grain boundaries [391–393]. The presence of
surface charges on HA was shown to have a significant effect on both in vitro and in vivo
crystallization of biological apatite [394–400], as well as on an ability to adsorb various
types of phosphate ions [393]. Furthermore, a growth of both biomimetic CaPO4 and bones
was found to be accelerated on negatively charged surfaces and decelerated at positively
charged surfaces [398–407]. A similar effect was found for adsorption of bovine serum
albumin [408]. In addition, the electric polarization of CaPO4 was found to accelerate
a cytoskeleton reorganization of osteoblast-like cells [409–412], extend bioactivity [413],
enhance bone ingrowth through the pores of porous implants [414], and influence the cell
activity [415,416]. The positive effect of electric polarization was found for carbonated
apatite as well [417]. There is an interesting study on the interaction of a blood coagulation
factor on electrically polarized HA surfaces [418]. Further details on the electric properties
of CaPO4-based bioceramics are available in the literature [301,383,384,389].
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4.3. Possible Transparency

Single crystals of all types of CaPO4 are optically transparent for the visible light.
As bioceramics of CaPO4 have a polycrystalline nature with a random orientation of
big amounts of small crystals, it is opaque and of white color, unless colored dopants
have been added. However, in some cases, a transparency is convenient to provide
some essential advantages (e.g., to enable direct viewing of living cells, their attachment,
spreading, proliferation, and osteogenic differentiation cascade in a transmitted light).
Thus, transparent CaPO4 bioceramics (Figure 6) [419] have been prepared and investi-
gated [69,87,185,187,310–315,419–427]. They can exhibit an optical transmittance of ~66%
at a wavelength of 645 nm [425]. The preparation techniques include a hot isostatic press-
ing [87,185,187,426], an ambient-pressure sintering [420], a gel casting coupled with a
low-temperature sintering [421,424], and a pulse electric current sintering [422], as well
as spark plasma [69,307–315] and flash [316,317] sintering techniques. Fully dense, trans-
parent CaPO4 bioceramics are obtained at temperatures above ~800 ◦C. Depending on the
preparation technique, the transparent bioceramics have a uniform grain size ranging from
~67 nm [87] to ~250 µm [421] and are always pore-free. Furthermore, translucent CaPO4
bioceramics are also known [87,263,428–430]. Concerning possible biomedical applica-
tions, the optically transparent in visible light CaPO4 bioceramics can be useful for direct
viewing of other objects, such as cells, in some specific experiments [423]. In addition, the
transparency for laser light CaPO4 bioceramics may appear to be convenient for minimal
invasive surgery by allowing passing the laser beam through it to treat the injured tissues
located underneath. However, due to a lack of both porosity and the necessity to have
see-through implants inside the body, the transparent and translucent forms of CaPO4
bioceramics will hardly be extensively used in medicine, except for the aforementioned
cases and possible eye implants.

Figure 6. Transparent HA bioceramics prepared by spark plasma sintering at 900 ◦C from nanosized
HA single crystals. Reprinted from Ref. [419] with permission.

4.4. Porosity

Porosity is defined as a percentage of voids in solids, and this morphological property
is independent of the material. The surface area of porous bodies is much higher, which
guarantees a good mechanical fixation in addition to providing sites on the surface that
allow chemical bonding between the bioceramics and bones [431]. Furthermore, a porous
material may have both closed (isolated) pores and open (interconnected) pores. The
latter look similar to tunnels and are accessible by gases, liquids, and particulate suspen-
sions [432]. The open-cell nature of porous materials (also known as reticulated materials)
is a unique characteristic essential in many applications. In addition, pore dimensions
are also important. Namely, the dimensions of open pores are directly related to bone
formation, since such pores grant both the surface and space for cell adhesion and bone
ingrowth [433–435]. On the other hand, pore interconnection provides the ways for cell dis-
tribution and migration, and it allows an efficient in vivo blood vessel formation suitable for
sustaining bone tissue neo-formation and possibly remodeling [123,414,436–440]. Namely,
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porous CaPO4 bioceramics are colonized easily by cells and bone tissues [436,439,441–446].
Therefore, interconnecting macroporosity (pore size > 100 µm) [84,431,436,447,448] is inten-
tionally introduced in solid bioceramics (Figure 7). Calcining of natural bones and teeth
appears to be the simplest way to prepare porous CaPO4 bioceramics [7–14]. In addition,
macroporosity might be formed artificially due to a release of various easily removable
compounds and, for that reason, incorporation of pore-creating additives (porogens) is
the most popular technique to create macroporosity. The porogens are crystals, particles,
or fibers of either volatile (they evolve gases at elevated temperatures) or soluble sub-
stances. The popular examples comprise paraffin [449–451], naphthalene [328,452–454], su-
crose [455,456], NaHCO3 [457–459], NaCl [460,461], polymethylmethacrylate [74,462–464],
hydrogen peroxide [465–468], cellulose [469], and its derivatives [64]. Several other com-
pounds [338,470–477], including carbon nanotubes [478], might be used as porogens as well.
The ideal porogen should be nontoxic and be removed at ambient temperature, thereby
allowing the bioceramic/porogen mixture to be injected directly into a defect site and
allowing the scaffold to fit the defect [479]. Sintering particles, preferably spheres of equal
size, is a similar way to generate porous 3D bioceramics of CaPO4; however, pores resulting
from this method are often irregular in size and shape and not fully interconnected with
one another. Schematic drawings of various types of the ceramic porosity are shown in
Figure 8 [480]. One should note that 3D-printing techniques allow producing structures
with tailored pore orientations by changing framework directions in a controlled, periodic
pattern (Figure 9) [481].

Figure 7. Photographs of commercially available porous CaPO4 bioceramics with different porosity
(top) and a method of their production (bottom). For photos, the horizontal field width is 20 mm.

Many other techniques, such as replication of polymer foams by impregnation [219–221,
224,482–486] (Figure 7), various types of casting [202,203,207,209,468,487–495], suspen-
sion foaming [101], surfactant washing [496], microemulsions [497,498], and ice templat-
ing [499–502], as well as many other approaches [68,71,74,75,140,503–528], have been ap-
plied to fabricate porous CaPO4 bioceramics. Some of them are summarized in Table 2 [479].
In addition, both natural CaCO3 porous materials, such as coral skeletons [529,530],
shells [530,531], and even wood [532], as well as artificially prepared ones [533], can
be converted into porous CaPO4 under the hydrothermal conditions (250 ◦C, 24–48 h)
with the microstructure undamaged. Porous HA bioceramics can also be obtained by
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hydrothermal hot pressing. This technique allows solidification of the HA powder at
100–300 ◦C (30 MPa, 2 h) [320]. In another approach, bi-continuous water-filled microemul-
sions are used as preorganized systems for the fabrication of needle-like frameworks of
crystalline HA (2 ◦C, 3 weeks) [497,498]. In addition, porous CaPO4 might be prepared by
a combination of gel casting and foam burn out methods [243,245], as well as by hardening
of the self-setting formulations [450,451,458–461,520]. Lithography was used to print a
polymeric material, followed by packing with HA and sintering [507]. Hot pressing was
applied as well [292,293]. More to the point, an HA suspension can be cast into a porous
CaCO3 skeleton, which is then dissolved, leaving a porous network [503]. A 3D periodic
macroporous frame of HA was fabricated via a template-assisted colloidal processing
technique [509,512]. In addition, porous HA bioceramics might be prepared by using
different starting HA powders and sintering at various temperatures by a pressureless
sintering [505]. Porous bioceramics with an improved strength might be fabricated from
CaPO4 fibers or whiskers. In general, fibrous porous materials are known to exhibit an
improved strength due to fiber interlocking, crack deflection, and/or pullout [534]. Namely,
porous bioceramics with well-controlled open pores were processed by sintering of fibrous
HA particles [504]. In another approach, porosity was achieved by firing apatite-fiber
compacts mixed with carbon beads and agar. By varying the compaction pressure, firing
temperature and carbon/HA ratio, the total porosity was controlled in the ranges from
~40% to ~85% [64]. Finally, a superporous (~85% porosity) HA bioceramic was developed
as well [515,517,518]. Additional information on the processing routes to produce porous
ceramics can be found in the literature [535].

Figure 8. Schematic drawings of various types of the ceramic porosity: (A)—nonporous,
(B)—microporous, (C)—macroporous (spherical), (D)—macroporous (spherical) + micropores,
(E)—macroporous (3D-printing), (F)— macroporous (3D-printing) + micropores. Reprinted from
Ref. [480] with permission.
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Figure 9. A schematic diagram showing the porous structures of various CaPO4 scaffolds with differ-
ent pore orientations: (A) 0◦/90◦, (B) 0◦/45◦/90◦/135◦, and (C) 0◦/30◦/60◦/90◦/120◦/150◦, with
their top-down view of the repeating CaPO4 frameworks. Reprinted from Ref. [481] with permission.

Bioceramic microporosity (pore size < 10 µm), which is defined by its capacity to be
impregnated by biological fluids [536], results from the sintering process, while the pore
dimensions mainly depend on the material composition, thermal cycle, and sintering time.
The microporosity provides both a greater surface area for protein adsorption and increased
ionic solubility. For example, embedded osteocytes distributed throughout microporous
rods might form a mechanosensory network, which would not be possible in scaffolds
without microporosity [537,538]. CaPO4 bioceramics with nanodimensional (<100 nm)
pores might be fabricated as well [539–543]. It is important to stress that differences in
porogens usually influence the bioceramics’ macroporosity, while differences in sintering
temperatures and conditions affect the percentage of microporosity. Usually, the higher the
sintering temperature, the lower both the microporosity content and the specific surface
area of bioceramics. Namely, HA bioceramics sintered at ~1200 ◦C show significantly less
microporosity and a dramatic change in crystal sizes, if compared with those sintered at
~1050 ◦C (Figure 10) [544]. Furthermore, the average shape of pores was found to transform
from strongly oblate to round at higher sintering temperatures [545]. The total porosity
(macroporosity + microporosity) of CaPO4 bioceramics was reported to be ~70% [546] or
even ~85% [515,517,518] of the entire volume. In the case of coralline HA or bovine-derived
apatites, the porosity of the original biologic material (coral or bovine bone) is usually
preserved during processing [547]. To finalize the production topic, creation of the desired
porosity in CaPO4 bioceramics is a rather complicated engineering task and interested
readers are referred to the additional publications on the subject [338,435,519,548–553].

Figure 10. SEM pictures of HA bioceramics sintered at (A) 1050 ◦C and (B) 1200 ◦C. Note the presence
of microporosity in A and not in B. Reprinted from Ref. [544] with permission.
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Table 2. The procedures used to manufacture porous CaPO4 scaffolds for tissue engineering [479].

Year Location Process Apatite from: Sintering Compressive
Strength Pore Size Porosity Method of Porosity

Control

2006 Deville et al.,
Berkeley, CA

HA + ammonium
methacrylate in

polytetrafluoroethylene mold,
freeze dried and sintered.

HA #30 Yes: 1300 ◦C
16 MPa
65 MPa

145 MPa

Open
unidirectional

50–150 µm.

>60%
56%
47%

Porosity control: slurry
conc. Structure controlled

by physics of ice front
formation.

2006 Saiz et al.,
Berkeley, CA

Polymer foams coated,
compressed after infiltration,

then calcined.
HA powder Yes: 700–1300 ◦C – 100–200 µm. – Porosity control: extent of

compression, HA loading.

2006 Murugan et al.,
Singapore + USA

Bovine bone cleaned,
calcined. bovine bone Yes: 500 ◦C –

Retention of
nanosized

pores.
– Porosity control: native

porosity of bovine bone.

2006 Xu et al.,
Gaithersburg, MD

Directly injectable CaPO4
cement, self-hardens,
mannitol as porogen.

nanocrystalline
HA No 2.2–4.2 MPa

(flexural)
0%–50%

macroporous. 65%–82% Porosity control: mannitol
mass fraction in mixture.

2004 Landi et al., Italy +
Indonesia

Sponge impregnation,
isotactic pressing, sintering of
HA in simulated body fluid.

CaO + H3PO4
Yes: 1250 ◦C for

1 h 23 ± 3.8 MPa Closed 6%,
open 60%. 66%

Porosity control: possibly
by controlling HA particle

size. Not suggested by
authors.

2003 Charriere et al.,
EPFL, Switzerland

Thermoplastic negative
porosity by Inkjet printing,
slip casting process for HA.

DCPA + calcite No: 90 ◦C for
1 day. 12.5 ± 4.6 MPa – 44% Porosity control: negative

printing.

2003 Almirall et al.,
Barcelona, Spain

α-TCP foamed with
hydrogen peroxide at

different conc., liq. Ratios,
poured in

polytetrafluoroethylene
molds.

A-TCP + (10%
and 20% H2O2)

No: 60 ◦C for
2 h.

1.41 ± 0.27 MPa
2.69 ± 0.91 MPa

35.7% macro.
29.7% micro.
26.8% macro.
33.8% micro.

65.5% 60.7%
Porosity control: different

concentration, α-TCP
particle sizes.

2003 Ramay et al.,
Seattle, WA

Slurries of HA prepared:
gel-casting + polymer sponge

technique, sintered.
HA powder

Yes: 600 ◦C for
1 h 1350 ◦C for

2·h.
0.5–5 MPa 200–400 µm. 70%–77% Porosity control: replicate of

polymer sponge template.
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Table 2. Cont.

Year Location Process Apatite from: Sintering Compressive
Strength Pore Size Porosity Method of Porosity

Control

2003 Miao et al.,
Singapore

TTCP to CaPO4 cement.
Slurry cast on polymer foam,

sintered.
TTCP Yes: 1200 ◦C for

2 h. – 1 mm macro.
5 µm micro. ~70% Porosity control: Recoating

time, polyurethane foam.

2003 Uemura et al.,
China + Japan

Slurry of HA with
polyoxyethylene lauryl ether
(cross-linked) and sintered.

HA powders Yes: 1200 ◦C for
3 h.

2.25 MPa (0 wk)
4.92 MPa (12 wk)
11.2 MPa (24 wx)

500 µm.
200 µm

interconnects.
~77% Porosity control: polymer

interconnects cross-linking.

2003 Ma et al.,
Singapore + USA

Electrophoretic deposition of
HA, sintering. HA powders Yes: 1200 ◦C for

2 h. 860 MPa 0.5 µm.
130 µm. ~20% Porosity control:

electrophoresis field.

2002
Barralet et al.,
Birmingham,
London, UK

CaPO4 cement + sodium
phosphate ice, evaporated. CaCO3 + DCPD 1st step: 1400 ◦C

for 1 day. 0.6 ± 0.27 MPa 2 µm. 62% ± 9% Porosity control: porogen
shape.
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Regarding the biomedical importance of porosity, studies revealed that increasing of
both the specific surface area and pore volume of bioceramics might greatly accelerate the
in vivo process of apatite deposition and, therefore, enhance the bone-forming bioactivity.
More importantly, a precise control over the porosity, pore dimensions, and internal pore
architecture of bioceramics on different length scales is essential for understanding the
structure–bioactivity relationship and the rational design of better bone-forming biomate-
rials [551,554,555]. Namely, in antibiotic charging experiments, CaPO4 bioceramics with
nanodimensional (<100 nm) pores showed a much higher charging capacity (1621 µg/g)
than those of commercially available CaPO4 (100 µg/g), which did not contain nanodimen-
sional porosity [549]. In other experiments, porous blocks of HA were found to be viable
carriers with sustained release profiles for drugs [556] and antibiotics over 12 days [557] and
12 weeks [558], respectively. Unfortunately, porosity significantly decreases the strength
of implants [334,339,372]. Thus, porous CaPO4 implants cannot be loaded and are used
to fill only small bone defects; however, their strength increases gradually when bones
ingrow into the porous network of CaPO4 implants [119,559–562]. For example, bending
strengths of 4–60 MPa for porous HA implants filled with 50%–60% of cortical bone were
reported [559], while in another study an ingrown bone increased strength of porous HA
bioceramics by a factor of three to four [561].

Unfortunately, the biomedical effects of bioceramics’ porosity are not straightforward.
For example, the in vivo response of CaPO4 to different porosity was investigated, and
a hardly any effect of macropore dimensions (~150, ~260, ~510, and ~1220 µm) was
observed [563]. In another study, a greater differentiation of mesenchymal stem cells
was observed when cultured on ~200 µm pore size HA scaffolds when compared to
those on ~500 µm pore size HA [564]. The latter finding was attributed to the fact that
a higher pore volume in ~500 µm macropore scaffolds might contribute to a lack of cell
confluency, leading to the cells proliferating before beginning differentiation. In addition,
the authors hypothesized that bioceramics having less than the optimal pore dimensions
induced quiescence in differentiated osteoblasts due to reduced cell confluency [564]. In
still another study, the use of BCP (HA/TCP = 65/35 wt.%) scaffolds with cubic pores
of ~500 µm resulted in the highest bone formation compared with the scaffolds with
lower (~100 µm) or higher (~1000 µm) pore sizes [565]. Furthermore, CaPO4 bioceramics
with greater strut porosity appeared to be more osteoinductive [566]. As early as 1979,
Holmes suggested that the optimal pore range was 200–400 µm with the average human
osteon size of ~223 µm [567]. In 1997, Tsurga and coworkers implied that the optimal pore
size of bioceramics that supported ectopic bone formation was 300–400 µm [568]. Thus,
there is no need to create CaPO4 bioceramics with very big pores; however, the pores
must be interconnected [437,447,448,569]. Interconnectivity governs a depth of cells or
tissue penetration into the porous bioceramics, and it allows development of blood vessels
required for new bone nourishing and wastes removal [570,571]. Nevertheless, the total
porosity of implanted bioceramics appears to be important. For example, 60% porous
β-TCP granules achieved a higher bone fusion rate than 75% porous β-TCP granules in
lumbar posterolateral fusion [537].

More details on the importance of CaPO4 bioceramics porosity on bone regeneration
are available in a topical review [572].

5. Biological Properties and In Vivo Behavior

The most important differences between bioactive bioceramics and all other implanted
materials comprise inclusion in the metabolic processes of the organism, adaptation of
either surface or the entire material to the biomedium, integration of a bioactive implant
with bone tissues at the molecular level, or the complete replacement of a resorbable
bioceramics by healthy bone tissues. All of the enumerated processes are related to the
effect of an organism on the implant. Nevertheless, another aspect of implantation is also
important—the effect of the implant on the organism. For example, use of bone implants
from corpses or animals, even after they have been treated in various ways, provokes a



Coatings 2022, 12, 1380 21 of 89

substantially negative immune reaction in the organism, which substantially limits the
application of such implants. In this connection, it is useful to dwell on the biological
properties of bioceramic implants, particularly those of CaPO4, which in the course of time
may be resorbed completely [573].

5.1. Interactions with Surrounding Tissues and the Host Responses

All interactions between implants and the surrounding tissues are dynamic processes.
Water, dissolved ions, various biomolecules, and cells surround the implant surface within
the initial few seconds after the implantation. It is accepted that no foreign material placed
inside a living body is completely compatible. The only substances that conform completely
are those manufactured by the body itself (autogenous), while any other substance, which
is recognized as foreign, initiates some types of reactions (a host-tissue response). The
reactions occurring at the biomaterial/tissue interfaces lead to time-dependent changes
in the surface characteristics of both the implanted biomaterials and the surrounding
tissues [58,574].

In order to develop new biomaterials, it is necessary to understand the in vivo host
responses. Similar to any other species, biomaterials and bioceramics react chemically
with their environment and, ideally, they should neither induce any changes nor provoke
undesired reactions in the neighboring or distant tissues. In general, living organisms can
treat artificial implants as biotoxic (or bioincompatible [53]), bioinert (or biostable [47]),
biotolerant (or biocompatible [53]; however, this term appears to be questionable [575]),
and bioactive and bioresorbable materials [1–3,42,43,50–53,573,574,576]. Biotoxic (e.g., al-
loys containing cadmium, vanadium, lead, and other toxic elements) materials release
to the body substances in toxic concentrations and/or trigger the formation of antigens
that may cause immune reactions ranging from simple allergies to inflammation to septic
rejection with the associated severe health consequences. They cause atrophy, pathological
change, or rejection of living tissue near the material as a result of chemical, galvanic, or
other processes. Bioinert (this term should be used with care, since it is clear that any
material introduced into the physiological environment will induce a response; however,
for the purposes of biomedical implants, the term can be defined as a minimal level of
response from the host tissue), such as zirconia, alumina, carbon, and titanium, as well as
biotolerant (e.g., polymethylmethacrylate, titanium, and Co–Cr alloy), materials do not
release any toxic constituents but also do not show positive interaction with living tissue.
They evoke a physiological response to form a fibrous capsule, thus isolating the material
from the body. In such cases, thickness of the layer of fibrous tissue separating the material
from other tissues of an organism can serve as a measure of bioinertness. Generally, both
bioactivity and bioresorbability phenomena are fine examples of chemical reactivity, and
CaPO4 (both nonsubstituted and ion-substituted ones) fall into these two categories of
bioceramics [1–3,42,43,50–53,573,574,576]. A bioactive material will dissolve slightly but
promote formation of a surface layer of biological apatite before interfacing directly with the
tissue at the atomic level, that results in formation of direct chemical bonds to bones. Such
implants provide a good stabilization for materials that are subject to mechanical loading. A
bioresorbable material will dissolve over time (regardless of the mechanism leading to the
material removal) and allow a newly formed tissue to grow into any surface irregularities,
but may not necessarily interface directly with the material. Consequently, the functions of
bioresorbable materials are to participate in dynamic processes of formation and reabsorp-
tion occurring in bone tissues; thus, bioresorbable materials are used as scaffolds or filling
spacers, allowing the tissues their infiltration and substitution [180,576–579].

It is important to stress that a distinction between the bioactive and bioresorbable
bioceramics might be associated with structural factors only. Namely, bioceramics made
from nonporous, dense, and highly crystalline HA behave as bioinert (but a bioactive)
materials and are retained in an organism for at least 5–7 years without noticeable changes
(Figure 2 bottom), while highly porous bioceramics of the same composition can be resorbed
approximately within a year. Furthermore, submicron-sized HA powders are biodegraded
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even faster than the highly porous HA scaffolds. Other examples of bioresorbable materials
comprise porous bioceramic scaffolds made of biphasic, triphasic, or multiphasic CaPO4
formulations [79] or bone grafts (dense or porous) made of CDHA [121], TCP [74,580,581],
and/or ACP [470,582]. One must note that at the beginning of the 2000s, the concepts of
bioactive and bioresorbable materials were converged and bioactive materials were made
bioresorbable, while bioresorbable ones were made bioactive [583].

Although in certain in vivo experiments inflammatory reactions were observed after
implantation or injection of CaPO4 [584–593], the general conclusion on using CaPO4
with Ca/P ionic ratio within 1.0–1.7 is that all types of implants (bioceramics of various
porosities and structures, powders, or granules) are not only nontoxic but also induce
neither inflammatory nor foreign-body reactions [108,571,594]. The biological response
to implanted CaPO4 follows a similar cascade to that observed in fracture healing. This
cascade includes a hematoma formation, inflammation, neovascularization, osteoclastic
resorption, and a new bone formation. An intermediate layer of fibrous tissue between the
implants and bones has been never detected. Furthermore, CaPO4 implants display the
ability to directly bond to bones [1–3,42,43,50–53,573,574,576]. For further details, interested
readers are referred to a good review on cellular perspectives of bioceramic scaffolds for
bone tissue engineering [479].

One should note that the aforementioned rare cases of the inflammatory reactions
to CaPO4 bioceramics were often caused by “other” reasons. For example, a high rate
of wound inflammation occurred when highly porous HA was used. In that particular
case, the inflammation was explained by sharp implant edges, which irritated surrounding
soft tissues [585]. To avoid this, only rounded material should be used for implantation
(Figure 11) [595]. Another reason for inflammation produced by porous HA could be due
to micro movements of the implants, leading to simultaneous disruption of a large number
of microvessels, which grow into the pores of the bioceramics. This would immediately
produce an inflammatory reaction. Additionally, problems could arise in clinical tests
connected with migration of granules used for alveolar ridge augmentation, because
it might be difficult to achieve a mechanical stability of implants at the implantation
sites [585]. In addition, presence of calcium pyrophosphate impurity might be the reason
for inflammation [588]. Additional details on inflammatory cell responses to CaPO4 can be
found in a special review on this topic [589].

Figure 11. Rounded β-TCP granules 2.6–4.8 mm in size, providing no sharp edges for combination
with bone cement. Reprinted from Ref. [595] with permission.
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5.2. Osteoinduction

Until recently, it was generally considered that, alone, no type of synthetic bioce-
ramic possessed either osteogenic (osteogenesis is the process of laying down new bone
material by osteoblasts [596]) or osteoinductive (the property of the material to induce
bone formation de novo or ectopically (i.e., in non-bone-forming sites) [596]) properties,
and they demonstrated a minimal immediate structural support. However, a number
of reports have already shown the osteoinductive properties of certain types of CaPO4
bioceramics [544,566,597–605], and the amount of such publications is rapidly increasing.
For example, bone formation was found to occur in dog muscle inside porous CaPO4 with
surface microporosity, while bone was not observed on the surface of dense bioceram-
ics [601]. Furthermore, implantation of porous β-TCP bioceramics appeared to induce
bone formation in soft tissues of dogs, while no bone formation was detected in any α-TCP
implants [598]. More to the point, titanium implants coated with a microporous layer
of OCP were found to induce ectopic bone formation in goat muscles, while a smooth
layer of carbonated apatite on the same implants was not able to induce bone formation
there [599,600]. In another study, β-TCP powder, biphasic (HA + β-TCP) powder, and intact
biphasic (HA + β-TCP) rods were implanted into leg muscles of mice and dorsal muscles of
rabbits [606]. One month and three months after implantation, samples were harvested for
biological and histological analysis. New bone tissues were observed in 10 of 10 samples
for β-TCP powder, 3 of 10 samples for biphasic powder, and 9 of 10 samples for intact
biphasic rods at the third month in mice, but not in rabbits. The authors concluded that the
chemical composition was the prerequisite in osteoinduction, while porosity contributed to
more bone formation [606]. Therefore, researchers had already discovered the methods to
prepare osteoinductive CaPO4 bioceramics.

Unfortunately, the underlying mechanism(s) leading to bone induction by synthetic
materials remains largely unknown. Nevertheless, besides the specific genetic factors [604]
and chosen animals [606], the dissolution/precipitation behavior of CaPO4 [607], their par-
ticle size [608,609], microporosity [572,603,610–614], physicochemical properties [601,603],
composition [606], the specific surface area [614], and nanostructure [605], as well as the
surface topography and geometry [602,615–621] have been pointed out as the relevant
parameters [617]. A positive effect of increased microporosity on the ectopic bone formation
could be both direct and indirect. Firstly, an increased microporosity is directly related to
the changes in surface topography, i.e., it increases surface roughness, which affects the
cellular differentiation [619]. Secondly, an increased microporosity indirectly means a larger
surface that is exposed to the body fluids, leading to elevated dissolution/precipitation
phenomena, as compared to non-microporous surfaces. In addition, other hypotheses
are also available, namely, Reddi explained the apparent osteoinductive properties as an
ability of particular bioceramics to concentrate bone growth factors, which are circulating in
biological fluids, and those growth factors induce bone formation [615]. Other researchers
proposed a similar hypothesis, that the intrinsic osteoinduction by CaPO4 bioceramics
is a result of adsorption of osteoinductive substances on their surface [602]. Moreover,
Ripamonti [616] and Kuboki et al. [617] independently postulated that the geometry of
CaPO4 bioceramics is a critical parameter in bone induction. Specifically, bone induction
by CaPO4 was never observed on flat bioceramic surfaces. All osteoinductive cases were
observed on either porous structures or structures that contained well-defined concavities.
Furthermore, bone formation was never observed on the peripheries of porous implants
and was always found inside the pores or concavities, aligning the surface [180]. Some
researchers speculated that a low oxygen tension in the central region of implants might
provoke a dedifferentiation of pericytes from blood microvessels into osteoblasts [622]. Fi-
nally, yet importantly, both nanostructured rough surfaces and a surface charge on implants
were found to cause an asymmetrical division of the stem cells into osteoblasts, which is
important for osteoinduction [613]. Additional details on this topic are available in the
literature [623].
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Nevertheless, to finalize this topic, it is worth citing a conclusion made by Boyan and
Schwartz [624]: “Synthetic materials are presently used routinely as osteoconductive bone
graft substitutes, but before purely synthetic materials can be used to treat bone defects
in humans where an osteoinductive agent is required, a more complete appreciation of
the biology of bone regeneration is needed. An understanding is needed of how synthetic
materials modulate the migration, attachment, proliferation and differentiation of mes-
enchymal stem cells, how cells on the surface of a material affect other progenitor cells in
the peri-implant tissue, how vascular progenitors can be recruited and a neovasculature
maintained, and how remodeling of newly formed bone can be controlled.” (p. 9).

5.3. Biodegradation

Shortly after implantation, a healing process is initiated by compositional changes of
the surrounding bio-fluids and adsorption of biomolecules. Following this, various types
of cells reach the CaPO4 surface, and the adsorbed layer dictates the ways the cells respond.
Further, a biodegradation (which can be envisioned as an in vivo process by which an im-
planted material breaks down into either simpler components or components of the smaller
dimensions) of the implanted CaPO4 bioceramics begins. This process can occur by three
possible ways: (1) physical: due to abrasion, fracture and/or disintegration; (2) chemical:
due to physicochemical dissolution of the implanted phases of CaPO4 with a possibility
of phase transformations into other phases of CaPO4, as well as their precipitation; and
(3) biological: due to cellular activity (so called, bioresorption). In biological systems, all
these processes take place simultaneously and/or in competition with each other. For
example, authors of interesting in vivo studies on a rat calvarial repair model showed that
HA bioceramics degraded first, followed by diffusion of the degraded product, which was
reconstructed to form new HA to repair the bone defect [625].

Since the existing CaPO4 are differentiated by Ca/P ratio, basicity/acidity, and solu-
bility (Table 1), in the first instance, their degradation kinetics and mechanisms depend on
the chosen type of CaPO4 [626,627]. Given the fact that dissolution is a physical chemistry
process, it is controlled by some factors, such as CaPO4 solubility, surface area to volume
ratio, local acidity, fluid convection, and temperature. For HA and FA, the dissolution
mechanism in acids has been described by a sequence of four successive chemical equations,
in which several other CaPO4, such as TCP, DCPD/DCPA and MCPM/MCPA, appear as
virtual intermediate phases [628,629].

With a few exceptions, dissolution rates of CaPO4 are inversely proportional to the
Ca/P ratio (except for TTCP), phase purity, and crystalline size, and they are also directly
related to both the porosity and the surface area. In addition, phase transformations might
occur with DCPA, DCPD, OCP, α-TCP, β-TCP, and ACP because they are unstable in aque-
ous environments under the physiological conditions [630]. Bioresorption is a biological
process mediated by cells (mainly osteoclasts and, to a lesser extent, macrophages) [631,632].
In vitro, this process may be followed up by various techniques, such as a spherical in-
strumented indentation [633]. Bioresorption depends on the response of cells to their
environment. Osteoclasts attach firmly to the implant and dissolve CaPO4 by secreting an
enzyme carbonic anhydrase or any other acid, leading to a local pH drop to ~4–5 [634]. For-
mation of multiple spine-like crystals at the exposed areas of β-TCP was discovered [635].
Furthermore, nanodimensional particles of CaPO4 can also be phagocytosed by cells, i.e.,
they are incorporated into cytoplasm and thereafter dissolved by acid attack and/or enzy-
matic processes [636]. A study is available [637] in which a comparison was made between
the solubility and osteoclastic resorbability of three types of CaPO4 (DCPA, ACP, and
HA) + β-calcium pyrophosphate (β-CPP) powders having the monodisperse particle size
distributions. The authors discovered that with the exception of β-CPP, the difference in
solubility among different calcium phosphates became neither mitigated nor reversed but
augmented in the resorptive osteoclastic milieu. Namely, DCPA (the phase with the highest
solubility) was resorbed more intensely than any other calcium phosphate, whereas HA
(the phase with the lowest solubility) was resorbed the least. B-CPP became retained inside
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the cells for the longest period of time, indicating hindered digestion of only this particular
type of calcium phosphate. Genesis of osteoclasts was found to be mildly hindered in
the presence of HA, ACP, and DCPA, but not in the presence of β-CPP. HA appeared to
be the most viable compound with respect to the mitochondrial succinic dehydrogenase
activity. The authors concluded that chemistry did have a direct effect on biology, while
biology neither overrode nor reversed the chemical propensities of calcium phosphates
with which it interacted, but rather augmented and took a direct advantage of them [637].
Similar conclusions on both the resorbability and dissolution behavior of OCP, β-TCP,
and HA [630], as well as β-TCP, BCP (HA + β-TCP), and HA [638], were made by other
researchers. In addition, in vivo biodegradation of MCPA was found to be faster than
that of bovine HA [639]. Thus, one can conclude that in vivo biodegradation kinetics of
CaPO4 seem to correlate well with their solubility. Nevertheless, one must keep in mind
that this is a very complicated combination of various nonequilibrium processes, occurring
simultaneously and/or in competition with each other [640].

Strictly speaking, the processes that happen in vitro do not necessarily represent
the ones occurring in vivo and vice versa; nevertheless, in vitro experiments are widely
performed. Usually, an in vitro biodegradation of CaPO4 bioceramics is simulated by sus-
pending the material in a slightly acidic (pH~4) buffer and monitoring the release of major
ions with time [627,641–644]. An acidic buffer, to some extent, mimics the acidic environ-
ment during osteoclastic activity. The authors of one study reviewed the available literature
on acellular in vitro resorption of CaPO4 bioceramics and found the following [645]: “The
materials were certainly processed under different conditions, but this dispersion of data
is also due to the large variety of tests performed. In fact, each work differs from the
others in the type of sample (i.e., composition, shape, porosity, dimension.), of immersion
condition (i.e., kind of solution, quantity, stirring, refresh.) and of performed analysis (i.e.,
microstructural, physicochemical, mechanical) and testing conditions. However, all these
aspects can affect the final results.” (p. 912). Further, the authors of that paper performed
in vitro resorption of DCPD and β-TCP samples in TRIS and PBS solutions for different
times with or without refresh of the medium and demonstrated the importance of choosing
the appropriate immersion conditions according to the phenomenon being investigated
(i.e., CaPO4 dissolution, precipitation of new phases, etc.) [645].

For example, in vivo behavior of porous β-TCP bioceramics prepared from rod-shaped
particles and those prepared from non-rod-shaped particles in the rabbit femur was com-
pared. Although the porosities of both types of β-TCP bioceramics were almost the same,
a more active osteogenesis was preserved in the region where rod-shaped bioceramics
were implanted [646]. Furthermore, the dimensions of both the particles [608] and the
surface microstructure [607] were found to influence the osteoinductive potential of CaPO4
bioceramics. These results implied that the microstructure affected the activity of bone cells
and subsequent bone replacement.

In addition, a quantitative and fast method was developed to measure the chemical
changes occurring within the pores of β-TCP granules incubated in a simulated body
fluid [647]. A factorial design of experiments revealed that the particle size, specific surface
area, microporosity, and purity of the β-TCP granules influenced the chemical composition
of the solution. Large pH, calcium, and phosphate concentration changes were observed
inside the granules and lasted for several days. The kinetics and magnitude of these changes
(up to 2 pH units) largely depended on the processing and properties of the granules. Small
particles, low sintering temperature, high microporosity, and the presence of HA impurity
magnified the intensity and duration of pH, calcium, and phosphate variations [647].

Regarding in vivo studies, terbium (Tb)-doped uniform nanodimensional CDHA
crystals were implanted into bone tissue and compared with those of native bone apatite.
The comparisons demonstrated an occurrence of compositional and structural alterations
of the implanted CDHA crystals and their gradual degradation during bone reconstruction.
They also revealed notable differences between implanted Tb-doped CDHA and bone
apatite crystals in dimensions, distribution pattern, and state of existence in bone tissue.
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The authors concluded that although synthetic nanodimensional CDHA crystals could
osteointegrate with bone tissue, they still seemed to be treated as foreign material and thus
were gradually degraded [648].

The experimental results demonstrated that both the dissolution kinetics and in vivo
biodegradation of biologically relevant CaPO4 proceed in the following decreasing order:
β-TCP > bovine bone apatite (unsintered) > bovine bone apatite (sintered) > coralline
HA > HA. In the case of biphasic (HA + TCP), triphasic, and multiphasic CaPO4 formu-
lations, the biodegradation kinetics depend on the HA/TCP ratio: the higher the ratio,
the lower the degradation rate. Similarly, the in vivo degradation rate of biphasic TCP
(α-TCP + β-TCP) bioceramics appeared to be lower than that of α-TCP and higher than
that of β-TCP bioceramics, respectively [93]. Furthermore, incorporation of doping ions
can either increase (e.g., CO3

2−, Mg2+, or Sr2+) or decrease (e.g., F−) the solubility (there-
fore, biodegradability) of CDHA and HA. Contrarily to apatites, solubility of β-TCP is
decreased by incorporation of either Mg2+ or Zn2+ ions [544]. Here, one should remember
that ion-substituted CaPO4 are not considered in this review; the interested readers are
advised to read the original publications [17–41].

5.4. Bioactivity

Generally, bioactive materials interact with surrounding bone, resulting in formation of
a chemical bond to this tissue (bone bonding). The bioactivity phenomenon is determined
by both chemical factors, such as crystal phases and molecular structures of a biomate-
rial, and physical factors, such as surface roughness and porosity. Currently, it is agreed
that the newly formed bone bonds directly to biomaterials through a carbonated CDHA
layer precipitating at the bone/biomaterial interface. Strangely enough, a careful search
of the literature resulted in just a few publications [544,623,649–651] where the bioactivity
mechanism of CaPO4 was briefly described. For example, the chemical changes occurring
after exposure of a synthetic HA bioceramic to both in vivo (implantation in human) and
in vitro (cell culture) conditions were studied. A small amount of HA was phagocytozed
but the major remaining part behaved as a secondary nucleator, as evidenced by the ap-
pearance of a newly formed mineral [649]. In vivo, cellular activity (e.g., of macrophages
or osteoclasts; however, this may depend on the cellular origin [652]) associated with an
acidic environment was found to result in partial dissolution of CaPO4, causing liberation
of calcium and orthophosphate ions to the microenvironment. The liberated ions increased
the local supersaturation degree of the surrounding biologic fluids, causing precipitation of
nanosized crystals of biological apatite with simultaneous incorporating of various ions
present in the fluids. Infrared spectroscopic analyses demonstrated that these nanodimen-
sional crystals were intimately associated with bioorganic components (probably proteins),
which might also have originated from the biologic fluids, such as serum [544]. However,
in 2019, the concept of a local supersaturation degree that caused CaPO4 precipitation
was criticized: on the contrary, intrinsic osteoinduction was proposed to be the result of
calcium and/or phosphate depletion (blood supply must be insufficient to maintain the
physiological calcium and/or phosphate ion concentrations) [623].

Therefore, one should consider the bioactivity mechanism of other biomaterials, par-
ticularly of bioactive glasses—the concept introduced by Prof. Larry L. Hench [50,51].
The bonding mechanism of bioactive glasses to living tissues involves a sequence of 11
successive reaction steps (Figure 12), some of which comprise CaPO4. The initial five steps
occurring on the surface of bioactive glasses are “chemistry” only, while the remaining six
steps belong to “biology” because the latter include colonization by osteoblasts, followed
by proliferation and differentiation of the cells to form a new bone that has a mechanically
strong bond to the implant surface. Therefore, in the case of bioactive glasses, the border
between “dead” and “alive” is postulated between stages 5 and 6. According to Hench,
all bioactive materials “form a bone-like apatite layer on their surfaces in the living body
and bond to bone through this apatite layer. The formation of bone-like apatite on artificial
material is induced by functional groups, such as Si–OH (in the case of biological glasses),
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Ti–OH, Zr–OH, Nb–OH, Ta–OH, –COOH and –H2PO4 (in the case of other materials).
These groups have specific structures revealing negatively charge and induce apatite for-
mation via formations of an amorphous calcium compound, e.g., calcium silicate, calcium
titanate and ACP” [50,51].

Figure 12. A sequence of interfacial reactions involved in forming a bond between tissue and bioactive
ceramics. Reprinted from Refs. [50,51] with permission.

In addition, one should mention another set of 11 successive reaction steps for bonding
mechanism of unspecified bioceramics, developed by Prof. Paul Ducheyne (Figure 13) [58].
One can see that the Ducheyne’s model is rather similar to that proposed by Hench;
however, there are noticeable differences between them. For example, Ducheyne mentions
ion exchange and structural rearrangement at the bioceramic/tissue interface (stage 3), as
well as on interdiffusion from the surface boundary layer into bioceramics (stage 4) and
deposition with integration into the bioceramics (stage 7), which are absent in the Hench’s
model. On the other hand, Hench describes six biological stages (stages 6–11), while
Ducheyne describes only four (stages 8–11). Both models were developed more than two
decades ago and, to the best of my knowledge, remain unchanged since then. Presumably,
both approaches have pro et contra of their own and, obviously, should be updated
and/or revised. Furthermore, in the literature there are at least two other descriptions
of the biological and cellular events occurring at the bone/implant interface [653,654].
Unfortunately, both of them comprise fewer stages. In 2010, one more hypothesis was
proposed (Figure 14). For the first time, it describes reasonable surface transformations,
happening with CaPO4 bioceramics (in that case, HA) shortly after the implantation [651].
However, one must note that the schemes displayed in Figures 12–14 do not represent the
real mechanisms, but are only descriptions of the observable events occurring at the CaPO4
interface after implantation. Furthermore, many events occur simultaneously; therefore,
none of the schemes should be considered in terms of the strict time sequences.
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Figure 13. A schematic diagram representing the events which take place at the interface between
bioceramics and the surrounding biological environment: (1) dissolution of bioceramics; (2) pre-
cipitation from solution onto bioceramics; (3) ion exchange and structural rearrangement at the
bioceramic/tissue interface; (4) interdiffusion from the surface boundary layer into the bioceramics;
(5) solution-mediated effects on cellular activity; (6) deposition of either the mineral phase (a) or the
organic phase (b) without integration into the bioceramic surface; (7) deposition with integration
into the bioceramics; (8) chemotaxis to the bioceramic surface; (9) cell attachment and proliferation;
(10) cell differentiation; (11) extracellular matrix formation. All phenomena, collectively, lead to the
gradual incorporation of a bioceramic implant into developing bone tissue. Reprinted from Ref. [58]
with permission.

Figure 14. A schematic diagram representing the phenomena that occur on the HA surface after
implantation: (1) beginning of the implant procedure, where a solubilization of the HA surface starts;
(2) continuation of the solubilization of the HA surface; (3) the equilibrium between the physiological
solutions and the modified surface of HA has been achieved (changes in the surface composition of
HA do not mean that a new phase of DCPA or DCPD forms on the surface); (4) adsorption of proteins
and/or other bioorganic compounds; (5) cell adhesion; (6) cell proliferation; (7) beginning of a new
bone formation; (8) new bone has been formed. Reprinted from Ref. [651] with permission.

An important study on formation of CaPO4 precipitates on various types of bioceramic
surfaces in both simulated body fluid and rabbit muscle sites was performed [655]. The
bioceramics were sintered porous solids, including bioglass, glass-ceramics, α-TCP, β-TCP,
and HA. The ability to induce CaPO4 precipitation was compared among these types
of bioceramics. The following conclusions were made: (1) OCP formation ubiquitously
occurred on all types of bioceramic surfaces both in vitro and in vivo, except on β-TCP.
(2) Apatite formation did not occur on every type of bioceramic surface; it was less likely
to occur on the surfaces of HA and α-TCP. (3) Precipitation of CaPO4 on the bioceramic
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surfaces was more difficult in vivo than in vitro. (4) Differences in CaPO4 precipitation
among the bioceramic surfaces were less noticeable in vitro than that in vivo. (5) β-TCP
bioceramics showed poor ability of CaPO4 precipitation both in vitro and in vivo [655].
These findings clearly revealed that apatite formation in the physiological environments
could not be confirmed as the common feature of bioceramics. Nevertheless, for want
of anything better, currently, the bioactivity mechanism of CaPO4 bioceramics should be
described by a reasonable combination of Figures 12–14, e.g., by updating the Ducheyne’s
and Hench’s models with the three initial stages taken from Figure 14. Additional details
on this topic are available in the literature [656].

Interestingly, bioactivity of HA bioceramics might be enhanced by a high-energy ion
irradiation [657]. The effect was attributed to formation of a unique 3D macroporous apatite
layer of decreased crystallinity and crystal size on the irradiated surfaces. Obviously, to
obtain further insights into the bioactivity phenomenon, the atomic and molecular processes
occurring at the bioceramic surface in aqueous solutions and their effects on the relevant
reaction pathways of cells and tissues must be elucidated in more details.

5.5. Cellular Response

Fixation of any implants in the body is a complex dynamic process that remodels
the interface between the implants and living tissues at all dimensional levels, from the
molecular up to the cell and tissue morphology level, and at all time scales, from the first
second up to several years after implantation. Immediately following the implantation, a
space filled with biological fluids appears next to the implant surface. With time, cells are
adsorbed at the implant surface that will give rise to their proliferation and differentiation
towards bone cells, followed by revascularization and eventual gap closing. Ideally, a strong
bond is formed between the implants and surrounding tissues [53]. An interesting study
on the interfacial interactions between calcined HA and substrates was performed [658],
where the interested readers are referred for further details.

The aforementioned paragraph clearly demonstrates the importance of studies on
cellular responses to CaPO4 bioceramics. Such investigations have been performed ex-
tensively for several decades [589,659–671]. For example, bioceramic discs made of seven
different types of CaPO4 (TTCP, HA, carbonate apatite, β-TCP, α-TCP, OCP, and DCPD)
were incubated in osteoclastic cell cultures for 2 days. In all cases, similar cell morpholo-
gies and good cell viability were observed; however, different levels of resorbability of
various types of CaPO4 were detected [661]. Similar results were found for fluoridated
HA coatings [663]. Chemical composition of CaPO4, which contributed to pH changes,
and concentration of calcium ions in the medium were found to make up particularly
significant factors for cellular responses; moreover, it was proved that the number of ma-
terial types represented a further important aspect [670]. Experiments performed with
human osteoblasts revealed that nanostructured bioceramics prepared from nanosized
HA showed significant enhancement in mineralization compared to microstructured HA
bioceramics [662]. In addition, the influence of lengths and surface areas of rod-shaped HA
on cellular response were studied. Again, similar cell morphologies and good cell viability
were observed; however, it was concluded that high surface area could increase cell–particle
interaction [665]. Nevertheless, another study with cellular response to rod-shaped HA
bioceramics revealed that some types of crystals might trigger a severe inflammatory re-
sponse [666]. In addition, CaPO4-based sealers appeared to show fewer cytotoxicity and
inflammatory mediators compared with other sealers [664]. More examples are available
in the literature [589,659–671].

Cellular biodegradation of CaPO4 bioceramics is known to depend on its phases.
For example, a higher solubility of β-TCP was shown to prevent L-929 fibroblast cell
adhesion, thereby leading to damage and rupture of the cells [672]. A mouse ectopic model
study indicated the maximal bone growth for the 80:20 β-TCP:HA biphasic formulations
preloaded with human mesenchymal stem cells when compared to other CaPO4 [673].
The effects of substrate microstructure and crystallinity have been corroborated with an
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in vivo rabbit femur model, where rod-like crystalline β-TCP was reported to enhance
osteogenesis when compared to non-rod-like crystalline β-TCP [649]. Additionally, using
a dog mandibular defect model, a higher bone formation on a scaffold surface coated by
nanodimensional HA was observed when compared to that coated by a microdimensional
HA [674]. Furthermore, studies revealed a stronger stress signaling response by osteoblast
precursor cells in 3D scaffolds when compared to 2D surfaces [675].

Mesenchymal stem cells are one of the most attractive cellular lines for application as
bone grafts [676,677]. Early investigations by Okumura et al. indicated an adhesion, prolif-
eration, and differentiation, which ultimately became new bone and integrated with porous
HA bioceramics [660]. Later, a sustained coculture of endothelial cells and osteoblasts
on HA scaffolds for up to 6 weeks was demonstrated [678]. Furthermore, a release of
factors by endothelial and osteoblast cells in coculture-supported proliferation and differ-
entiation was suggested to ultimately result in microcapillary-like vessel formation and
supported a neo-tissue growth within the scaffold [479]. More to the point, investigation
of rat calvaria osteoblasts cultured on transparent HA bioceramics, as well as the analy-
sis of osteogenic-induced human bone marrow stromal cells at different time points of
culturing, indicated a good cytocompatibility of HA bioceramics and revealed favorable
cell proliferation [424]. Positive results for other types of cells were obtained in other
studies [187,423,443,444,679–681]. In addition, CaPO4 are used for cell transfections [682].

Interestingly, HA scaffolds with marrow stromal cells in a perfused environment were
reported to result in ~85% increase in mean core strength, a ~130% increase in failure energy,
and a ~355% increase in post-failure strength. The increase in mineral quantity and promo-
tion of the uniform mineral distribution in that study was suggested to be attributed to the
perfusion effect [560]. Additionally, other investigators indicated mechanical properties
increasing for other CaPO4 scaffolds after induced osteogenesis [559,562].

To finalize this subsection, one should note the recent developments to influence the
cellular response. First, to facilitate interactions with cells, the CaPO4 surfaces could be
functionalized [683–686]. Second, it appears that crystals of biological apatite of calcified
tissues exhibit different orientations depending on the tissue; namely, in vertebrate bones
and tooth enamel surfaces, the respective a, b-planes and c-planes of the apatite crystals are
preferentially exposed. Therefore, ideally, this should be taken into account in artificial bone
grafts. Recently, a novel process to fabricate dense HA bioceramics with highly preferred
orientation to the a,b-plane was developed. The results revealed that increasing the a,b-
plane orientation degree shifted the surface charge from negative to positive and decreased
the surface wettability with simultaneous decreasing of cell attachment efficiency [687–689].
The latter finding resulted in further developments on preparation of oriented CaPO4
compounds [690–692].

Finally, to conclude the entire Biological Properties and in vivo Behavior section, let me
quote several sentences from Ref. [265]: “Variations in surface chemistry resulting from
variable thermal processing conditions of otherwise identical samples might thus explain
inconsistencies in biological behavior reported in the literature. For instance, β-TCP has
been reported to be both bioactive [693] and non-bioactive [655], non-osteoinductive [694]
and highly osteoinductive [695,696], highly resorbable [694,697] and poorly resorbable [697].
Authors have related this dichotomous behavior with the effect of sintering temperature
on specific surface area, bulk composition, and scaffold or pore topography.” (p. 6096).
In addition, simple thermal treatment at 500 ◦C was found to reduce body reactions to
irregularα- andβ-TCP granules as foreign bodies, due to a partial evaporation of phosphate
species during thermal treatment [698]. Thus, there are still many uncertainties in our
understanding of the biological properties of CaPO4 bioceramics.

6. Biomedical Applications

Since Levitt et al. described a method of preparing FA bioceramics and suggested their
possible use in medical applications in 1969 [699], CaPO4 bioceramics have been widely
tested for clinical applications. Namely, over 400 forms, compositions, and trademarks
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(Table 3) are currently either in use or under consideration in many areas of orthopedics
and dentistry [700], with even more in development. In addition, various formulations
containing demineralized bone matrix (commonly abbreviated as DBM) are produced
for bone grafting. For example, bulk materials, available in dense and porous forms, are
used for alveolar ridge augmentation, immediate tooth replacement, and maxillofacial
reconstruction [4,701]. Other examples comprise burr-hole buttons [702,703], cosmetic
(nonfunctional) eye replacements such as Bio-Eye® [704–709], increment of the hearing
ossicles [710–712], and spine fusion [713–716], as well as repair of bone [118,717,718],
craniofacial [719], and dental [720] defects. In order to permit growth of new bone into
defects, a suitable bioresorbable material should fill these defects. Otherwise, ingrowth of
fibrous tissue might prevent bone formation within the defects.

Table 3. Registered commercial trademarks (current and past) of CaPO4-based bioceramics
and biomaterials.

Calcium Orthophosphate Trade Name and Producer (When Available)

CDHA

Calcibon (Zimmer Biomet, IN, USA)

Cementek (Teknimed, France)

CHT Ceramic Hydroxyapatite (Bio-Rad, CA, USA)

nanoXIM (Fluidinova, Portugal)

OsteoGen (Impladent, NY, USA)

without trade name (Himed, NY, USA)

HA

Actifuse (ApaTech, UK)

Alveograf (Cooke-Waite Laboratories, USA)

Apaceram (HOYA Technosurgical, Japan)

Apafill-G (Habana, Cuba)

ApaPore (ApaTech, UK)

BABI-HAP (Berkeley Advanced Biomaterials, CA, USA)

Bio-Eye (Integrated Orbital Implants, CA, USA)

BIOGAP (Connectbiopharm, Russia)

BioGraft (IFGL BIO CERAMICS, India)

Bioroc (Depuy Bioland, France)

Blue Bone (Regener Biomateriais, Brazil)

Boneceram (Sumitomo Osaka Cement, Japan)

Bonefil (Pentax, Japan)

BoneSource (Stryker Orthopaedics, NJ, USA)

Bonetite (Pentax, Japan)

Bonfil (Mitsubishi Materials, Japan)

Bongros-HA (Daewoong Pharmaceutical, Korea)

CAFOS DT (Chemische Fabrik Budenheim, Germany)

Calcitite (Sulzer Calcitek, CA, USA)

CAMCERAM HA (CAM Implants, Netherlands)

CAPTAL (Plasma Biotal, UK)

CELLYARD (HOYA Technosurgical, Japan)

Cerapatite (Ceraver, France)

Ceros HA (Mathys, Switzerland)
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Table 3. Cont.

Calcium Orthophosphate Trade Name and Producer (When Available)

CHT Ceramic Hydroxyapatite (Bio-Rad, CA, USA)

Durapatite (unknown producer)

ENGIpore (JRI Orthopaedics, UK)

G-Bone (Surgiwear, India)

GranuMas (GranuLab, Malaysia)

HA BIOCER (CHEMA – ELEKTROMET, Poland)

HAnano Surface (Promimic, Sweden)

HAP-91 (JHS Biomateriais, Brazil)

HAP-99 (Polystom, Russia)

HAP–Bionnovation (Bionnovation, Brazil)

IngeniOs HA (Zimmer Dental, CA, USA)

Micro Crystalline Hydroxyapatite Complex (MCHC)
(Clarion Pharmaceutical, India)

nanoXIM (Fluidinova, Portugal)

Neobone (Covalent Materials, Japan)

Osbone (Curasan, Germany)

OsproLife HA (Lincotek Medical, Italy)

Ossein Hydroxyapatite (Clarion Pharmaceutical, India)

OssaBase-HA (Lasak, Czech Republic)

Ostegraf (Ceramed, CO, USA)

Ostim (Heraeus Kulzer, Germany)

Ovis Bone HA (DENTIS, Korea)

Periograf (Cooke-Waite Laboratories, USA)

PermaOS (Mathys, Switzerland)

PRINT3D Hydroxyapatite (Prodways, France)

Pro Osteon (Zimmer Biomet, IN, USA)

PurAtite (PremierBiomaterials, Ireland)

REGENOS (Kuraray, Japan)

SHAp (SofSera, Japan)

Synatite (SBM, France)

Synthacer (KARL STORZ Recon, Germany)

Theriridge (Therics, OH, USA)

without trade name (Cam Bioceramics, Netherlands)

without trade name (CaP Biomaterials, WI, USA)

without trade name (DinganTec, China)

without trade name (Ensail Beijing, China)

without trade name (Himed, NY, USA)

without trade name (MedicalGroup, France)

without trade name (SANGI, Japan)

without trade name (Shanghai Rebone Biomaterials, China)

without trade name (SigmaGraft, CA, USA)
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Table 3. Cont.

Calcium Orthophosphate Trade Name and Producer (When Available)

without trade name (SkySpring Nanomaterials, TX, USA)

without trade name (SofSera, Japan)

without trade name (Taihei Chemical Industrial, Japan)

without trade name (Xpand Biotechnology, Netherlands)

Mg-HA SINTlife (JRI Orthopaedics, UK)

HA powder suspended in water

Ostibone (FH Orthopedics, France)

NANOSTIM (Medtronic Sofamor Danek, TN, USA)

n-IBS (Bioceramed, Portugal)

Skelifil (Osteotec, UK)

HA embedded or suspended in
a gel

Bio-Gel HT hydroxyapatite (Bio-Rad, CA, USA)

Coaptite (Boston Scientific, MA, USA)

Facetem (Daewoong, Korea)

NanoBone (Artoss, Germany)

Nanogel (Teknimed, France)

Radiesse (Merz Aesthetics, Germany)

Renú Calcium Hydroxylapatite Implant (Cytophil, WI, USA)

HA/collagen, CDHA/collagen
and/or carbonate
apatite/collagen

AUGMATRIX (Wright Medical Technology, TN, USA)

Bioimplant (Connectbiopharm, Russia)

Bio-Oss Collagen (Geitslich, Switzerland)

Boneject (Koken, Japan)

COL.HAP-91 (JHS Biomateriais, Brazil)

Collagraft (Zimmer and Collagen Corporation, USA)

CollaOss (SK Bioland, Korea)

CollapAn (Intermedapatite, Russia)

COLLAPAT (Symatese, France)

DualPor collagen (OssGen, Korea)

G-Graft (Surgiwear, India)

HAPCOL (Polystom, Russia)

Healos (DePuy Spine, USA)

LitAr (LitAr, Russia)

Ossbone Collagen (SK Bioland, Korea)

OssFill (Sewon Cellontech, Korea)

OssiMend (Collagen Matrix, NJ, USA)

Osteomatrix (Connectbiopharm, Russia)

OsteoTape (Impladent, NY, USA)

ReFit (HOYA Technosurgical, Japan

RegenOss (JRI Orthopaedics, UK)

RegenerOss Synthetic (Zimmer Dental, CA, USA)

Straumann XenoFlex (Straumann, Switzerland)
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Table 3. Cont.

Calcium Orthophosphate Trade Name and Producer (When Available)

HA/sodium alginate Bialgin (Biomed, Russia)

HA/poly-L-lactic acid

Biosteon (Biocomposites, UK)

ReOss (ReOss, Germany)

OSTEOTRANS MX (Teijin Medical Technologies, Japan)

SuperFIXSORB30 (Takiron, Japan)

HA/polyethylene HAPEX (Gyrus, TN, USA)

HA/CaSO4

BioWrist Bone Void Filler (Skeletal Kinetics, CA, USA)

Bond Apatite (Augma Biomaterials, NJ, USA)

Hapset (LifeCore, MN, USA)

PerOssal (aap Implantate, Germany)

HA/CaSO4 powders suspended
in a liquid CERAMENT (BONESUPPORT, Sweden)

Coralline HA

Biocoral (Bio Coral Calcium Bone, France)

BoneMedik-S (Meta Biomed, Korea)

Interpore (Interpore, CA, USA)

ProOsteon (Interpore, CA, USA)

Carbonate apatite Cytrans (GC, Japan)

Norian SRS (Norian, CA, USA)

Algae-derived HA

Algipore (AlgOss Biotechnologies, Austria)

Algisorb (AlgOss Biotechnologies, Austria)

FRIOS Algipore (DENTSPLY Implants, Sweden)

SIC nature graft (AlgOss Biotechnologies, Austria)

HA/glass Bonelike (unknwn producer)

Bovine bone (unsintered) Unilab Surgibone (Unilab, NJ, USA)

Bovine bone (unsintered) +
polymer

Alpha-Bio’s Graft (Alpha-Bio Tec, Israel)

C-Graft Putty (unknwn producer)

Bovine bone apatite (unsintered)

Apatos (OsteoBiol, Italy)

Bio-Oss (Geistlich Biomaterials, Switzerland)

Bonefill (Bionnovation, Brazil).

CANCELLO-PURE (Wright Medical Technology, TN, USA)

CenoBone (Tissue Regeneration Corporation, Iran)

CopiOs Cancellous Particulate Xenograft (Zimmer, IN, USA)

GenOs (OsteoBiol, Italy)

InterOss (SigmaGraft, CA, USA)

Laddec (Ost-Developpement, France)

Lubboc (Ost-Developpement, France)

MatrixCellect (Curasan, Germany)

Mega-Oss Bovine (Megagen Implant, Korea)

Orthoss (Geitslich, Switzerland)

OssiGuide (Collagen Matrix, NJ, USA)

Oxbone (Bioland biomateriaux, France)
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Table 3. Cont.

Calcium Orthophosphate Trade Name and Producer (When Available)

Straumann XenoGraft (Straumann, Switzerland)

Surgibone (Surgibon, Ecuador)

Tutobone (Tutogen Medical, Germany)

Tutofix (Tutogen Medical, Germany)

Tutoplast (Tutogen Medical, Germany)

without trade name (MedicalGroup, France)

Porcine bone apatite (unsintered)

A-OSS (Osstem Implant, Korea)

GEM Bone Graft (Lynch Biologics, USA)

Gen-Os (OsteoBiol, Italy)

MatrixOss (Collagen Matrix, NJ, USA)

OsteoBiol (OsteoBiol, Italy)

Symbios Xenograft (DENTSPLY Implants, Sweden)

THE Graft (Purgo Biologics, Korea)

Equine bone apatite (unsintered)
BIO-GEN (BioTECK, Italy)

Sp-Block (OsteoBiol, Italy)

Bovine bone apatite (sintered)

4Bone XBM (MIS Implants, Israel)

BonAP (unknown producer)

Cerabone (aap Implantate, Germany and botiss, Germany)

Endobon (Merck, Germany)

GenoxInorgânico (Baumer, SP, Brazil)

Iceberg oss (Global Medical Implants, Spain)

Navigraft (Zimmer Dental, USA)

Osteograf (Ceramed, CO, USA)

OVIS XENO (DENTIS, Korea)

PepGen P-15 (DENTSPLY Implants, Sweden)

Pyrost (Osteo AG, Germany)

Sinbone (Purzer Pharmaceutical, Taiwan)

SynOss (Collagen Matrix, NJ, USA)

Straumann cerabone (Straumann, Switzerland)

Human bone allograft

ALLOPURE (Wright Medical Technology, TN, USA)

Allosorb (Curasan, Germany)

CancellOss (Impladent, NY, USA)

CurOss (Impladent, NY, USA)

J Bone Block (Impladent, NY, USA)

maxgraft (botiss, Germany)

Mega-Oss (Megagen Implant, Korea)

NonDemin (Impladent, NY, USA)

Osnatal (aap Implantate, Germany)

OsteoDemin (Impladent, NY, USA)

OsteoWrap (Curasan, Germany)

OVIS ALLO (DENTIS, Korea)
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Table 3. Cont.

Calcium Orthophosphate Trade Name and Producer (When Available)

PentOS OI (Citagenix, QC, Canada)

RAPTOS (Citagenix, QC, Canada)

Straumann AlloGraft (Straumann, Switzerland)

TenFUSE (Wright Medical Technology, TN, USA)

α-TCP

BioBase (Biovision, Germany)

Tetrabone (unknown producer)

without trade name (Cam Bioceramics, Netherlands)

without trade name (DinganTec, China)

without trade name (Ensail Beijing, China)

without trade name (Himed, NY, USA)

without trade name (InnoTERE, Germany)

without trade name (PremierBiomaterials, Ireland)

without trade name (Taihei Chemical Industrial, Japan)

β-TCP

AdboneTCP (Medbone Medical Devices, Portugal)

AFFINOS (Kuraray, Japan)

Allogran-R (Biocomposites, UK)

Antartik TCP (MedicalBiomat, France)

ArrowBone (Brain Base Corporation, Japan)

AttraX scaffold (NuVasive, CA, USA)

BABI-TCP (Berkeley Advanced Biomaterials, CA, USA)

Betabase (Biovision, Germany)

BioGraft (IFGL BIO CERAMICS, India)

Bioresorb (Sybron Implant Solutions, Germany)

Biosorb (SBM, France)

Bi-Ostetic (Berkeley Advanced Biomaterials, CA, USA)

Bonegraft (Bonegraft biomaterials, Turkey)

BoneSigma TCP (SigmaGraft, CA, USA)

C 13-09 (Chemische Fabrik Budenheim, Germany)

Calc-i-oss classic (Degradable Solutions, Switzerland)

Calciresorb (Ceraver, France)

CAMCERAM TCP (CAM Implants, Netherlands)

CAPTAL β-TCP (Plasma Biotal, UK)

CELLPLEX (Wright Medical Technology, TN, USA)

Cerasorb (Curasan, Germany)

Ceros TCP (Mathys, Switzerland)

ChronOS (Synthes, PA, USA)

Cidemarec (KERAMAT, Spain)

Conduit (DePuy Spine, USA)

cyclOS (Mathys, Switzerland)

ExcelOs (BioAlpha, Korea)

GenerOs (Berkeley Advanced Biomaterials, CA, USA)
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Table 3. Cont.

Calcium Orthophosphate Trade Name and Producer (When Available)

HT BIOCER (CHEMA – ELEKTROMET, Poland)

Iceberg TCP (Global Medical Implants, Spain)

IngeniOs β-TCP (Zimmer Dental, CA, USA)

ISIOS+ (Kasios, France)

JAX (Smith and Nephew Orthopaedics, USA)

Keramedic (Keramat, Spain)

KeraOs (Keramat, Spain)

Mega-TCP (Megagen Implant, Korea)

microTCP (Conmed, USA)

nanoXIM (Fluidinova, Portugal)

Orthograft (DePuy Spine, USA)

Ossaplast (Ossacur, Germany)

Osferion (Olympus Terumo Biomaterials, Japan)

Osfill (Olympus Terumo Biomaterials, Japan)

OsproLife β-TCP (Lincotek Medical, Italy)

OsSatura TCP (Integra Orthobiologics, CA, USA)

Ossoconduct (SteinerBio, NV, USA)

Osteoblast (Galimplant, Spain)

Osteocera (Hannox, Taiwan)

Osteopore TCP (SpiteCraft, IL, USA)

OSTEOwelt (Biolot Medical, Turkey)

Periophil β-TCP (Cytophil, WI, USA)

Platon Pearl Bone (Platon, Japan)

PolyBone (Kyungwon Medical, Korea)

PORESORB-TCP (Lasak, Czech Republic)

Powerbone (Medical Expo Bonegraft Biomaterials, Spain)

PRINT3D Tricalcium Phosphate (Prodways, France)

Repros (JRI Orthopaedics, UK)

R.T.R. (Septodont, PA, USA)

SigmaOs TCP (SigmaGraft, CA, USA)

Socket Graft (SteinerBio, NV, USA)

Sorbone (Meta Biomed, Korea)

SUPERPORE (HOYA Technosurgical, Japan)

Suprabone TCP (BMT Group, Turkey)

Syncera (Oscotec, Korea)

SynthoGraft (Bicon, MA, USA)

Synthos (unknown producer)

Syntricer (KARL STORZ Recon, Germany)

TCP (Kasios, France)

Terufill (Olympus Terumo Biomaterials, Japan)

TKF-95 (Polystom, Russia)
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Table 3. Cont.

Calcium Orthophosphate Trade Name and Producer (When Available)

TriCaFor (BioNova, Russia)

Triha+ (Teknimed, France)

TriOSS (Bioceramed, Portugal)

Vitomatrix (Orthovita, PA, USA)

Vitoss (Orthovita, PA, USA)

without trade name (CaP Biomaterials, WI, USA)

without trade name (Cam Bioceramics, Netherlands)

without trade name (DinganTec, China)

without trade name (Ensail Beijing, China)

without trade name (Himed, NY, USA)

without trade name (Shanghai Bio-lu Biomaterials, China)

without trade name (Shanghai Rebone Biomaterials, China)

without trade name (SigmaGraft, CA, USA)

without trade name (Taihei Chemical Industrial, Japan)

without trade name (Xpand Biotechnology, Netherlands)

β-TCP/CaSO4
Fortoss vital (Biocomposites, UK)

Genex (Biocomposites, UK)

β-TCP/poly-lactic acid

Bilok (Biocomposites, UK)

Duosorb (SBM, France)

Matryx Interference Screws (Conmed, USA)

β-TCP/poly-lactic-co-glycolic acid Evolvemer TCP30PLGA (Arctic Biomaterials, Finland)

β-TCP/polymer
AttraX putty (NuVasive, CA, USA)

Therigraft (Therics, OH, USA)

β-TCP/bone marrow aspirate Induce (Skeletal Kinetics, CA, USA)

β-TCP/collagen Integra Mozaik (Integra Orthobiologics, CA, USA)

β-TCP/growth-factor GEM 21S (Lynch Biologics, USA)

β-TCP/rhPDGF-BB solution AUGMENT Bone Graft (Wright Medical Group, TN, USA)

BCP (HA + β-TCP)

4Bone BCH (MIS Implants, Israel)

adboneBCP (Medbone Medical Devices, Portugal)

Antartik (MedicalBiomat, France)

ARCA BONE (ARCA-MEDICA, Switzerland)

Artosal (aap Implantate, Germany)

BABI-HATCP (Berkeley Advanced Biomaterials, CA, USA)

Bicera (Hannox, Taiwan)

BCP BiCalPhos (Medtronic, MN, USA)

BIO-C (Cowellmedi, Korea)

BioActys (Graftys, France)

BioGraft (IFGL BIO CERAMICS, India)

Biosel (Depuy Bioland, France)

BonaGraft (Biotech One, Taiwan)

Boncel-Os (BioAlpha, Korea)
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Table 3. Cont.

Calcium Orthophosphate Trade Name and Producer (When Available)

Bone Plus BCP (Megagen Implant, Korea)

Bone Plus BCP Eagle Eye (Megagen Implant, Korea)

BoneMedik-DM (Meta Biomed, Korea)

BoneSave (Stryker Orthopaedics, NJ, USA)

BoneSigma BCP (SigmaGraft, CA, USA)

BONITmatrix (DOT, Germany)

Calcicoat (Zimmer, IN, USA)

Calciresorb (Ceraver, France)

Calc-i-oss crystal (Degradable Solutions, Switzerland)

CellCeram (Scaffdex, Finland)

Ceraform (Teknimed, France)

Ceratite (NGK Spark Plug, Japan)

Cross.Bone (Biotech Dental, France)

CuriOs (Progentix Orthobiology BV, Netherlands)

DM-Bone (Meta Biomed, Korea)

Eclipse (Citagenix, QC, Canada)

Eurocer (FH Orthopedics, France)

Frabone (Inobone, Korea)

Genesis-BCP (DIO, Korea)

GenPhos HA TCP (Baumer, Brazil)

Graftys BCP (Graftys, France)

Hatric (Arthrex, Naples, FL, USA)

Hydroxyapol (Polystom, Russia)

Kainos (Signus, Germany)

MagnetOs (Kuros Biosciences, Switzerland)

MasterGraft (Medtronic Sofamor Danek, TN, USA)

Maxresorb (botiss, Germany)

MBCP (Biomatlante, France)

MimetikOss (Mimetis Biomaterials, Spain)

Neobone (Bioceramed, Portugal)

New Bone (GENOSS, Korea)

NT-BCP (OssGen, Korea)

NT-Ceram (Meta Biomed, Korea)

OdonCer (Teknimed, France)

OpteMX (Exactech, FL, USA)

OrthoCer HA TCP (Baumer, Brazil)

OsproLife HA-βTCP (Lincotek Medical, Italy)

OsSatura BCP (Integra Orthobiologics, CA, USA)

ossceram nano (bredent medical, Germany)

OSSEOPLUS (JHS Biomateriais, Brazil)

Osspol (Genewel, Korea)
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Table 3. Cont.

Calcium Orthophosphate Trade Name and Producer (When Available)

OsteoFlux (VIVOS-Dental, Switzerland)

Osteon (GENOSS, Korea)

Osteosynt (Einco, Brazil)

Ostilit (Stryker Orthopaedics, NJ, USA)

Ovis Bone BCP (DENTIS, Korea)

Periophil biphasic (Cytophil, WI, USA)

Q-OSS+ (Osstem Implant, Korea)

ReproBone (Ceramisys, UK)

R.T.R.+ (Septodont, PA, USA)

SBS (Expanscience, France)

Scaffdex (Scaffdex Oy, Finland)

SigmaOs BCP (SigmaGraft, CA, USA)

SinboneHT (Purzer Pharmaceutical, Taiwan)

SkeliGraft (Osteotec, UK)

Straumann BoneCeramic (Straumann, Switzerland)

SYMBIOS Biphasic Bone Graft Material (DENTSPLY
Implants, Sweden)

SynMax (BioHorizons, Spain)

Synergy (unknown producer)

TCH (Kasios, France)

Topgen-S (Toplan, Korea)

Tribone (Stryker, Europe)

Triosite (Zimmer, IN, USA)

without trade name (AlgOss Biotechnologies, Austria)

without trade name (Cam Bioceramics, Netherlands)

without trade name (CaP Biomaterials, WI, USA)

without trade name (Himed, NY, USA)

without trade name (MedicalGroup, France)

without trade name (SigmaGraft, CA, USA)

without trade name (Xpand Biotechnology, Netherlands)

BCP (HA + α-TCP) Skelite (Millennium Biologix, ON, Canada)

BCP (HA + β-TCP)/collagen

Allograft (Zimmer, IN, USA)

collacone max (botiss, Germany)

Collagraft (Zimmer, IN, USA)

Cross.Bone Matrix (Biotech Dental, France)

Indost (Polystom, Russia)

MasterGraft (Medtronic Sofamor Danek, TN, USA)

MATRI BONE (Biom’Up, France)

Osteon III collagen (GENOSS, Korea)

SynergOss (Nobil Bio Ricerche, Italy)

without trade name (MedicalGroup, France)
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Table 3. Cont.

Calcium Orthophosphate Trade Name and Producer (When Available)

BCP (HA + β-TCP)/hydrogel
4MATRIX+ (MIS Implants, Israel)

Eclipse (Citagenix, QC, Canada)

BCP (HA + β-TCP)/polymer

In’Oss (Biomatlante, France)

Hydros (Biomatlante, France)

Osteocaf (Texas Innovative Medical Devices, TX, USA)

Osteotwin (Biomatlante, France)

BCP (HA + TTCP) OsproLife HA-TTCP (Lincotek Medical, Italy)

BCP (HA + β-TCP)/chitosan k-IBS (Bioceramed, Portugal)

BCP (HA + β-TCP)/fibrin TricOS (Baxter BioScience, France)

BCP (HA + β-TCP)/silicon FlexHA (Xomed, FL, USA)

Bioglass + α-TCP + β-TCP +
HA + polymers OsteoFlo NanoPutty (SurGenTec, FL, USA)

FA without trade name (CaP Biomaterials, WI, USA)

FA + BCP (HA + β-TCP) FtAP (Polystom, Russia)

DCPA
without trade name (Himed, NY, USA)

without trade name (Shanghai Rebone Biomaterials, China)

DCPA + MgHPO4·3H2O + SiO2 +
carboxymethyl cellulose Novogro (OsteoNovus, OH, USA)

DCPD without trade name (Himed, NY, USA)

DCPD/collagen CopiOs Bone Void Filler (Zimmer, IN, USA)

DCPD + β-TCP/CaSO4 PRO-DENSE (Wright Medical Group, TN, USA)

DCPD + β-TCP/CaSO4 + collagen PRO-STIM (Wright Medical Group, TN, USA)

ACP
CAPTAL ACP (Plasma Biotal, UK)

without trade name (Himed, NY, USA)

OCP

Bontree (HudensBio, Korea)

OctoFor (BioNova, Russia)

without trade name (Himed, NY, USA)

OCP/fibrin FibroFor (BioNova, Russia)

OCP/collagen Bonarc (Toyobo, Japan)

TTCP

without trade name (Ensail Beijing, China)

without trade name (Himed, NY, USA)

without trade name (Shanghai Rebone Biomaterials, China)

without trade name (Taihei Chemical Industrial, Japan)

Undisclosed CaPO4
Arex Bone (Osteotec, UK)

Inno-CaP (Cowellmedi, Korea)

Undisclosed CaPO4 + biologics i-FACTOR (Cerapedics, CO, USA)

MCPM Phosfeed MCP (OCP group, Morocco)

MCPM + DCPD Phosfeed MDCP (OCP group, Morocco)

In spite of the aforementioned serious mechanical limitations (see Section 4.1. Mechan-
ical Properties), bioceramics of CaPO4 are available in various physical forms: powders,
particles, granules (or granulates), dense blocks, porous scaffolds, self-setting formulations,
implant coatings, and composite components of different origin (natural, biological, or



Coatings 2022, 12, 1380 42 of 89

synthetic), often with specific shapes, such as implants, prostheses, or prosthetic devices.
In addition, CaPO4 are also applied as nonhardening injectable formulations [721–726] and
pastes [726–730]. Generally, they consist of a mixture of CaPO4 powders or granules and
a “glue”, which can be a highly viscous hydrogel. More to the point, custom-designed
shapes such as wedges for tibial opening osteotomy, cones for spine and knee, and inserts
for vertebral cage fusion are also available [546]. Various trademarks of the commercially
available types of CaPO4-based bioceramics and biomaterials are summarized in Table 3,
while their surgical applications are schematically shown in Figure 15 [731]. A long list of
both trademarks and producers clearly demonstrates that CaPO4 bioceramics are easy to
make and not very difficult to register for biomedical applications. There is an ISO standard
for CaPO4-based bone substitutes [732].

Figure 15. Different types of biomedical applications of CaPO4 bioceramics. Reprinted from Ref. [731]
with permission.

One should note that among the existing CaPO4 (Table 1), only certain compounds are
useful for biomedical applications, because those having a Ca/P ionic ratio less than 1 are
not suitable for implantation due to their high solubility and acidity. Furthermore, due to
its basicity, TTCP alone cannot be suitable either. Nevertheless, researchers try [141]. In
addition, to simplify biomedical applications, these “of little use” CaPO4 can be successfully
combined with either other types of CaPO4 or other chemicals.

6.1. Self-Setting (Self-Hardening) Formulations

The need for bioceramics for minimal invasive surgery has induced the concept of self-
setting (or self-hardening) formulations consisting of CaPO4 only to be applied as injectable
and/or moldable bone substitutes [102,103,124,507,733]. After hardening, they form bulk
CaPO4 bioceramics. In addition, there are reinforced formulations that, in a certain sense,
might be defined as CaPO4 concretes [102]. Furthermore, self-setting formulations able to pro-
duce porous bulk CaPO4 bioceramics are also available [450,451,458–461,507,520,733–736].

All types of the self-setting CaPO4 formulations belong to low-temperature bioceram-
ics. They are divided into two major groups. The first one is a dry mixture of two different
types of CaPO4 (a basic one and an acidic one), in which, after being wetted, the setting
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reaction occurs according to an acid–base reaction. The second group contains only one
CaPO4, such as ACP with Ca/P molar ratio within 1.50–1.67 or α-TCP: both of them form
CDHA upon contact with an aqueous solution [102,124]. Chemically, setting (= hardening,
curing) is due to the succession of dissolution and precipitation reactions. Mechanically,
it results from crystal entanglement and intergrowth (Figure 16) [737]. By influencing
dimensions of forming CaPO4 crystals, it is possible to influence the mechanical properties
of the hardened bulk bioceramics [738]. Sometimes, the self-set formulations are sintered
to prepare high-temperature CaPO4 bioceramics [739]. Despite a large number of initial
compositions, all types of self-setting CaPO4 formulations can form three products only:
CDHA, DCPD, and, rarely, DCPA [102,103,124,507,733]. Special reviews on the topic are
available in [102,103,739], where interested readers are referred for further details.

Figure 16. A typical microstructure of a CaPO4 cement after hardening. The mechanical stability is
provided by the physical entanglement of crystals. Reprinted from Ref. [737] with permission.

6.2. CaPO4 Deposits (Coatings, Films, and Layers)

For many years, the clinical application of CaPO4-based bioceramics has been largely
limited to non-load-bearing parts of the skeleton due to their inferior mechanical properties.
Therefore, materials with better mechanical properties appear to be necessary. For example,
metallic implants are encountered in endoprostheses (total hip joint replacements) and
artificial teeth sockets. As metals do not undergo bone bonding, i.e., they do not form a
mechanically stable link between the implant and bone tissue, methods have been sought
to improve contacts at the interface. One major method is to coat metals with CaPO4, which
enables bonding ability between the metal and the bone [180,190,397,740–742].

A number of factors influence the properties of CaPO4 deposits (coatings, films, and
layers). They include thickness (this will influence coating adhesion and fixation—the
agreed optimum now seems to be within 50–100 µm), crystallinity (this affects the disso-
lution and biological behavior), phase and chemical purity, porosity, and adhesion. The
coated implants combine the surface biocompatibility and bioactivity of CaPO4 with the
core strength of strong substrates (Figure 17). Moreover, CaPO4 deposits decrease a release
of potentially hazardous chemicals from the core implant and shield the substrate surface
from environmental attack. In the case of porous implants, the CaPO4-coated surface
enhances bone ingrowth into the pores [331]. The clinical results for CaPO4-deposited
implants reveal that they have much longer lifetimes after implantation than uncoated
devices and they are found to be particularly beneficial for younger patients. Further details
on this topic are available in the special reviews [740–742].
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Figure 17. Shows how a plasma-sprayed HA coating on a porous titanium (dark bars), dependent
on the implantation time, will improve the interfacial bond strength compared to uncoated porous
titanium (light bars). Reprinted from Ref. [50] with permission.

6.3. Functionally Graded Bioceramics

In general, functionally gradient materials (FGMs) are defined as materials having
either compositional or structural gradient from their surface to the interior. The idea of
FGMs allows one device to possess two different properties. One of the most important
combinations for the biomedical field is that of mechanical strength and biocompatibility.
Namely, only surface properties govern a biocompatibility of the entire device. In contrast,
the strongest material determines the mechanical strength of the entire device. Although
this subject belongs to the previous section on coatings, films, and layers, in a certain sense,
all types of implants covered by CaPO4 might be also considered as FGMs.

Within the scope of this review, functionally graded bioceramics consisting of CaPO4
are considered and discussed only. Such formulations have been developed [74,491,494,
550,743–753]. For example, dense sintered bodies with gradual compositional changes
from α-TCP to HA were prepared by sintering diamond-coated HA compacts at 1280 ◦C
under a reduced pressure, followed by heating under atmospheric conditions [743]. The
content of α-TCP gradually decreased, while the content of HA increased with increasing
depth from the surface. This functionally gradient bioceramic consisting of HA core and
α-TCP surface showed potential value as a bone-substituting biomaterial [743]. Two types
of functionally gradient FA/β-TCP biocomposites were prepared in another study [744].
As shown in Figure 18, one of the graded biocomposites was in the shape of a disk and
contained four different layers of about 1 mm thick. The other graded biocomposite was
also in the shape of a disk but contained two sets of the four layers, each layer being 0.5
mm thick controlled by using a certain amount of the mixed powders. The final FA/β-TCP
graded structures were formed at 100 MPa and sintered at 1300 ◦C for 2 h [744]. The same
approach was used in yet another study, but HA was used instead of FA and CDHA was
used instead of β-TCP [752]. CaPO4 coatings with graded crystallinity were prepared as
well [748].
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Figure 18. A schematic diagram showing the arrangement of the FA/β-TCP biocomposite layers.
(a) A nonsymmetric functionally gradient material (FGM); (b) symmetric FGM. Reprinted from
Ref. [744] with permission.

In addition, it is well known that a bone cross-section from cancellous to cortical
bone is nonuniform in porosity and pore dimensions. Thus, in various attempts to mimic
the porous structure of bones, CaPO4 bioceramics with graded porosity have been fabri-
cated [74,432,478,491,494,550,743–746]. For example, graded porous CaPO4 bioceramics
can be produced by means of tape casting and lamination (Figure 19, top). Other manufac-
turing techniques, such as a compression molding process (Figure 19, bottom) followed
by impregnation and firing, are known as well [432]. In the first method, an HA slurry
was mixed with a pore former. The mixed slurry was then cast into a tape. Using the
same method, different tapes with different pore former sizes were prepared individually.
The different tape layers were then laminated together. Firing was then performed to
remove the pore formers and sinter the HA particle compacts, resulting in graded porous
bioceramics [746]. This method was also used to prepare graded porous HA with a dense
part (core or layer) in order to improve the mechanical strength, as dense ceramics are much
stronger than porous ceramics. However, as in the pressure infiltration of mixed particles,
this multiple tape casting also has the problem of poor connectivity of pores, although
the pore size and the porosity are relatively easy to control. Furthermore, the lamination
step also introduces additional discontinuity of the porosity on the interfaces between the
stacked layers.

Since diverse biomedical applications require different configurations and shapes, the
graded (or gradient) porous bioceramics can be grouped according to both the overall shape
and the structural configuration [432]. The basic shapes include rectangular blocks and
cylinders (or disks). For the cylindrical shape, there are configurations of dense core–porous
layer, less porous core–more porous layer, dense layer–porous core, and less porous layer–
more porous core. For the rectangular shape, in the gradient direction, i.e., the direction
with varying porosity, pore size, or composition, there are configurations of porous top–
dense bottom (same as porous bottom–dense top), porous top–dense center–porous bottom,
dense top–porous center–dense bottom, etc. Concerning biomedical applications, a dense
core–porous layer structure is suitable for implants of a high mechanical strength and with
bone ingrowth for stabilization, whereas a less porous layer–more porous core configuration
can be used for drug delivery systems. Furthermore, a porous top –dense bottom structure
can be shaped into implants of articulate surfaces for wear resistance and with porous ends
for bone ingrowth fixation, while a dense top–porous center–dense bottom arrangement
mimics the structure of head skull. Further details on bioceramics with graded porosity
can be found in the literature [432].
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Figure 19. Schematic illustrations of fabrication of pore-graded bioceramics: top—lamination of
individual tapes, manufactured by tape casting; bottom—a compression molding process. Reprinted
from Ref. [432] with permission.

7. CaPO4 Bioceramics in Tissue Engineering
7.1. Tissue Engineering

Tissue/organ repair has been the ultimate goal of surgery from ancient times to nowa-
days [56,57]. The repair has traditionally taken two major forms: tissue grafting followed by
organ transplantation, and alloplastic or synthetic material replacement. Both approaches,
however, have limitations. Grafting requires second surgical sites with associated morbidity
and is restricted by limited amounts of material, especially for organ replacement. Synthetic
materials often integrate poorly with host tissue and fail over time due to wear and fatigue
or adverse body response [754]. In addition, all modern artificial orthopedic implants lack
three of the most critical abilities of living tissues: (i) self-repairing; (ii) maintaining of blood
supply; (iii) self-modifying their structure and properties in response to external aspects
such as a mechanical load [755]. It is needless to mention that bones not only possess all
of these properties but, in addition, they are self-generating, hierarchical, multifunctional,
nonlinear, composite, and biodegradable; therefore, the ideal artificial bone grafts must
possess similar properties [62].

The last decades have seen a surge in creative ideas and technologies developed to
tackle the problem of repairing or replacing diseased and damaged tissues, leading to the
emergence of a new field in healthcare technology now referred to as tissue engineering,
which might be defined as “the creation of new tissue for the therapeutic reconstruction
of the human body, by the deliberate and controlled stimulation of selected target cells
through a systematic combination of molecular and mechanical signals” [756]. Briefly, this
is an interdisciplinary field that exploits a combination of living cells, engineering materials,
and suitable biochemical factors (Figure 20) in a variety of ways to improve, replace, restore,
maintain, or enhance living tissues and whole organs [757–759]. However, since two of
three major components (namely, cells and biochemical factors) of the tissue engineering
subject appear to be far beyond the scope of this review, the topic of bone tissue engineering
that aims to mimic the in vivo bone regeneration processes in a laboratory environment is
narrowed down to the engineering materials prepared from CaPO4 bioceramics only.
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Figure 20. A tissue engineering approach for developing an advanced bone scaffold. Reprinted from
Ref. [759] with permission.

Regeneration, rather than a repair, is the central goal of any tissue engineering strat-
egy; therefore, it aims to create tissues and organs de novo [758]. This field of science
started more than two decades ago [760,761], and the famous publication by Langer and
Vacanti [762] has greatly contributed to the promotion of tissue engineering research world-
wide. The field of tissue engineering, particularly when applied to bone substitutes where
tissues often function in a mechanically demanding environment [763–765], requires a
collaboration of excellence in cell and molecular biology, biochemistry, material sciences,
bioengineering, and clinical research [766]. For success, it is necessary that researchers
with expertise in one area have an appreciation of the knowledge and challenges of the
other areas. However, since the technical, regulatory, and commercial challenges might be
substantial, the introduction of new products is likely to be slow [758].

Nowadays, tissue engineering is at full research potential due to the following key
advantages: (i) the solutions it provides are long-term, much safer than other options,
and cost-effective as well; (ii) the need for donor tissue is minimal, which eliminates the
immunosuppression problems; (iii) the presence of residual foreign material is eliminated
as well [767,768].

7.2. Scaffolds and Their Properties

It would be very convenient for both patients and physicians if devastated tissues or
organs of patients could be regenerated by simple cell injections to the target sites, but such
cases are rare. The majority of large-sized tissues and organs with distinct 3D form require
a support for their formation from cells. The support is called a scaffold, template, and/or
artificial extracellular matrix [127,128,534,760,763–772]. The major function of scaffolds is
similar to that of the natural extracellular matrix that assists proliferation, differentiation,
and biosynthesis of cells. In addition, scaffolds placed at the regeneration sites will prevent
disturbing cells from invasion into the sites of action [771,772]. The role of scaffolds was
perfectly described by a Spanish classical guitarist Andrés Segovia (1893–1987): “When one
puts up a building one makes an elaborate scaffold to get everything into its proper place.
But when one takes the scaffold down, the building must stand by itself with no trace of
the means by which it was erected. That is how a musician should work”. However, for
the future of tissue engineering, the term “template” might become more suitable because,
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according to David F. Williams, the term scaffold “conveys an old fashioned meaning of
an inert external structure that is temporarily used to assist in the construction or repair
of inanimate objects such as buildings, taking no part in the characteristics of the finished
product.” [773] (p. 1129).

Therefore, the idea behind tissue engineering is to create or engineer autografts by
either expanding autologous cells in vitro guided by a scaffold or implanting an acellular
template in vivo and allowing the patient’s cells to repair the tissue guided by the scaffold.
The first phase is the in vitro formation of a tissue constructed by placing the chosen cells
and scaffolds in a metabolically and mechanically supportive environment with growth
media (in a bioreactor), in which the cells proliferate and elaborate extracellular matrix.
It is expected that cells infiltrate into the porous matrix and consequently proliferate
and differentiate therein [774,775]. In the second phase, the construct is implanted in
the appropriate anatomic location, where remodeling in vivo is intended to recapitulate
the normal functional architecture of an organ or a tissue [776,777]. The key processes
occurring during both in vitro and in vivo phases of the tissue formation and maturation
are (1) cell proliferation, sorting, and differentiation, (2) extracellular matrix production
and organization, (3) biodegradation of the scaffold, and (4) remodeling and potentially
growth of the tissue [778].

To achieve the goal of tissue reconstruction, the scaffolds (templates) must meet a
number of the specific requirements [127,128,769–773]. Five features of the scaffold’s
architecture appear to influence the biological response: (1) a macroscopic shape, (2) a
porous network, (3) pore dimensions and geometry, (4) surface microtopography, and
(5) micro-, submicro-, and nanoporosities. In addition, scaffolds should be biodegradable.
Among them, a reasonable surface roughness is necessary to facilitate cell seeding and
fixation [619,779–784]. A high porosity and the adequate pore dimensions (Tables 2 and 4)
are very important to allow cell migration and vascularization, as well as a diffusion of
nutrients [437,758]. A French architect, Robert le Ricolais (1894–1977), stated: “The art of
structure is where to put the holes”. Therefore, to enable proper tissue ingrowth, vascular-
ization, and nutrient delivery, scaffolds should have a highly interconnected porous net-
work, formed by a combination of macro- and micropores, in which more than ~60% of the
pores should have a size ranging from ~150 to ~400 µm and at least ~20% should be smaller
than ~20 µm [437,442,443,448,529,530,536,538,544,563–570,572,754,785–791]. Furthermore,
a sufficient mechanical strength and stiffness are mandatory to oppose contraction forces
and later for the remodeling of damaged tissues [792,793]. In addition, scaffolds must be
manufactured from the materials with controlled biodegradability and/or bioresorbability,
such as CaPO4, so that a new bone will eventually replace the scaffold [763,786,794]. Fur-
thermore, the degradation byproducts of scaffolds must be noncytotoxic. More to the point,
the resorption rate has to coincide as much as possible with the rate of bone formation (i.e.,
between a few months and about 2 years) [795]. This means that while cells are fabricating
their own natural matrix structure around themselves, the scaffold is able to provide a
structural integrity within the body, and eventually it will break down, leaving the newly
formed tissue that will take over the mechanical load. However, one should bear in mind
that the scaffold’s architecture changes with the degradation process, and the degradation
byproducts affect the biological response. In addition, scaffolds should be easily fabricated
into a variety of shapes and sizes [796] and be malleable to fit irregularly shaped defects,
while the fabrication processes should be effortlessly scalable for mass production. In
many cases, ease of processability, as well as easiness of conformation and injectability,
which self-setting CaPO4 formulations possess (see Section 6.1. Self-setting (Self-hardening)
Formulations), can determine the choice of a certain biomaterial. Finally, sterilization with
no loss of properties is a crucial step in scaffold production at both a laboratory and an
industrial level [763–765]. Thus, each scaffold (template) should fulfill many functions
before, during, and after implantation.
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Table 4. A hierarchical pore size distribution that an ideal scaffold should exhibit [797].

Pore Sizes of a 3D Scaffold A Biochemical Effect or Function

<1 µm
Interaction with proteins

Responsible for bioactivity

1–20 µm

Type of cells attracted

Cellular development

Orientation and directionality of cellular ingrowth

100–1000 µm

Cellular growth

Bone ingrowth

Predominant function in the mechanical strength

>1000 µm

Implant functionality

Implant shape

Implant esthetics

Many fabrication techniques are available to produce porous CaPO4 scaffolds (Table 2)
with varying architectural features (see the aforementioned Section 3.3 and 4.4). In order to
achieve the desired properties with the minimum expenses, the production process should
be optimized [798]. The main goal is to develop a high potential synthetic bone substitute
(so-called “smart scaffold”) which will not only promote osteoconduction, i.e., bone growth
on a surface, but also osteopromotion, i.e., the ability to enhance osteoinduction [799].
In the case of CaPO4, a smart scaffold represents a biphasic (HA/β–TCP ratio of 20/80)
formulation with a total porosity of ~73%, constituted of macropores (>100 µm), mesopores
(10–100 µm), and a high content (~40%) of micropores (<10 µm) with the crystal dimensions
within <0.5 to 1 µm and the specific surface area ~6m2/g [800]. With the advent of CaPO4
in tissue engineering, the search is on for the ultimate option consisting of a synthetic
smart scaffold impregnated with cells and growth factors. Figure 21 schematically depicts
a possible fabrication process of such item that, afterwards, will be implanted into a living
organism to induce bone regeneration [47].

Figure 21. A schematic view of a third-generation biomaterial, in which porous CaPO4 bioceramic
acts as a scaffold or a template for cells, growth factors, etc. Reprinted from Ref. [47] with permission.
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To finalize this topic, one should note the fundamental unfeasibility to create the
so-called “ideal scaffold” for bone grafting. Since bones of the human skeleton have very
different dimensions, shapes, and structures depending on their functions and locations,
synthetic bone grafts of various sizes, shapes, porosity, mechanical strength, composition,
and resorbability appear to be necessary. Therefore, HA bioceramics of 0 to 15% porosity
are used as both ilium and intervertebral spacers, where a high strength is required, HA
bioceramics of 30 to 40% porosity are useful as spinous process spacers for laminoplasty,
where both bone formation and middle strength are necessary, while HA bioceramics
of 40% to 60% porosity are useful for the calvarias plate, where a fast bone formation is
needed (Figure 22) [518]. Furthermore, defining the optimum parameters for artificial
scaffolds is, in fact, an attempt to find a reasonable compromise between various conflicting
functional requirements. Namely, an increased mechanical strength of bone substitutes
requires solid and dense structures, while colonization of their surfaces by cells requires
interconnected porosity. Additional details and arguments on this subject are well described
elsewhere [801], in which the authors concluded that “there is enough evidence to postulate
that ideal scaffold architecture does not exist.” (p. 478).

Figure 22. A schematic drawing presenting the potential usage of HA with various degrees of
porosity. Reprinted from Ref. [518] with permission.

7.3. Bioceramic Scaffolds from CaPO4

Philosophically, the increase in life expectancy requires biological solutions to all
biomedical problems, including orthopedic ones, which were previously managed with
mechanical solutions. Therefore, since the end of the 1990s, biomaterials research has
focused on tissue regeneration instead of tissue replacement [802]. The alternatives include
using hierarchical bioactive scaffolds to engineer in vitro living cellular constructs for
transplantation or using bioresorbable bioactive particulates or porous networks to activate,
in vivo, the mechanisms of tissue regeneration [803,804]. Thus, the aim of CaPO4 is to
prepare artificial porous bioceramic scaffolds able to provide the physical and chemical
cues to guide cell seeding, differentiation, and assembly into 3D tissues of a newly formed
bone. Particle sizes, shape, and surface roughness of the scaffolds are known to affect
cellular adhesion, proliferation, and phenotype [619,779–784]. Additionally, the surface
energy might play a role in attracting particular proteins to the bioceramic surface and,
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in turn, this will affect the cells’ affinity to the material. More to the point, cells are
exceedingly sensitive to the chemical composition, and their bone-forming functions can
be dependent on grain morphology of the scaffolds. For example, osteoblast functions
were found to increase on nanodimensional fibers when compared to nanodimensional
spheres because the former more closely approximated the shape of biological apatite in
bones [805]. In addition, a significantly higher osteoblast proliferation on HA bioceramics
sintered at 1200 ◦C, compared to that on HA bioceramics sintered at 800 and 1000 ◦C,
was reported [806]. Furthermore, since ions of calcium and orthophosphate are known
to regulate bone metabolism, CaPO4 appears to be among the few bone graft substitute
materials that can be considered as a drug. A schematic drawing of the key scaffold
properties affecting a cascade of biological processes occurring after CaPO4 implantation is
shown in Figure 23 [807].

Figure 23. A schematic drawing of the key scaffold properties affecting a cascade of biological
processes occurring after CaPO4 implantation. Reprinted from Ref. [807] with permission.

Thus, to meet the tissue engineering requirements, much attention is devoted to fur-
ther improvements of CaPO4 bioceramics [808–810]. From the chemical point of view,
the developments include synthesis of novel ion-substituted CaPO4 [17–41]. For exam-
ple, a recent systematic review and meta-analysis indicated a significant positive effect
on new bone formation by supplementing CaPO4-based bone substitutes with bioinor-
ganics compared to those without dopants, especially when strontium, silicon, or mag-
nesium were used [811]. A positive influence of CaPO4 doping by carbonates was also
noticed [812]. From the material point of view, the major research topics include nan-
odimensional and nanocrystalline structures [813–816], amorphous compounds [817,818],
(bio)organic/CaPO4 biocomposites and hybrid formulations [357,819,820], and biphasic,
triphasic, and multiphasic formulations [79], as well as various types of structures, forms,
and shapes. The latter comprise fibers, wires, whiskers, and filaments [135,231,821–834],
macro-, micro-, and nanosized spheres, beads, and granules [833–846], tetrapods and pyra-
mids [847], micro- and nanosized tubes [848–852], aerogels [853], “flowers” [854], porous
3D scaffolds [172] made of ACP [470,582,855], DCPD/DCPA [148,856–859], OCP [860,861],
TCP [68,71,139,140,862–865], HA [147,447,448,487,513,514,798,852,866–870], TTCP [141]
and biphasic formulations [245,474,491,531,836,843,865,871–877], structures with graded
porosity [74,432,478,491,494,550,743–746], and hierarchically organized ones [877,878]. More
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advanced combined techniques are also possible. For example, to increase the degree of os-
sification and homogenization, the surface of porous CaPO4 scaffolds might be modified by
generation of CaPO4 whiskers on their surface [879,880], followed by reinforcing with multi-
ple layers of releasable nanodimensional CDHA particles [880]. Recently, research progress
has been made in the deformable CaPO4-based biomaterials with a high flexibility, softness,
and/or elasticity based on nanodimensional ultralong HA wires [881,882]. Furthermore,
an addition of defects through an intensive milling [883,884] or their removal by a thermal
treatment [885] can be used to modify the chemical reactivity of CaPO4. In addition, more
attention should be paid to a crystallographically aligned CaPO4 bioceramics [687–692,886].

In general, there are three principal therapeutic strategies for treating diseased or
injured tissues in patients: (i) implantation of freshly isolated or cultured cells; (ii) implan-
tation of tissues assembled in vitro from cells and scaffolds; (iii) in situ tissue regeneration.
For cellular implantation, individual cells or small cellular aggregates from the patient
or a donor are either injected into the damaged tissue directly or are combined with a
degradable scaffold in vitro and then implanted. For tissue implantation, a complete 3D
tissue is grown in vitro using patient or donor cells and a bioresorbable scaffold and then is
implanted into the patients to replace diseased or damaged tissues. For in situ regeneration,
a scaffold implanted directly into the injured tissue stimulates the body’s own cells to pro-
mote local tissue repair [324,757]. In any case, simply trapping cells at the particular point
on a surface is not enough: the cells must be encouraged to differentiate, which is impossi-
ble without the presence of suitable biochemical factors [887]. All previously mentioned
points clearly indicate that, for the purposes of tissue engineering, CaPO4 bioceramics play
an auxiliary role; namely, they acts as a suitable material to manufacture the appropriate
3D templates, substrates, or scaffolds to be colonized by living cells before the successive
implantation [799,800,888–890]. The in vitro evaluation of potential CaPO4 scaffolds for
tissue engineering is described elsewhere [891], while the data on the mechanical properties
of CaPO4 bioceramics for use in tissue engineering are also available [892–894]. The effect
of an HA-based biomaterial on gene expression in osteoblast-like cells was reported as
well [895]. To conclude this part, the excellent biocompatibility of CaPO4 bioceramics, their
possible osteoinductivity [544,566,597–605], and high affinity for drugs [54–57,896–900],
proteins, and cells [897,901] make them very functional for the tissue engineering appli-
cations [902]. The feasible production of scaffolds with tailored structures and properties
opens up a spectacular future for CaPO4 bioceramics [895–903].

7.4. A Clinical Experience

To date, there are just a few publications on clinical application of cell-seeded CaPO4
bioceramics for bone tissue engineering of humans. Namely, Quarto et al. [904] were the
first to report a treatment of large (4–7 cm) bone defects of the tibia, ulna, and humerus
in three patients aged from 16 to 41 years old, where the conventional surgical therapies
had failed. The authors implanted a custom-made unresorbable porous HA scaffold
seeded with in vitro expanded autologous bone marrow stromal cells. In all three patients,
radiographs and computed tomographic scans revealed abundant callus formation along
the implants and good integration at the interfaces with the host bones by the second
month after surgery [904]. In the same year, Vacanti et al. [905] reported the case of a
man who had a traumatic avulsion of the distal phalanx of a thumb. The phalanx was
replaced with a specially treated natural coral (porous HA; 500-pore ProOsteon (see Table 3))
implant that was previously seeded with in vitro expanded autologous periosteal cells.
The procedure resulted in the functional restoration of a stable and biomechanically sound
thumb of normal length, without the pain and complications that are usually associated
with harvesting a bone graft.

Morishita et al. [906] treated a defect resulting from surgery of benign bone tumors
in three patients using HA scaffolds seeded with in vitro expanded autologous bone
marrow stromal cells after osteogenic differentiation of the cells. Two bone defects in a
tibia and one defect in a femur were treated. Although ectopic implants in nude mice
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were mentioned to show the osteogenicity of the cells, details such as the percentage of
the implants containing bone and at what quantities were not reported. Furthermore,
cell-seeded CaPO4 scaffolds were found to be superior to autograft, allograft or cell-seeded
allograft in terms of bone formation at ectopic implantation sites [907]. In addition, it
has been hypothesized that dental follicle cells combined with β-TCP bioceramics might
become a novel therapeutic strategy to restore periodontal defects [908]. In yet another
study, the behavior of human periodontal ligament stem cells on an HA-coated genipin-
chitosan scaffold in vitro was studied followed by evaluation on bone repair in vivo [909].
The study demonstrated the potential of this formulation for bone regeneration.

A research group from Holland evaluated vascularization in relation to bone formation
potential of adipose-stem-cells-containing stromal vascular fractions of adipose tissues,
seeded on two types of CaPO4 carriers, within the human maxillary sinus floor elevation
model, in a phase I study [910]. Autologous stromal vascular fractions were obtained
from 10 patients and seeded on either β-TCP scaffolds with 60% porosity (n = 5) or BCP
(HA + β-TCP) ones with 90% porosity (n = 5) and used for maxillary sinus floor elevations
in a one-step surgical procedure. After 6 months, biopsies were obtained during dental
implant placements and the quantifications of the number of blood vessels were performed
using histomorphometric analysis and immunohistochemical stainings for blood vessel
markers. Bone percentages seemed to correlate with blood vessel formation and were higher
in the study versus control biopsies in the cranial area, in particular for β-TCP-treated
patients. That study showed the safety, feasibility, and efficiency of using of adipose-stem-
cells-seeded CaPO4 scaffolds for human maxillary sinus floor elevations and indicated a
proangiogenic effect of stromal vascular fraction [910]. A brief description of several other
cases is available in the literature [911].

To finalize this section, one must mention that CaPO4 bioceramics are also used in
veterinary orthopedics for favoring animal bone healing in areas in which bony defects
exist [912,913].

8. Non-Biomedical Applications of CaPO4

Due to their strong adsorption ability, surface acidity or basicity, and ion exchange
abilities, some types of CaPO4 possess a catalytic activity [914–926]. As seen from the
references, CaPO4 are able to catalyze oxidation and reduction reactions, as well as for-
mation of C–C bonds. Namely, the application in oxidation reactions mainly includes
oxidation of alcohol and dehydrogenation of hydrocarbons, while the reduction reactions
include hydrogenolysis and hydrogenation. The formation of C–C bonds mainly comprises
Claisen–Schmidt and Knoevenagel condensation reactions, Michael addition reaction, as
well as Friedel–Crafts, Heck, Diels–Alder, and aldol reactions [921].

In addition, due to the chemical similarity to the inorganic part of mammalian calcified
tissues, CaPO4 powders appear to be good solid carriers for chromatography of biological
substances. Namely, high-value biological materials such as recombinant proteins, thera-
peutic antibodies, and nucleic acids are separated and purified [927–933]. Furthermore, some
types of CaPO4 are used as a component of various sensors [373,374,378,379,382,934–938].
Finally, CaPO4 ceramics appear to be good adsorbents of fluorides [939]; however, since
these subjects are almost irrelevant to bioceramics, they are not detailed further. Additional
details and examples are available elsewhere [940].

9. Conclusions and Outlook

The available chronology of seeking suitable bioceramics for bone substitutes is as
follows: since the 1950s, the first aim was to use bioinert bioceramics, which had no reaction
with living tissues. They included inert and tolerant compounds, which were designed to
withstand physiological stress without, however, stimulating any specific cellular responses.
Later on, in the 1980s, the trend changed towards exactly the opposite: the idea was
to implant bioceramics that reacted with the surrounding tissues by producing newly
formed bone (a “responsive” bioceramic because it was able to elicit biological responses).
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These two stages are referred to as the first and the second generations of bioceramics,
respectively [941] and, currently, both of them are extensively commercialized. Thus, the
majority of the marketable products listed in Table 3 belong to the first and the second
generations of bone substitute biomaterials. However, the progress has continued and, in
the current century, scientists are searching for the third generation of bioceramics [324],
which will be able to “instruct” the physiological environment toward desired biological
responses (i.e., bioceramics will be able to regenerate bone tissues by stimulating specific
responses at the molecular level) [47,942]. Since each generation represents an evolution
of the requirements and properties of the biomaterials involved, one should stress that
these three generations should not be interpreted as the chronological, but instead as the
conceptual ones. This means that at present, research and development is still devoted
to biomaterials and bioceramics that, according to their properties, could be considered
to be of the first or the second generations, because the second generation of bioceramics
with added porosity is one of the initial approaches in developing the third generation of
bioceramics [943]. Furthermore, there is another classification of the history of biomaterials
introduced by Prof. James M. Anderson. According to Anderson, from 1950–1975 the
researchers studied bioMATERIALS, from 1975–2000 they studied BIOMATERIALS, and
since 2000 the time for BIOmaterials has been approaching [944]. Here, the capital letters
emphasis the major direction of the research efforts in the complex subject of biomaterials.
As bioceramics are biomaterials of the ceramic origin (see Section 2. General Knowledge and
Definitions), Anderson’s historical classification appears to be applicable to the bioceramics
field as well.

The historical development of biomaterials informs that their widespread use expe-
riences two major difficulties. The first is an incomplete understanding of the physical
and chemical functioning of biomaterials and of the human response to these materials.
Recent advances in material characterization and computer science, as well as in cell and
molecular biology, are expected to play a significant role in the study of biomaterials. A
second difficulty is that many biomaterials do not perform as desirably as we would like.
This is not surprising, since many materials used in medicine were not designed for medical
purposes. It needs to be mentioned here that biomaterials are expected to perform in our
body’s internal environment, which is very aggressive. For example, solution pH of body
fluids in various tissues varies in the range from 1 to 9. During daily activities, bones are
subjected to a stress of ~4 MPa, whereas the tendons and ligaments experience peak stresses
in the range of 40–80 MPa. The mean load on a hip joint is up to three times the body weight
(3000 N) and peak load during jumping can be as high as ~10 times the body weight. More
importantly, these stresses are repetitive and fluctuating, depending on the activities, such
as standing, sitting, jogging, stretching, and climbing. All of these require careful designing
of biomaterials in terms of composition, shape, physical, and biocompatibility properties.
Therefore, a significant challenge is the rational design of human biomaterials based on a
systematic evaluation of desired biological, chemical, and engineering requirements [945].

Nevertheless, the field of biomaterials is in the midst of a revolutionary change
in which the life sciences are becoming equal in importance to materials science and
engineering as the foundation of the field. Simultaneously, advances in engineering (for
example, nanotechnology) are greatly increasing the sophistication with which biomaterials
are designed and have allowed fabrication of biomaterials with increasingly complex
functions [797]. Specifically, during the last ~50 years, CaPO4 bioceramics have become
an integral and vital segment of our modern healthcare delivery system. In the modern
fields of the third-generation bioceramics (Hench) or BIOceramics (Anderson), the full
potential of CaPO4 has only begun to be recognized. Namely, CaPO4, which were intended
as osteoconductive bioceramics in the past, represent materials to fabricate osteoinductive
implants nowadays [544,566,597–605]. Some steps in this direction have been already
made by fabricating scaffolds for bone tissue engineering through the design of controlled
3D-porous structures and increasing the biological activity through development of novel
ion-substituted CaPO4 bioceramics [546,946]. The future of biosynthetic bone implants will
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point to better mimicking the autologous bone grafts. Therefore, the composition, structure,
and molecular surface chemistry of various types of CaPO4 will be tailored to match the
specific biological and metabolic requirements of tissues or disease states [947,948]. This
new generation of CaPO4 bioceramics should enhance the quality of life of millions of
people as they grow older.

However, in spite of the great progress, there is still a great potential for major advances
to be made in the field of CaPO4 bioceramics. This includes requirements for [949]:

• Improvement of the mechanical performance of existing types of bioceramics.
• Enhanced bioactivity in terms of gene activation.
• Improvement in the performance of biomedical coatings in terms of their mechanical

stability and ability to deliver biological agents.
• Development of smart biomaterials capable of combining sensing with bioactivity.
• Development of improved biomimetic composites.

Furthermore, there is still need for a better understanding of the biological systems.
For example, the bonding mechanism between the bone mineral and collagen remains
unclear. It is also unclear whether a rapid repair that is elicited by the new generation
of bioceramics is a result of the enhancement of mineralization, per se, or whether there
is a more complex signaling process involving proteins in collagen. If we were able to
understand the fundamentals of bone response to specific ions and the signals they activate,
then we would be able to design better bioceramics for the future [949].

To finalize this review, it is completely obvious that the present status of research
and development in the field of CaPO4 bioceramics is still at the starting point for the
solution of new problems at the confluence of materials science, biology, and medicine,
concerned with the restoration of damaged functions in the human organisms. A large
increase in active elderly people has dramatically raised the need for load-bearing bone
graft substitutes, for example, for bone reconstruction during revision arthroplasty or
for the reinforcement of osteoporotic bones. Strategies applied in the last four decades
towards this goal have failed, so new strategies, possibly based on self-assembling and/or
nanofabrication, will have to be proposed and developed [950]. Angiogenesis (the process
and stimulation of new blood vessel formation via sprouting from existing blood vessels) is
also very important to the success of hard tissue regeneration, and CaPO4 seem to be useful
for this purpose [951]. In addition, some CaPO4-containing formulations were tested with
soft tissues [952,953], mainly for various types of soft-tissue augmentations [721,954–956]
and eyeball replacements [704–709], as well as for cancer diagnostics and therapy [957–959],
wound healing [960], as components of various cosmetic formulations [961], and vaccine
adjuvants [962]. Recently, a concept of black bioceramics for Ca- and Mg-silicates, as
well as for HA and TCP, was introduced [963]. The black bioceramics were prepared
through a partial thermal reduction of traditional white ceramics (CaSiO3, MgSiO3, TCP,
and HA) by magnesium. Due to the presence of oxygen vacancies and structural defects, the
black bioceramics were found to possess a photothermal functionality while maintaining
their initial high bioactivity and regenerative capacity. These black bioceramics showed
excellent photothermal antitumor effects for both skin and bone tumors. At the same
time, they significantly improved bioactivity for skin/bone tissue repair both in vitro
and in vivo [963]. Bioceramics prepared from other types of calcium phosphates, such as
calcium pyrophosphate, are worth investigating as well [964]. Additive manufacturing
techniques will be further developed [965]. A bioinformatics approach to study the role of
CaPO4 properties in bone regeneration might be promising as well [966].

In future, it should be feasible to design a new generation of gene-activating CaPO4-
based scaffolds tailored for specific patients and disease states. In addition, further de-
velopments of 3D-printing technologies [967] will allow designing of personalized bone
grafts, which will provide an accurate control of the geometry. The design of the implant
shape, based on X-ray computed tomography data, will ensure the perfect fit between the
graft and the anatomical defect [968]. Personalized implants will be produced with tailored
characteristics better adapted to the patient-specific bone tissue regions/defects that need to
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be replaced/reinforced. To transfer these technologies to clinical practice, material science
and tissue engineering need to be closely assisted by biomedical researchers in order to
confer the safety risk assessment, as well as efficacy at high standards. In addition, the
development of complex testing strategies will help to unveil the network of biological
events elicited by CaPO4-based bioceramics as bulks, coatings, or nanodimensional forms,
which are essential to ensure a longer and safer implant life in orthopedic and dentistry
applications [969]. Perhaps, sometime-bioactive stimuli will be used to activate genes in
a preventative treatment to maintain the health of aging tissues. Currently, all the afore-
mentioned seem hardly possible. However, we need to remember that only ~50 years
ago, the concept of a material that would not be rejected by living tissues also seemed
impossible [583].
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270. Haberko, K.; Bućko, M.M.; Brzezińska-Miecznik, J.; Haberko, M.; Mozgawa, W.; Panz, T.; Pyda, A.; Zarebski, J. Natural
hydroxyapatite–its behaviour during heat treatment. J. Eur. Ceram. Soc. 2006, 26, 537–542. [CrossRef]
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492. Potoczek, M.; Zima, A.; Paszkiewicz, Z.; Ślósarczyk, A. Manufacturing of highly porous calcium phosphate bioceramics via
gel-casting using agarose. Ceram. Int. 2009, 35, 2249–2254. [CrossRef]

493. Zuo, K.H.; Zeng, Y.P.; Jiang, D. Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast
hydroxyapatite ceramics. Mater. Sci. Eng. C 2010, 30, 283–287. [CrossRef]

494. Soon, Y.M.; Shin, K.H.; Koh, Y.H.; Lee, J.H.; Choi, W.Y.; Kim, H.E. Fabrication and compressive strength of porous hydroxyapatite
scaffolds with a functionally graded core/shell structure. J. Eur. Ceram. Soc. 2011, 31, 13–18. [CrossRef]

495. Hesaraki, S. Freeze-casted nanostructured apatite scaffold obtained from low temperature biomineralization of reactive calcium
phosphates. Key Eng. Mater. 2014, 587, 21–26. [CrossRef]

496. Ng, S.; Guo, J.; Ma, J.; Loo, S.C.J. Synthesis of high surface area mesostructured calcium phosphate particles. Acta Biomater. 2010,
6, 3772–3781. [CrossRef]

497. Walsh, D.; Hopwood, J.D.; Mann, S. Crystal tectonics: Construction of reticulated calcium phosphate frameworks in bicontinuous
reverse microemulsions. Science 1994, 264, 1576–1578. [CrossRef] [PubMed]

498. Walsh, D.; Mann, S. Chemical synthesis of microskeletal calcium phosphate in bicontinuous microemulsions. Chem. Mater. 1996,
8, 1944–1953. [CrossRef]

499. Zhao, K.; Tang, Y.F.; Qin, Y.S.; Wei, J.Q. Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical
properties. Ceram. Int. 2011, 37, 635–639. [CrossRef]

500. Zhou, K.; Zhang, Y.; Zhang, D.; Zhang, X.; Li, Z.; Liu, G.; Button, T.W. Porous hydroxyapatite ceramics fabricated by an
ice-templating method. Scripta Mater. 2011, 64, 426–429. [CrossRef]

501. Flauder, S.; Gbureck, U.; Muller, F.A. TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating.
Key Eng. Mater. 2013, 529–530, 129–132. [CrossRef]

502. Zhang, Y.; Zhou, K.; Bao, Y.; Zhang, D. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Mater.
Sci. Eng. C 2013, 33, 340–346. [CrossRef]

503. White, E.; Shors, E.C. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent. Clin. North Am. 1986, 30, 49–67.
[CrossRef]

504. Aizawa, M.; Howell, S.F.; Itatani, K.; Yokogawa, Y.; Nishizawa, K.; Toriyama, M.; Kameyama, T. Fabrication of porous ceramics
with well-controlled open pores by sintering of fibrous hydroxyapatite particles. J. Ceram. Soc. Jpn. 2000, 108, 249–253. [CrossRef]

505. Nakahira, A.; Tamai, M.; Sakamoto, K.; Yamaguchi, S. Sintering and microstructure of porous hydroxyapatite. J. Ceram. Soc. Jpn.
2000, 108, 99–104. [CrossRef]

506. Koh, Y.H.; Kim, H.W.; Kim, H.E.; Halloran, J.W. Fabrication of macrochannelled-hydroxyapatite bioceramic by a coextrusion
process. J. Am. Ceram. Soc. 2002, 85, 2578–2580. [CrossRef]

507. Charriere, E.; Lemaitre, J.; Zysset, P. Hydroxyapatite cement scaffolds with controlled macroporosity: Fabrication protocol and
mechanical properties. Biomaterials 2003, 24, 809–817. [CrossRef]

508. Gonzalez-McQuire, R.; Green, D.; Walsh, D.; Hall, S.; Chane-Ching, J.Y.; Oreffo, R.O.C.; Mann, S. Fabrication of hydroxyapatite
sponges by dextran sulphate/amino acid templating. Biomaterials 2005, 26, 6652–6656. [CrossRef]

509. Eichenseer, C.; Will, J.; Rampf, M.; Wend, S.; Greil, P. Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang).
J. Mater. Sci. Mater. Med. 2010, 21, 131–137. [CrossRef]

510. Walsh, D.; Boanini, E.; Tanaka, J.; Mann, S. Synthesis of tri-calcium phosphate sponges by interfacial deposition and thermal
transformation of self-supporting calcium phosphate films. J. Mater. Chem. 2005, 15, 1043–1048. [CrossRef]

511. Song, H.Y.; Islam, S.; Lee, B.T. A novel method to fabricate unidirectional porous hydroxyapatite body using ethanol bubbles in a
viscous slurry. J. Am. Ceram. Soc. 2008, 91, 3125–3127. [CrossRef]

512. Zhou, L.; Wang, D.; Huang, W.; Yao, A.; Kamitakahara, M.; Ioku, K. Preparation and characterization of periodic porous frame of
hydroxyapatite. J. Ceram. Soc. Jpn. 2009, 117, 521–524. [CrossRef]

513. Xu, S.; Li, D.; Lu, B.; Tang, Y.; Wang, C.; Wang, Z. Fabrication of a calcium phosphate scaffold with a three dimensional channel
network and its application to perfusion culture of stem cells. Rapid Prototyp. J. 2007, 13, 99–106. [CrossRef]

514. Saiz, E.; Gremillard, L.; Menendez, G.; Miranda, P.; Gryn, K.; Tomsia, A.P. Preparation of porous hydroxyapatite scaffolds. Mater.
Sci. Eng. C 2007, 27, 546–550. [CrossRef]

515. Sakamoto, M.; Nakasu, M.; Matsumoto, T.; Okihana, H. Development of superporous hydroxyapatites and their examination
with a culture of primary rat osteoblasts. J. Biomed. Mater. Res. A 2007, 82A, 238–242. [CrossRef] [PubMed]

http://doi.org/10.1016/j.biomaterials.2006.06.028
http://doi.org/10.1016/j.matlet.2006.08.065
http://doi.org/10.1002/jbm.b.30997
http://doi.org/10.1179/174367609X422243
http://doi.org/10.1016/j.actbio.2008.11.009
http://doi.org/10.1016/j.ceramint.2008.12.006
http://doi.org/10.1016/j.msec.2009.11.003
http://doi.org/10.1016/j.jeurceramsoc.2010.09.008
http://doi.org/10.4028/www.scientific.net/KEM.587.21
http://doi.org/10.1016/j.actbio.2010.03.017
http://doi.org/10.1126/science.264.5165.1576
http://www.ncbi.nlm.nih.gov/pubmed/17769602
http://doi.org/10.1021/cm9601345
http://doi.org/10.1016/j.ceramint.2010.10.003
http://doi.org/10.1016/j.scriptamat.2010.11.001
http://doi.org/10.4028/www.scientific.net/KEM.529-530.129
http://doi.org/10.1016/j.msec.2012.08.048
http://doi.org/10.1016/S0011-8532(22)02094-8
http://doi.org/10.2109/jcersj.108.1255_249
http://doi.org/10.2109/jcersj.108.99
http://doi.org/10.1111/j.1151-2916.2002.tb00500.x
http://doi.org/10.1016/S0142-9612(02)00406-4
http://doi.org/10.1016/j.biomaterials.2005.04.037
http://doi.org/10.1007/s10856-009-3857-3
http://doi.org/10.1039/b415068f
http://doi.org/10.1111/j.1551-2916.2008.02584.x
http://doi.org/10.2109/jcersj2.117.521
http://doi.org/10.1108/13552540710736786
http://doi.org/10.1016/j.msec.2006.05.038
http://doi.org/10.1002/jbm.a.31013
http://www.ncbi.nlm.nih.gov/pubmed/17295224


Coatings 2022, 12, 1380 74 of 89

516. Wang, H.; Zhai, L.; Li, Y.; Shi, T. Preparation of irregular mesoporous hydroxyapatite. Mater. Res. Bull. 2008, 43, 1607–1614.
[CrossRef]

517. Sakamoto, M. Development and evaluation of superporous hydroxyapatite ceramics with triple pore structure as bone tissue
scaffold. J. Ceram. Soc. Jpn. 2010, 118, 753–757. [CrossRef]

518. Sakamoto, M.; Matsumoto, T. Development and evaluation of superporous ceramics bone tissue scaffold materials with triple
pore structure a) hydroxyapatite, b) beta-tricalcium phosphate. In Bone Regeneration; Tal, H., Ed.; InTech Open: Rijeka, Croatia,
2012; pp. 301–320.

519. Deisinger, U. Generating porous ceramic scaffolds: Processing and properties. Key Eng. Mater. 2010, 441, 155–179. [CrossRef]
520. Ishikawa, K.; Tsuru, K.; Pham, T.K.; Maruta, M.; Matsuya, S. Fully-interconnected pore forming calcium phosphate cement. Key

Eng. Mater. 2012, 493–494, 832–835.
521. Yoon, H.J.; Kim, U.C.; Kim, J.H.; Koh, Y.H.; Choi, W.Y.; Kim, H.E. Fabrication and characterization of highly porous calcium

phosphate (CaP) ceramics by freezing foamed aqueous CaP suspensions. J. Ceram. Soc. Jpn. 2011, 119, 573–576. [CrossRef]
522. Ahn, M.K.; Shin, K.H.; Moon, Y.W.; Koh, Y.H.; Choi, W.Y.; Kim, H.E. Highly porous biphasic calcium phosphate (BCP) ceramics

with large interconnected pores by freezing vigorously foamed BCP suspensions under reduced pressure. J. Am. Ceram. Soc. 2011,
94, 4154–4156. [CrossRef]

523. Schlosser, M.; Kleebe, H.J. Vapor transport sintering of porous calcium phosphate ceramics. J. Am. Ceram. Soc. 2012, 95, 1581–1587.
[CrossRef]

524. Zheng, W.; Liu, G.; Yan, C.; Xiao, Y.; Miao, X.G. Strong and bioactive tri-calcium phosphate scaffolds with tube-like macropores. J.
Biomim. Biomater. Tissue Eng. 2014, 19, 65–75. [CrossRef]

525. Tsuru, K.; Nikaido, T.; Munar, M.L.; Maruta, M.; Matsuya, S.; Nakamura, S.; Ishikawa, K. Synthesis of carbonate apatite foam
using β-TCP foams as precursors. Key Eng. Mater. 2014, 587, 52–55. [CrossRef]

526. Chen, Z.C.; Zhang, X.L.; Zhou, K.; Cai, H.; Liu, C.Q. Novel fabrication of hierarchically porous hydroxyapatite scaffolds with
refined porosity and suitable strength. Adv. Appl. Ceram. 2015, 114, 183–187. [CrossRef]

527. Swain, S.K.; Bhattacharyya, S.; Sarkar, D. Fabrication of porous hydroxyapatite scaffold via polyethylene glycol-polyvinyl alcohol
hydrogel state. Mater. Res. Bull. 2015, 64, 257–261. [CrossRef]

528. Charbonnier, B.; Laurent, C.; Marchat, D. Porous hydroxyapatite bioceramics produced by impregnation of 3D-printed wax mold:
Slurry feature optimization. J. Eur. Ceram. Soc. 2016, 36, 4269–4279. [CrossRef]

529. Roy, D.M.; Linnehan, S.K. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974, 247,
220–222. [CrossRef]

530. Zhang, X.; Vecchio, K.S. Conversion of natural marine skeletons as scaffolds for bone tissue engineering. Front. Mater. Sci. 2013, 7,
103–117. [CrossRef]

531. Yang, Y.; Yao, Q.; Pu, X.; Hou, Z.; Zhang, Q. Biphasic calcium phosphate macroporous scaffolds derived from oyster shells for
bone tissue engineering. Chem. Eng. J. 2011, 173, 837–845. [CrossRef]

532. Tampieri, A.; Sprio, S.; Ruffini, A.; Celotti, G.; Lesci, I.G.; Roveri, N. From wood to bone: Multi-step process to convert wood
hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Chem. 2009, 19, 4973–4980.
[CrossRef]

533. Thanh, T.N.X.; Maruta, M.; Tsuru, K.; Matsuya, S.; Ishikawa, K. Three–dimensional porous carbonate apatite with sufficient
mechanical strength as a bone substitute material. Adv. Mater. Res. 2014, 891–892, 1559–1564. [CrossRef]

534. Moroni, L.; de Wijn, J.R.; van Blitterswijk, C.A. Integrating novel technologies to fabricate smart scaffolds. J. Biomater. Sci. Polymer
Edn. 2008, 19, 543–572. [CrossRef]

535. Studart, A.R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. Processing routes to macroporous ceramics: A review. J. Am. Ceram.
Soc. 2006, 89, 1771–1789. [CrossRef]

536. Hing, K.; Annaz, B.; Saeed, S.; Revell, P.; Buckland, T. Microporosity enhances bioactivity of synthetic bone graft substitutes. J.
Mater. Sci. Mater. Med. 2005, 16, 467–475. [CrossRef]

537. Wang, Z.; Sakakibara, T.; Sudo, A.; Kasai, Y. Porosity of β-tricalcium phosphate affects the results of lumbar posterolateral fusion.
J. Spinal Disord. Tech. 2013, 26, E40–E45. [CrossRef]

538. Lan Levengood, S.K.; Polak, S.J.; Wheeler, M.B.; Maki, A.J.; Clark, S.G.; Jamison, R.D.; Wagoner Johnson, A.J. Multiscale
osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 2010, 31,
3552–3563. [CrossRef]

539. Ruksudjarit, A.; Pengpat, K.; Rujijanagul, G.; Tunkasiri, T. The fabrication of nanoporous hydroxyapatite ceramics. Adv. Mater.
Res. 2008; 47–50, 797–800.

540. Li, Y.; Tjandra, W.; Tam, K.C. Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates.
Mater. Res. Bull. 2008, 43, 2318–2326. [CrossRef]

541. El Asri, S.; Laghzizil, A.; Saoiabi, A.; Alaoui, A.; El Abassi, K.; M’hamdi, R.; Coradin, T. A novel process for the fabrication of
nanoporous apatites from Moroccan phosphate rock. Colloid Surf. A 2009, 350, 73–78. [CrossRef]

542. Raksujarit, A.; Pengpat, K.; Rujijanagul, G.; Tunkasiri, T. Processing and properties of nanoporous hydroxyapatite ceramics.
Mater. Des. 2010, 31, 1658–1660. [CrossRef]

543. Ramli, R.A.; Adnan, R.; Bakar, M.A.; Masudi, S.M. Synthesis and characterisation of pure nanoporous hydroxyapatite. J. Phys. Sci.
2011, 22, 25–37.

http://doi.org/10.1016/j.materresbull.2007.06.034
http://doi.org/10.2109/jcersj2.118.753
http://doi.org/10.4028/www.scientific.net/KEM.441.155
http://doi.org/10.2109/jcersj2.119.573
http://doi.org/10.1111/j.1551-2916.2011.04904.x
http://doi.org/10.1111/j.1551-2916.2012.05121.x
http://doi.org/10.4028/www.scientific.net/JBBTE.19.65
http://doi.org/10.4028/www.scientific.net/KEM.587.52
http://doi.org/10.1179/1743676114Y.0000000213
http://doi.org/10.1016/j.materresbull.2014.12.072
http://doi.org/10.1016/j.jeurceramsoc.2016.06.005
http://doi.org/10.1038/247220a0
http://doi.org/10.1007/s11706-013-0204-x
http://doi.org/10.1016/j.cej.2011.07.029
http://doi.org/10.1039/b900333a
http://doi.org/10.4028/www.scientific.net/AMR.891-892.1559
http://doi.org/10.1163/156856208784089571
http://doi.org/10.1111/j.1551-2916.2006.01044.x
http://doi.org/10.1007/s10856-005-6988-1
http://doi.org/10.1097/BSD.0b013e31823db5e6
http://doi.org/10.1016/j.biomaterials.2010.01.052
http://doi.org/10.1016/j.materresbull.2007.08.008
http://doi.org/10.1016/j.colsurfa.2009.09.006
http://doi.org/10.1016/j.matdes.2009.06.050


Coatings 2022, 12, 1380 75 of 89

544. LeGeros, R.Z. Calcium phosphate-based osteoinductive materials. Chem. Rev. 2008, 108, 4742–4753. [CrossRef] [PubMed]
545. Prokopiev, O.; Sevostianov, I. Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature.

Mater. Sci. Eng. A 2006, 431, 218–227. [CrossRef]
546. Daculsi, G.; Jegoux, F.; Layrolle, P. The micro macroporous biphasic calcium phosphate concept for bone reconstruction and tissue

engineering. In Advanced Biomaterials: Fundamentals, Processing and Applications; Basu, B., Katti, D.S., Kumar, A., Eds.; American
Ceramic Society: Columbus, OH, USA; Wiley: Hoboken, NJ, USA, 2009; p. 768.

547. Shipman, P.; Foster, G.; Schoeninger, M. Burnt bones and teeth: An experimental study of color, morphology, crystal structure and
shrinkage. J. Archaeol. Sci. 1984, 11, 307–325. [CrossRef]

548. Rice, R.W. Porosity of Ceramics; Marcel Dekker: New York, NY, USA, 1998; p. 560.
549. Fan, J.; Lei, J.; Yu, C.; Tu, B.; Zhao, D. Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics

and their capacity as antibiotic carriers. Mater. Chem. Phys. 2007, 103, 489–493. [CrossRef]
550. Hsu, Y.H.; Turner, I.G.; Miles, A.W. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of

cortical and cancellous bone. J. Mater. Sci. Mater. Med. 2007, 18, 2251–2256. [CrossRef] [PubMed]
551. Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A.P. Porous ceramic scaffolds with complex architectures. JOM 2008,

60, 54–59. [CrossRef]
552. Naqshbandi, A.R.; Sopyan, I.; Gunawan. Development of porous calcium phosphate bioceramics for bone implant applications:

A review. Rec. Pat. Mater. Sci. 2013, 6, 238–252.
553. Jodati, H.; Yılmaz, B.; Evis, Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features.

Ceram. Int. 2020, 46, 15725–15739. [CrossRef]
554. Yan, X.; Yu, C.; Zhou, X.; Tang, J.; Zhao, D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming

bioactivities. Angew. Chem. Int. Ed. Engl. 2004, 43, 5980–5984. [CrossRef] [PubMed]
555. Barba, A.; Maazouz, Y.; Diez-Escudero, A.; Rappe, K.; Espanol, M.; Montufar, E.B.; Öhman-Mägi, C.; Persson, C.; Fontecha, P.;

Manzanares, M.C.; et al. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore
architecture. Acta Biomater. 2018, 79, 135–147. [CrossRef] [PubMed]

556. Cosijns, A.; Vervaet, C.; Luyten, J.; Mullens, S.; Siepmann, F.; van Hoorebeke, L.; Masschaele, B.; Cnudde, V.; Remon, J.P. Porous
hydroxyapatite tablets as carriers for low-dosed drugs. Eur. J. Pharm. Biopharm. 2007, 67, 498–506. [CrossRef]

557. Uchida, A.; Shinto, Y.; Araki, N.; Ono, K. Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J. Orthop.
Res. 1992, 10, 440–445. [CrossRef]

558. Shinto, Y.; Uchida, A.; Korkusuz, F.; Araki, N.; Ono, K. Calcium hydroxyapatite ceramic used as a delivery system for antibiotics.
J. Bone. Joint. Surg. Br. 1992, 74, 600–604. [CrossRef]

559. Martin, R.B.; Chapman, M.W.; Sharkey, N.A.; Zissimos, S.L.; Bay, B.; Shors, E.C. Bone ingrowth and mechanical properties of
coralline hydroxyapatite 1 yr after implantation. Biomaterials 1993, 14, 341–348. [CrossRef]

560. Kazakia, G.J.; Nauman, E.A.; Ebenstein, D.M.; Halloran, B.P.; Keaveny, T.M. Effects of in vitro bone formation on the mechanical
properties of a trabeculated hydroxyapatite bone substitute. J. Biomed. Mater. Res. A 2006, 77A, 688–699. [CrossRef]

561. Hing, K.A.; Best, S.M.; Tanner, K.E.; Bonfield, W.; Revell, P.A. Mediation of bone ingrowth in porous hydroxyapatite bone graft
substitutes. J. Biomed. Mater. Res. A 2004, 68A, 187–200. [CrossRef]

562. Vuola, J.; Taurio, R.; Goransson, H.; Asko-Seljavaara, S. Compressive strength of calcium carbonate and hydroxyapatite implants
after bone marrow induced osteogenesis. Biomaterials 1998, 19, 223–227. [CrossRef]

563. Von Doernberg, M.C.; von Rechenberg, B.; Bohner, M.; Grünenfelder, S.; van Lenthe, G.H.; Müller, R.; Gasser, B.; Mathys, R.;
Baroud, G.; Auer, J. In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 2006, 27, 5186–5198.
[CrossRef]

564. Mygind, T.; Stiehler, M.; Baatrup, A.; Li, H.; Zou, X.; Flyvbjerg, A.; Kassem, M.; Bunger, C. Mesenchymal stem cell ingrowth and
differentiation on coralline hydroxyapatite scaffolds. Biomaterials 2007, 28, 1036–1047. [CrossRef]

565. Mankani, M.H.; Afghani, S.; Franco, J.; Launey, M.; Marshall, S.; Marshall, G.W.; Nissenson, R.; Lee, J.; Tomsia, A.P.; Saiz, E.
Lamellar spacing in cuboid hydroxyapatite scaffolds regulates bone formation by human bone marrow stromal cells. Tissue Eng.
A 2011, 17, 1615–1623. [CrossRef]

566. Chan, O.; Coathup, M.J.; Nesbitt, A.; Ho, C.Y.; Hing, K.A.; Buckland, T.; Campion, C.; Blunn, G.W. The effects of microporosity on
osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomater. 2012, 8, 2788–2794. [CrossRef]

567. Holmes, R.E. Bone regeneration within a coralline hydroxyapatite implant. Plast. Reconstr. Surg. 1979, 63, 626–633. [CrossRef]
568. Tsuruga, E.; Takita, H.; Wakisaka, Y.; Kuboki, Y. Pore size of porous hydoxyapatite as the cell-substratum controls BMP-induced

osteogenesis. J. Biochem. 1997, 121, 317–324. [CrossRef]
569. LeGeros, R.Z.; LeGeros, J.P. Calcium phosphate bioceramics: Past, present, future. Key Eng. Mater. 2003, 240–242, 3–10. [CrossRef]
570. Woodard, J.R.; Hilldore, A.J.; Lan, S.K.; Park, C.J.; Morgan, A.W.; Eurell, J.A.C.; Clark, S.G.; Wheeler, M.B.; Jamison, R.D.;

Wagoner Johnson, A.J. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale
porosity. Biomaterials 2007, 28, 45–54. [CrossRef] [PubMed]

571. Jacovella, P.F.; Peiretti, C.B.; Cunille, D.; Salzamendi, M.; Schechtel, S.A. Long-lasting results with hydroxylapatite (Radiesse)
facial filler. Plast. Reconstr. Surg. 2006, 118, 15S–21S. [CrossRef] [PubMed]

572. Rustom, L.E.; Poellmann, M.J.; Wagoner Johnson, A.J. Mineralization in micropores of calcium phosphate scaffolds. Acta Biomater.
2019, 83, 435–455. [CrossRef] [PubMed]

http://doi.org/10.1021/cr800427g
http://www.ncbi.nlm.nih.gov/pubmed/19006399
http://doi.org/10.1016/j.msea.2006.05.158
http://doi.org/10.1016/0305-4403(84)90013-X
http://doi.org/10.1016/j.matchemphys.2007.02.069
http://doi.org/10.1007/s10856-007-3126-2
http://www.ncbi.nlm.nih.gov/pubmed/17562138
http://doi.org/10.1007/s11837-008-0072-5
http://doi.org/10.1016/j.ceramint.2020.03.192
http://doi.org/10.1002/anie.200460598
http://www.ncbi.nlm.nih.gov/pubmed/15547911
http://doi.org/10.1016/j.actbio.2018.09.003
http://www.ncbi.nlm.nih.gov/pubmed/30195084
http://doi.org/10.1016/j.ejpb.2007.02.018
http://doi.org/10.1002/jor.1100100317
http://doi.org/10.1302/0301-620X.74B4.1320622
http://doi.org/10.1016/0142-9612(93)90052-4
http://doi.org/10.1002/jbm.a.30644
http://doi.org/10.1002/jbm.a.10050
http://doi.org/10.1016/S0142-9612(97)00211-1
http://doi.org/10.1016/j.biomaterials.2006.05.051
http://doi.org/10.1016/j.biomaterials.2006.10.003
http://doi.org/10.1089/ten.tea.2010.0573
http://doi.org/10.1016/j.actbio.2012.03.038
http://doi.org/10.1097/00006534-197905000-00004
http://doi.org/10.1093/oxfordjournals.jbchem.a021589
http://doi.org/10.4028/www.scientific.net/KEM.240-242.3
http://doi.org/10.1016/j.biomaterials.2006.08.021
http://www.ncbi.nlm.nih.gov/pubmed/16963118
http://doi.org/10.1097/01.prs.0000234902.61284.c9
http://www.ncbi.nlm.nih.gov/pubmed/16936540
http://doi.org/10.1016/j.actbio.2018.11.003
http://www.ncbi.nlm.nih.gov/pubmed/30408560


Coatings 2022, 12, 1380 76 of 89

573. Dubok, V.A. Bioceramics–yesterday, today, tomorrow. Powder Metall. Met. Ceram. 2000, 39, 381–394. [CrossRef]
574. Heness, G.; Ben-Nissan, B. Innovative bioceramics. Mater. Forum 2004, 27, 104–114.
575. Williams, D.F. There is no such thing as a biocompatible material. Biomaterials 2014, 35, 10009–10014. [CrossRef]
576. Punj, S.; Singh, J.; Singh, K. Ceramic biomaterials: Properties, state of the art and future prospectives. Ceram. Int. 2021, 47,

28059–28074. [CrossRef]
577. Greenspan, D.C. Bioactive ceramic implant materials. Curr. Opin. Solid State Mater. Sci. 1999, 4, 389–393. [CrossRef]
578. Blokhuis, T.J.; Termaat, M.F.; den Boer, F.C.; Patka, P.; Bakker, F.C.; Haarman, H.J.T.M. Properties of calcium phosphate ceramics

in relation to their in vivo behavior. J. Trauma 2000, 48, 179–189. [CrossRef]
579. Kim, H.M. Bioactive ceramics: Challenges and perspectives. J. Ceram. Soc. Jpn. 2001, 109, S49–S57. [CrossRef]
580. Seeley, Z.; Bandyopadhyay, A.; Bose, S. Tricalcium phosphate based resorbable ceramics: Influence of NaF and CaO addition.

Mater. Sci. Eng. C 2008, 28, 11–17. [CrossRef]
581. Descamps, M.; Richart, O.; Hardouin, P.; Hornez, J.C.; Leriche, A. Synthesis of macroporous β-tricalcium phosphate with

controlled porous architectural. Ceram. Int. 2008, 34, 1131–1137. [CrossRef]
582. Cushnie, E.K.; Khan, Y.M.; Laurencin, C.T. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration:

Physical characterization studies. J. Biomed. Mater. Res. A 2008, 84A, 54–62. [CrossRef]
583. Hench, L.L.; Thompson, I. Twenty-first century challenges for biomaterials. J. R. Soc. Interface 2010, 7, S379–S391. [CrossRef]
584. Nagase, M.; Baker, D.G.; Schumacher, H.R. Prolonged inflammatory reactions induced by artificial ceramics in the rat pouch

model. J. Rheumatol. 1988, 15, 1334–1338.
585. Rooney, T.; Berman, S.; Indersano, A.T. Evaluation of porous block hydroxylapatite for augmentation of alveolar ridges. J. Oral

Maxillofac. Surg. 1988, 46, 15–18. [CrossRef]
586. Prudhommeaux, F.; Schiltz, C.; Lioté, F.; Hina, A.; Champy, R.; Bucki, B.; Ortiz-Bravo, E.; Meunier, A.; Rey, C.; Bardin, T. Variation

in the inflammatory properties of basic calcium phosphate crystals according to crystal type. Arthritis Rheum. 1996, 39, 1319–1326.
[CrossRef]

587. Ghanaati, S.; Barbeck, M.; Orth, C.; Willershausen, I.; Thimm, B.W.; Hoffmann, C.; Rasic, A.; Sader, R.A.; Unger, R.E.;
Peters, F.; et al. Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater.
2010, 6, 4476–4487. [CrossRef]

588. Lin, K.; Yuan, W.; Wang, L.; Lu, J.; Chen, L.; Wang, Z.; Chang, J. Evaluation of host inflammatory responses of β-tricalcium
phosphate bioceramics caused by calcium pyrophosphate impurity using a subcutaneous model. J. Biomed. Mater. Res. B Appl.
Biomater. 2011, 99B, 350–358. [CrossRef]

589. Velard, F.; Braux, J.; Amedee, J.; Laquerriere, P. Inflammatory cell response to calcium phosphate biomaterial particles: An
overview. Acta Biomater. 2013, 9, 4956–4963. [CrossRef] [PubMed]

590. Rydén, L.; Molnar, D.; Esposito, M.; Johansson, A.; Suska, F.; Palmquist, A.; Thomsen, P. Early inflammatory response in soft
tissues induced by thin calcium phosphates. J. Biomed. Mater. Res. A 2013, 101A, 2712–2717. [CrossRef] [PubMed]

591. Chatterjea, A.; van der Stok, J.; Danoux, C.B.; Yuan, H.; Habibovic, P.; van Blitterswijk, C.A.; Weinans, H.; de Boer, J. Inflammatory
response and bone healing capacity of two porous calcium phosphate ceramics in a critical size cortical bone defects. J. Biomed.
Mater. Res. A 2014, 102A, 1399–1407. [CrossRef]

592. Friesenbichler, J.; Maurer-Ertl, W.; Sadoghi, P.; Pirker-Fruehauf, U.; Bodo, K.; Leithner, A. Adverse reactions of artificial bone graft
substitutes: Lessons learned from using tricalcium phosphate geneX®. Clin. Orthop. Relat. Res. 2014, 472, 976–982. [CrossRef]
[PubMed]

593. Chang, T.Y.; Pan, S.C.; Huang, Y.H.; Hsueh, Y.Y. Blindness after calcium hydroxylapatite injection at nose. J. Plast. Reconstr.
Aesthet. Surg. 2014, 67, 1755–1757. [CrossRef]

594. Ghanaati, S.; Barbeck, M.; Detsch, R.; Deisinger, U.; Hilbig, U.; Rausch, V.; Sader, R.; Unger, R.E.; Ziegler, G.; Kirkpatrick, C.J. The
chemical composition of synthetic bone substitutes influences tissue reactions in vivo: Histological and histomorphometrical
analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate
ceramics. Biomed. Mater. 2012, 7, 015005.

595. Draenert, K.; Draenert, M.; Erler, M.; Draenert, A.; Draenert, Y. How bone forms in large cancellous defects: Critical analysis
based on experimental work and literature. Injury 2011, 42 (Suppl. 2), S47–S55. [CrossRef]

596. Albrektsson, T.; Johansson, C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine. J. 2001, 10, S96–S101.
597. Yuan, H.; Kurashina, K.; de Bruijn, D.J.; Li, Y.; de Groot, K.; Zhang, X. A preliminary study of osteoinduction of two kinds of

calcium phosphate bioceramics. Biomaterials 1999, 20, 1799–1806. [CrossRef]
598. Yuan, H.P.; de Bruijn, J.D.; Li, Y.B.; Feng, J.Q.; Yang, Z.J.; de Groot, K.; Zhang, X.D. Bone formation induced by calcium phosphate

ceramics in soft tissue of dogs: A comparative study between porous α-TCP and β-TCP. J. Mater. Sci. Mater. Med. 2001, 12, 7–13.
[CrossRef]

599. Barrere, F.; van der Valk, C.M.; Dalmeijer, R.A.; Meijer, G.; van Blitterswijk, C.A.; de Groot, K.; Layrolle, P. Osteogenecity of
octacalcium phosphate coatings applied on porous metal implants. J. Biomed. Mater. Res. A 2003, 66A, 779–788. [CrossRef]

600. Habibovic, P.; van der Valk, C.M.; van Blitterswijk, C.A.; de Groot, K.; Meijer, G. Influence of octacalcium phosphate coating on
osteoinductive properties of biomaterials. J. Mater. Sci. Mater. Med. 2004, 15, 373–380. [CrossRef]

601. Ripamonti, U.; Richter, P.W.; Nilen, R.W.; Renton, L. The induction of bone formation by smart biphasic hydroxyapatite tricalcium
phosphate biomimetic matrices in the non human primate Papio ursinus. J. Cell. Mol. Med. 2008, 12, 2609–2621. [CrossRef]

http://doi.org/10.1023/A:1026617607548
http://doi.org/10.1016/j.biomaterials.2014.08.035
http://doi.org/10.1016/j.ceramint.2021.06.238
http://doi.org/10.1016/S1359-0286(99)00021-2
http://doi.org/10.1097/00005373-200001000-00037
http://doi.org/10.2109/jcersj.109.1268_S49
http://doi.org/10.1016/j.msec.2006.12.010
http://doi.org/10.1016/j.ceramint.2007.01.004
http://doi.org/10.1002/jbm.a.31380
http://doi.org/10.1098/rsif.2010.0151.focus
http://doi.org/10.1016/0278-2391(88)90294-7
http://doi.org/10.1002/art.1780390809
http://doi.org/10.1016/j.actbio.2010.07.006
http://doi.org/10.1002/jbm.b.31906
http://doi.org/10.1016/j.actbio.2012.09.035
http://www.ncbi.nlm.nih.gov/pubmed/23036944
http://doi.org/10.1002/jbm.a.34571
http://www.ncbi.nlm.nih.gov/pubmed/23463679
http://doi.org/10.1002/jbm.a.34815
http://doi.org/10.1007/s11999-013-3305-z
http://www.ncbi.nlm.nih.gov/pubmed/24078171
http://doi.org/10.1016/j.bjps.2014.06.012
http://doi.org/10.1016/j.injury.2011.06.007
http://doi.org/10.1016/S0142-9612(99)00075-7
http://doi.org/10.1023/A:1026792615665
http://doi.org/10.1002/jbm.a.10454
http://doi.org/10.1023/B:JMSM.0000021104.42685.9f
http://doi.org/10.1111/j.1582-4934.2008.00312.x


Coatings 2022, 12, 1380 77 of 89

602. Cheng, L.; Ye, F.; Yang, R.; Lu, X.; Shi, Y.; Li, L.; Fan, H.; Bu, H. Osteoinduction of hydroxyapatite/β-tricalcium phosphate
bioceramics in mice with a fractured fibula. Acta Biomater. 2010, 6, 1569–1574. [CrossRef]

603. Yuan, H.; Fernandes, H.; Habibovic, P.; de Boer, J.; Barradas, A.M.C.; de Ruiter, A.; Walsh, W.R.; van Blitterswijk, C.A.; de
Bruijn, J.D. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl. Acad. Sci. USA 2010, 107,
13614–13619. [CrossRef]

604. Barradas, A.M.; Yuan, H.; van der Stok, J.; le Quang, B.; Fernandes, H.; Chaterjea, A.; Hogenes, M.C.; Shultz, K.; Donahue, L.R.;
van Blitterswijk, C.; et al. The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice.
Biomaterials 2012, 33, 5696–5705. [CrossRef]

605. Li, B.; Liao, X.; Zheng, L.; Zhu, X.; Wang, Z.; Fan, H.; Zhang, X. Effect of nanostructure on osteoinduction of porous biphasic
calcium phosphate ceramics. Acta Biomater. 2012, 8, 3794–3804. [CrossRef]

606. Cheng, L.; Shi, Y.; Ye, F.; Bu, H. Osteoinduction of calcium phosphate biomaterials in small animals. Mater. Sci. Eng. C 2013, 33,
1254–1260. [CrossRef]

607. Davison, N.L.; Gamblin, A.L.; Layrolle, P.; Yuan, H.; de Bruijn, J.D.; Barrère-de Groot, F. Liposomal clodronate inhibition
of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate. Biomaterials 2014, 35, 5088–5097.
[CrossRef]

608. Wang, L.; Barbieri, D.; Zhou, H.; de Bruijn, J.D.; Bao, C.; Yuan, H. Effect of particle size on osteoinductive potential of microstruc-
tured biphasic calcium phosphate ceramic. J. Biomed. Mater. Res. A 2015, 103A, 1919–1929. [CrossRef]

609. He, Y.; Peng, Y.; Liu, L.; Hou, S.; Mu, J.; Lan, L.; Cheng, L.; Shi, Z. The relationship between osteoinduction and vascularization:
Comparing the ectopic bone formation of five different calcium phosphate biomaterials. Materials 2022, 15, 3440. [CrossRef]

610. Yuan, H.; Barbieri, D.; Luo, X.; van Blitterswijk, C.A.; de Bruijn, J.D. Calcium phosphates and bone induction. In Comprehensive
Biomaterials II; Chapter 1.14; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 339–349.

611. Murata, M.; Hino, J.; Kabir, M.A.; Yokozeki, K.; Sakamoto, M.; Nakajima, T.; Akazawa, T. Osteoinduction in novel micropores of
partially dissolved and precipitated hydroxyapatite block in scalp of young rats. Materials 2021, 14, 196. [CrossRef]

612. Iaquinta, M.R.; Torreggiani, E.; Mazziotta, C.; Ruffini, A.; Sprio, S.; Tampieri, A.; Tognon, M.; Martini, F.; Mazzoni, E. In vitro
osteoinductivity assay of hydroxylapatite scaffolds, obtained with biomorphic transformation processes, assessed using human
adipose stem cell cultures. Int. J. Mol. Sci. 2021, 22, 7092. [CrossRef]

613. Habibovic, P.; Yuan, H.; van der Valk, C.M.; Meijer, G.; van Blitterswijk, C.A.; de Groot, K. 3D microenvironment as essential
element for osteoinduction by biomaterials. Biomaterials 2005, 26, 3565–3575. [CrossRef]

614. Habibovic, P.; Sees, T.M.; van den Doel, M.A.; van Blitterswijk, C.A.; de Groot, K. Osteoinduction by biomaterials–physicochemical
and structural influences. J. Biomed. Mater. Res. A 2006, 77A, 747–762. [CrossRef] [PubMed]

615. Reddi, A.H. Morphogenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells and biomimetic biomateri-
als. Tissue Eng. 2000, 6, 351–359. [CrossRef] [PubMed]

616. Ripamonti, U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained by conversion of calcium carbonate
exoskeletons of coral. J. Bone Joint Surg. A 1991, 73, 692–703. [CrossRef]

617. Kuboki, Y.; Takita, H.; Kobayashi, D. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and
nonfeasible structures: Topology of osteogenesis. J. Biomed. Mater. Res. 1998, 39, 190–199. [CrossRef]

618. Zhang, J.; Luo, X.; Barbieri, D.; Barradas, A.M.C.; de Bruijn, J.D.; van Blitterswijk, C.A.; Yuan, H. The size of surface microstructures
as an osteogenic factor in calcium phosphate ceramics. Acta Biomater. 2014, 10, 3254–3263. [CrossRef]

619. Zhang, J.; Barbieri, D.; Ten Hoopen, H.; de Bruijn, J.D.; van Blitterswijk, C.A.; Yuan, H. Microporous calcium phosphate ceramics
driving osteogenesis through surface architecture. J. Biomed. Mater. Res. A 2015, 103A, 1188–1199. [CrossRef]

620. Xiao, D.; Zhang, J.; Zhang, C.; Barbieri, D.; Yuan, H.; Moroni, L.; Feng, G. The role of calcium phosphate surface structure in
osteogenesis and the mechanisms involved. Acta Biomater. 2020, 106, 22–33. [CrossRef]

621. Daskalova, A.; Angelova, L.; Trifonov, A.; Lasgorceix, M.; Hocquet, S.; Minne, M.; Declercq, H.; Leriche, A.; Aceti, D.; Buchvarov, I.
Development of femtosecond laser-engineered β-tricalcium phosphate (β-TCP) biomimetic templates for orthopaedic tissue
engineering. Appl. Sci. 2021, 11, 2565. [CrossRef]

622. Diaz-Flores, L.; Gutierrez, R.; Lopez-Alonso, A.; Gonzalez, R.; Varela, H. Pericytes as a supplementary source of osteoblasts in
periosteal osteogenesis. Clin. Orthop. Relat. Res. 1992, 275, 280–286. [CrossRef]

623. Bohner, M.; Miron, R.J. A proposed mechanism for material-induced heterotopic ossification. Mater. Today 2019, 22, 132–141.
[CrossRef]

624. Boyan, B.D.; Schwartz, Z. Are calcium phosphate ceramics ‘smart’ biomaterials? Nat. Rev. Rheumatol. 2011, 7, 8–9. [CrossRef]
625. Li, X.; Ma, B.; Li, J.; Shang, L.; Liu, H.; Ge, S. A method to visually observe the degradation-diffusion-reconstruction behavior of

hydroxyapatite in the bone repair process. Acta Biomater. 2020, 101, 554–564. [CrossRef]
626. Lu, J.; Descamps, M.; Dejou, J.; Koubi, G.; Hardouin, P.; Lemaitre, J.; Proust, J.P. The biodegradation mechanism of calcium

phosphate biomaterials in bone. J. Biomed. Mater. Res. Appl. Biomater. 2002, 63, 408–412. [CrossRef]
627. Wang, H.; Lee, J.K.; Moursi, A.; Lannutti, J.J. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J. Biomed. Mater.

Res. A 2003, 67A, 599–608. [CrossRef]
628. Dorozhkin, S.V. Inorganic chemistry of the dissolution phenomenon, the dissolution mechanism of calcium apatites at the atomic

(ionic) level. Comments Inorg. Chem. 1999, 20, 285–299. [CrossRef]

http://doi.org/10.1016/j.actbio.2009.10.050
http://doi.org/10.1073/pnas.1003600107
http://doi.org/10.1016/j.biomaterials.2012.04.021
http://doi.org/10.1016/j.actbio.2012.06.021
http://doi.org/10.1016/j.msec.2012.12.023
http://doi.org/10.1016/j.biomaterials.2014.03.013
http://doi.org/10.1002/jbm.a.35325
http://doi.org/10.3390/ma15103440
http://doi.org/10.3390/ma14010196
http://doi.org/10.3390/ijms22137092
http://doi.org/10.1016/j.biomaterials.2004.09.056
http://doi.org/10.1002/jbm.a.30712
http://www.ncbi.nlm.nih.gov/pubmed/16557498
http://doi.org/10.1089/107632700418074
http://www.ncbi.nlm.nih.gov/pubmed/10992432
http://doi.org/10.2106/00004623-199173050-00007
http://doi.org/10.1002/(SICI)1097-4636(199802)39:2&lt;190::AID-JBM4&gt;3.0.CO;2-K
http://doi.org/10.1016/j.actbio.2014.03.021
http://doi.org/10.1002/jbm.a.35272
http://doi.org/10.1016/j.actbio.2019.12.034
http://doi.org/10.3390/app11062565
http://doi.org/10.1097/00003086-199202000-00042
http://doi.org/10.1016/j.mattod.2018.10.036
http://doi.org/10.1038/nrrheum.2010.210
http://doi.org/10.1016/j.actbio.2019.10.044
http://doi.org/10.1002/jbm.10259
http://doi.org/10.1002/jbm.a.10538
http://doi.org/10.1080/02603599908021447


Coatings 2022, 12, 1380 78 of 89

629. Dorozhkin, S.V. Dissolution mechanism of calcium apatites in acids: A review of literature. World J. Methodol. 2012, 2, 1–17.
[CrossRef]

630. Sakai, S.; Anada, T.; Tsuchiya, K.; Yamazaki, H.; Margolis, H.C.; Suzuki, O. Comparative study on the resorbability and dissolution
behavior of octacalcium phosphate, β-tricalcium phosphate, and hydroxyapatite under physiological conditions. Dent. Mater. J.
2016, 35, 216–224. [CrossRef] [PubMed]

631. Wenisch, S.; Stahl, J.P.; Horas, U.; Heiss, C.; Kilian, O.; Trinkaus, K.; Hild, A.; Schnettler, R. In vivo mechanisms of hydroxyapatite
ceramic degradation by osteoclasts: Fine structural microscopy. J. Biomed. Mater. Res. A 2003, 67A, 713–718. [CrossRef] [PubMed]

632. Riihonen, R.; Nielsen, S.; Väänänen, H.K.; Laitala-Leinonen, T.; Kwon, T.H. Degradation of hydroxyapatite in vivo and in vitro
requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biol. 2010, 29, 287–294. [CrossRef] [PubMed]

633. Meille, S.; Gallo, M.; Clément, P.; Tadier, S.; Chevalier, J. Spherical instrumented indentation as a tool to characterize porous
bioceramics and their resorption. J. Eur. Ceram. Soc. 2019, 39, 4459–4472. [CrossRef]

634. Teitelbaum, S.L. Bone resorption by osteoclasts. Science 2000, 289, 1504–1508. [CrossRef]
635. Matsunaga, A.; Takami, M.; Irié, T.; Mishima, K.; Inagaki, K.; Kamijo, R. Microscopic study on resorption of β-tricalcium

phosphate materials by osteoclasts. Cytotechnology 2015, 67, 727–732. [CrossRef]
636. Narducci, P.; Nicolin, V. Differentiation of activated monocytes into osteoclast-like cells on a hydroxyapatite substrate: An in vitro

study. Ann. Anat. 2009, 191, 349–355. [CrossRef]
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