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Abstract: This review reports recently published research related to the application of polysaccharide-
based biodegradable and edible coatings (BECs) fortified with bioactive compounds obtained from
plant essential oils (EOs) and phenolic compounds of plant extracts. Combinations of polysaccharides
such as starches, pectin, alginate, cellulose derivatives, and chitosan with active compounds obtained
from clove, lemon, cinnamon, lavender, oregano, and peppermint have been documented as potential
candidates for biologically active coating materials for retardation of quality changes in fresh fruits.
Additionally, polysaccharide-based active coatings supplemented with plant extracts such as cashew
leaves, pomegranate peel, red roselle, apple fiber, and green tea extracts rich in phenolic compounds
and their derivatives have been reported to be excellent substituents to replace chemically formulated
wax coatings. Moreover, EOs and plant polyphenolics including alcohols, aldehydes, ketones phenols,
organic acids, terpenes, and esters contain hydroxyl functional groups that contribute bioactivity to
BECs against oxidation and reduction of microbial load in fresh fruits. Therefore, BECs enriched with
active compounds from EOs and plant extracts minimize physiological and microbial deterioration by
reducing moisture loss, softening of flesh, ripening, and decay caused by pathogenic bacterial strains,
mold, or yeast rots, respectively. As a result, shelf life of fresh fruits can be extended by employing
active polysaccharide coatings supplemented with EOs and plant extracts prior to postharvest storage.

Keywords: coating; polysaccharide; bioactivity; essential oil; plant extract; polyphenols; antimicrobial;
antioxidant

1. Introduction

Fresh fruits containing essential nutrients, vitamins, and minerals are consumed world-
wide in part because of their strong antioxidant potential against chronic diseases [1]. Fresh
fruit packaging materials after single use are disposed of in the environment. The applica-
tion of synthetic and non-biodegradable polymer-tailored packaging materials for fresh
fruit has raised potentially alarming consequences for the environment [2]. Conventional
packaging materials such as glass, wood, aluminum, tin, and paper have been employed as
fresh fruit containers to prevent mechanical damage during bulk transportation [3]. The
innovative designs of synthetic packaging materials have been of great convenience to
customers in supermarkets [4]. Synthetic packaging materials used for fruits may lack the
optimum oxygen and moisture barrier properties to maintain their postharvest quality in
the markets [5]. Additionally, the production of synthetic packaging materials may directly
have an impact on the sustainability of non-renewable petroleum-based resources [6].

Fresh fruits typically have a short postharvest shelf life due to ongoing physiological
and biochemical changes occurring in the living tissues until consumption [7]. Mechan-
ical damages and pathological changes during improper handling and transportation
have been associated with heavy economic losses [8]. Conventional synthetic waxes and
chemical fungicides have been used as postharvest treatments to minimize losses in fresh
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fruits. These materials have been reported to cause health and environmental concerns [9].
Chemical-based coatings fortified with synthetic antimicrobial additives have been as-
sociated with the antimicrobial resistance of food borne pathogenic strains. Taking all
the research challenges into consideration, the novel idea of active food coatings com-
posed of polysaccharides supplemented with natural essential oils, phenolics, and active
nanoparticles has been an effective adjunct to conventional postharvest treatments of fresh
fruits [10]. Because several polysaccharides have limited barrier and mechanical properties
even after the addition of bioactive compounds, the inclusion of inorganic clays [11] or
nanoparticles [12] has been proposed.

During the past decade, several findings reported applications of natural and biodegrad-
able edible coatings that have proven to be sustainable alternatives with excellent barrier
properties compared to synthetic plastic packaging commonly used in the market [13]. Edible
coating materials employed consisted of a wide range of plant or crustacean-based polysac-
charides [14]. Hydrocolloid-based coating forming solutions prepared from starches, pectin,
alginate, carboxymethyl cellulose, and chitosan have been applied to delay ripening and
prevent senescence or detachment of fruit skin during postharvest storage [15]. In addition to
plasticizers, emulsifiers, surfactants, and hydrophobic materials, the use of inorganic clays [11]
or nanoparticles [12] have also been proposed.

Essential oils (EOs) have been incorporated as active ingredients in polysaccharide-
based coating materials against oxidation of vital nutrients and bacterial and fungal growth.
EOs from different herbs such as clove, lemon, cinnamon, tea tree, lavender, oregano,
and peppermint are a source of diverse bioactive compounds with higher antimicrobial
efficacy for the preparation of active food coating materials employed in fresh fruits [16].
Bioactivity of EOs has been documented because of antioxidant and antimicrobial functional
groups present such as monoterpenes, flavonoids, aldehydes, isoflavones, carotenoids, and
phenolic compounds that exhibit numerous nutraceutical properties [17]. EOs incorporated
in the polysaccharide coating materials to extend the shelf life of fresh fruits have generated
tremendous interest and are generally recognized as safe food coating additives [18].
EOs incorporated in polysaccharide-based coating materials may result in a hydrophobic
film on the coated fruits to reduce loss of weight and firmness [19]. Biodegradable and
edible coatings (BECs) containing EOs may also suppress several hormonal and enzymatic
reactions triggered by contact with atmospheric oxygen during postharvest storage of
fruit [20]. In addition to physiochemical quality preservation, EOs have been investigated
to provide protection against a broad spectrum of food-borne spoilage and pathogenic
microorganisms [21].

The use of plant extracts containing alcohols, aldehydes, ketones phenols, organic
acids, esters, and terpenes as active coating additives has tremendous scope in the preser-
vation of postharvest physical, oxidative, and microbial quality of fresh fruits [22,23].
Phytochemical polyphenols comprising multiple hydroxyl functional groups attached to
benzene rings have been supplemented in different polysaccharide edible coatings [10].
Plant extracts such as pomegranate peel and pineapple extracts incorporated in cassava
starch, alginate, and chitosan coatings have been documented to safeguard the postharvest
quality of fruits [24]. Furthermore, the bioactive properties of plant-derived natural essen-
tial oils and polyphenols along with polysaccharides have been exploited in the preparation
of emulsion-based active coatings to combat the postharvest losses of in fruits [25]. EOs
and plant extracts containing bioactive compounds have been reported as potential substi-
tutes for chemical additives to ensure food quality and safety of fruits during postharvest
storage [26]. Therefore, this review reports the different polysaccharide-based coatings
fortified with plant EOs and phytochemical extracts with bioactive properties to prolong
the postharvest shelf life of fresh fruits. The review also emphasizes the beneficial effects of
the aforementioned eco-friendly coatings on the physical, biochemical, and microbiological
quality of fresh fruits. Thus, the heavy losses in the horticulture sector in the future could
be prevented leading to the sustainable development of a green economy.
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2. Postharvest Quality Constraints of Fresh Fruits

Fruits are commonly harvested on the basis of conventional extrinsic factors such as
firmness, color, size, and shape. More recently, intrinsic factors such as nutritional and
functional attributes have been considered, including minerals, vitamins, dietary fibers,
and other polyphenolic constituents that exhibit beneficial health properties [27]. During
postharvest handling, transportation, and bulk storage, fruits may be highly susceptible to
biological and/or mechanical hazards that can affect both intrinsic and extrinsic factors [28].
In addition to improper postharvest handling of fruits, mechanical vibrations may affect the
fruit quality during transportation, triggering heavy losses during longer storage periods.
The quality problems that emerge in metabolically active fruits during postharvest storage
include physiological deterioration and microbial deterioration as evidenced by moisture
loss, softening of flesh, ripening, and decay caused by pathogenic bacterial strains, molds,
or yeast rots [27,29].

Microbial and Biochemical Causes of Deterioration in Fresh Fruits

Fruits after harvesting from the field may be contaminated with pathogenic microbes,
insects, and pests. Fresh fruits in unprocessed and raw form contain infectious germs on
the skin of fruits that can lead to food borne diseases [30]. The microbial population is an
important factor in considering the quality of the food product [31]. The low pH fruits,
like ripe tomatoes, in a pH range (3.9–4.5) could inhibit the human intestinal pathogens
such as Shigella and Escherichia coli O157:H7. Melons and soft fruits with a pH of 4–6 can
favor the growth and survival of Botrytis cinerea and Penicillium species [32]. Pathogenic
organisms are transmitted from the environment mostly during fruit harvesting from
plants, post-harvest displacements, processing, and transport movements [33]. Several
types of microorganisms, such as bacteria, yeasts, and fungi that cause deterioration
may be transmitted during postharvest storage. Approximately 80–90% of microbial
contamination in fresh fruits is due to Pseudomonas and Enterobacteriaceae (Klebsiella,
Enterobacter, Citrobacter, Salmonella, Escherichia coli, Shigella, Proteus, Serratia, and other
species) referred as Gram-negative bacteria [32,34]. Additionally, lactic acid bacteria, which
are a natural flora of fruits, are corrosive and develop unpleasant odors [32]. Moreover, fresh
fruits contaminated with fungi (Rhizopus, Penicillium, Aspergillus, and Eurotiumand Wallemia)
and the yeast (Debaryomyces, Pichia, Candida, Hanseniaspora, Zygo saccharomyces), also have
major role in the spoilage of fresh fruits during postharvest handling and storage [32]. The
use of chemical disinfectants such as organic acids, chlorine dioxide, hydrogen peroxide,
hypochlorite, sodium bisulfite, sulfur dioxide, and ozone has been proposed for reducing
the bacterial population during postharvest storage [35]. Such chemical-based disinfectants
have limited applications due to ill effects on human health and degradation of sensory
quality in fruits [36].

Biochemical quality deterioration may depend on the storage temperature and metabolic
processes occurring during respiration of living tissues in postharvest storage of fruits. Tem-
perature is an important factor responsible for controlling metabolism of carbohydrates,
lipids, and amino acids in respiring fruits. Temperate fruit crops are commonly stored at
temperatures (0–1 ◦C) compared to the tropical or subtropical fruits that must be stored at
higher temperatures (7–15 ◦C) to avoid losses due to chilling injury (CI) [37]. CI may alter the
ripening process by damaging the external peel, inducing internal flesh browning, pitting,
loss of firmness, and discoloration evidenced after the removal of fruits from cold temperature
storage [37].

Appropriate storage temperatures can extend storage life by approximately 2–4 weeks
for crops such as apricots, sweet cherries, and peaches, and up to several months for apples,
pears, and kiwifruits [37]. The general effect of low temperature storage upregulates stress-
responsive genes, blocks signal transduction of ethylene production processes affecting
metabolic changes in vital components of fruits [38,39]. Various commercially important
fruits, such as apples, pears, kiwifruits, bananas, and nectarines, at physiological maturity
are characterized by high starch content that is converted to sugars at low temperatures
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during postharvest storage [40]. Induction of chilling tolerance of nectarines stored at near
freezing temperatures (−1.4 ◦C) was shown to reduced activities of sucrose metabolism-
associated enzymes that resulted in higher sucrose contents [40]. Moreover, fatty acids are
essential cell membrane components forming a selectively permeable barrier between the
cells in a fruit matrix. Fruits are composed of different types of fatty acids that show active
roles in the biochemical quality degradation during postharvest cold storage. Peaches
containing plastidic glycerolipid and triacylglycerides (TAGs) are used as a source of
energy during fruit senescence [41]. Phosphatidic acid (PA) is accumulated in pineapple
fruit during blackheart development at 10 ◦C [42]. Increased levels of phospholipase
D enzyme activities have been observed in cold stored pears [43,44]. Similarly, chilling
injury of “Honeycrisp” apples with soggy flesh showed elevated contents of glycerol and
TAGs [45]. During postharvest storage of fruits, proteins may be degraded into free amino
acids due to the activation of proteolytic enzymes. Amino acids such as Glu, Gln, Asp,
and Asn contents increased in tomatoes stored at 4 ◦C [46]. Similar results were also
documented in kiwifruit that showed increased Thr, Ile, and Val contents [47].

Additionally, temperature fluctuations during turbulent transportation may lead to
mechanical bruising of fruits without any postharvest coating, thereby accelerating their
decay [48]. In this regard, it is of primary concern to apply different novel coating techniques
to delay ripening and senescence in fruits [49]. The aim is to eradicate biochemical quality
deterioration during defective cold chain management that may accelerate the rate of
respiration in living tissues and induce undesirable ripening (the main cause of senescence),
thereby shortening the shelf-life of fruits [50]. Fruit ripening increases the total soluble
solids resulting in higher sugar content; it involves several metabolic processes that differ
between ‘climacteric’ and ‘non-climacteric’ fruits [51]. During the ripening of climacteric
fruit, respiration increases until it reaches a peak, which is accompanied by an increase
in ethylene production. In contrast, respiration of non-climacteric fruit does not increase
during ripening, and ethylene is not required in order to complete the ripening process [52].
Regardless of the type of ripening, this process, as well as other metabolic processes that
lead to deterioration, are driven by respiration. After harvest, the fresh produce continues
to respire, utilizing food reserves, taking in oxygen, and releasing carbon dioxide and heat
from stored carbohydrates [37]. For that reason, postharvest active coating treatments
are applied on the fruit surfaces through various methods to reduce respiration, delay
deterioration processes, prolong shelf life, and help to maintain produce quality.

3. Application Methods of Polysaccharide-Based Active Edible Coatings in Fresh Fruits

BECs can be applied to fresh fruits after harvesting from the plants or trees using
various methods as shown in Figure 1. The selection of BECs mainly depends on the fruit
surface hydrophobicity and roughness and the physical properties of the BEC such as
surface tension, viscosity, density, coating emulsion stability, cost, and drying conditions
for industrial application [53]. The various methods of BEC application for fresh fruits
explained in this reviewed work include conventional spraying, electrospraying, dipping,
spreading, brushing, and layer by layer deposition techniques, respectively (Figure 1).
Spraying is a conventional technique for applying low viscous BEC solutions on the fresh
fruit surface [54]. A homogenous spray with fine droplets may form a uniform layer on
the fruit surface at a high-pressure atomization in the range of 60–80 psi (4.1–5.5 bar) [55].
The desirable layer of coating thickness mainly relies on the lower hydrodynamic diameter
of the droplet and atomizer features (spray gun type, operating pressure, and nozzle
temperature) as well as the humidity and flow rate of air or liquid in the BEC solution [56].
Conventional spraying methods applied on the rough surfaces of strawberry fruit have
shown lower transfer efficiency and coating evenness compared to the electrospraying
method of coating [57].
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Figure 1. Schematic representation of biodegradable and edible active coating applications via
(a) spraying; (b) electrospraying; (c) dipping; (d) spreading; and (e) multilayer coating methods,
employed in the postharvest treatment of fruits.

Electrospraying is a novel method of coating in which a coating material is atomized
in the presence of a high-intensity electric field, which enables the formation of micrometric
and sub-micrometric charged droplets with an extremely narrow size distribution [58,59].
The tip of an emitter causes the formation of a Taylor cone of the nascent charged droplets
and destabilizes the liquid surface to generate a cluster of charged droplets [60]. Elec-
trospraying promotes the efficient adhesion to the surface of fresh fruit compared to
conventional spraying because of electrostatic interactions of micrometric-sized charged
droplets [61]. The droplet size, deposition rate, and coating thickness during electrospray-
ing depend on the conductivity, flow rate, and viscosity of the coating solution [57]. The
electrospraying coating method was employed to obtain even distribution of charged
coating material droplets containing micro to nano size magnetic cellulose with special
affinity to orient under an electric field, forming a compact coating film [62].

BECs applied by the dipping method undergo in three steps. The first step is immers-
ing fresh fruits in the coating solution and holding for 2 to 3 min so the coating material can
adhere on the fruit [63]. The last two steps are deposition and drainage of extra adhered
BEC solution followed by evaporation and drying of coated fruit either at ambient tempera-
ture or flushed with hot air to accelerate drying [64]. Coating thickness and morphology of
the coating’s material deposited by the dipping method on the surface of fruits depends on
various factors such as immersion time, withdrawal speed, dip-coating cycles, density, vis-
cosity, surface tension, and drying conditions [65–67]. Hydroxypropyl methylcellulose in a
dip-coating solution was analyzed for viscosity, density, and surface tension during coating
of Fuji apples, after which the internal oxygen and carbon dioxide levels were measured at
room temperature for 4 days. Results indicated that coating thickness varied with viscosity,
concentration, density, and draining time of the biopolymer solution. Coating thickness
relates to the square root of viscosity and the inverse square root of draining time, which
agrees with the theoretical approach for flat plate dip-coating in low-capillary-number
Newtonian liquids. These results indicate the possibility of controlling coating thickness
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and internal gas composition based on coating solution properties [67]. The dipping com-
pared to conventional spraying or electrospraying is more beneficial for coating fruits with
complex and rough surfaces, resulting in excellent uniformity [68]. Dipping generally
forms a thick coating layer on the fruit surface and may effectively reduce microbial load,
contamination, respiration rate, and mechanical damage and prevent physiological changes
of coated fruits [69,70].

The brushing method involves the use of a sterile brush for spreading high viscosity
BECs on the fruit surface and depends on the wetting degree and the spreading rate
parameters followed by a drying process [71]. Brushing of BECs is generally carried out
manually by experienced operators and includes several factors to minimize manual error
of BEC application and ingredient quality to achieve better coating layer uniformity [15].
The efficiency of BECs is also affected by the roughness of the fruit surface and geometry,
viscosity, surface tension, density, drying temperature, and relative humidity [70]. The
degree of spreading or wettability of BECs can be characterized on the surface of fruit by
contact angle measurements that maintain mechanical equilibrium of the coating drops
under the influence of mainly three surface tension forces—solid–liquid, liquid–vapor,
and solid–vapor interfaces—to assess the adhesion properties of coating solutions on the
fruit surfaces [70,72]. The ideal case of a contact angle value equal to 0◦ corresponds to a
hydrophilic solid surface where total wetting conditions can be attained by an aqueous
solution. A contact angle value between 0◦ and 180◦ suggests the occurrence of partial
wetting, which is higher for a contact angle below 90◦. The ideal case of a contact angle
equal to 180◦ corresponds to a hydrophobic solid surface, where no wetting conditions
occur when in contact with an aqueous medium. The contact angle can be measured
directly on the food surface through the sessile drop method or atomic force microscopy to
visualize the thickness and adherence of the coated surface [72,73].

BECs applied via the multilayer coating method include layer by layer deposition
of coating solutions for better adhesion, especially on the surfaces of fresh-cut fruits [74].
Multilayer coating adhesion exhibits electrostatic interaction of the charged polyelectrolytes
with that of the fruit surface [75,76]. The electrostatic interactions between the multilayer
coatings of nano size dimensions may form chemical bonds, thereby providing effective
control of physiological, mechanical, and functional properties on coated fruit [77]. In
the multilayer coating method, coating materials containing oppositely charged polyelec-
trolytes are deposited through alternate dipping of the fruit in different coating solutions
(Figure 1e). The dipping of fruit in many cycles creates a layer-by-layer deposition of a
coating solution that mainly depends on the ionic strength, pH, and charge densities to
form a bonded network via electrostatic forces of attraction [74]. Therefore, the applica-
tion of the multilayer coating method has been reported in polysaccharides and charged
polyelectrolytes capable of hydrogen and covalent bonding to increase compactness of the
coating layers during postharvest storage of fruits [10,78].

4. Impact of Polysaccharide-Based Active Edible Coatings Fortified with Essential Oils
and Plant Extracts on the Postharvest Quality of Fresh Fruits

The various carboxymethyl cellulose (CMC), chitosan, pectin, alginate, and starch-
based active coatings supplemented with EOs and plant polyphenolic extracts have been
applied over the past five years in published research work as an active coating material for
fresh fruits. The aforementioned active BECs have shown promising results with a diverse
combination of other plant-based gums (Tables 1 to 3).
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Table 1. Polysaccharide-based biodegradable and edible coatings for the quality preservation of fresh
fruits during postharvest storage.

Polysaccharide Fruit Cultivar Treatment Dose Coating Method Comprehensive Findings References

Sodium alginate and pectin Sapota fruit Sodium alginate and pectin (2%) Dipping
Sensory and physico-chemical quality changes of
treated fruit were retarded at 2 min dipping time

during 30 days of storage.
[79]

Alginate, pullulan, and chitosan Strawberry (Fragaria × ananassa
Duch.) 2% chitosan Dipping

Chitosan coating delayed fruit softening and rot
and maintained antioxidant activity of enzymes
(peroxidase, catalase, superoxide dismutase, and

ascorbate peroxidase) to prevent lipid
peroxidation and reduce membrane damage

during 16 days of storage at 4 ◦C.

[80]

Chitosan Satsuma mandarin (Citrus unshiu
Marc.) 1% chitosan Dipping

Chitosan along with clove oil inhibited mycelial
growth of Penicillium digitatum and enhanced the
activities of enzymes chitinase and phenylalanine

ammonia-lyase on artificially inoculated citrus
fruit.

[81]

Carboxymethyl cellulose (CMC),
hydroxypropyl methylcellulose

(HPMC), methylcellulose (MC), and
chitosan (CH)

Rishon’ and ‘Michal’ mandarins
(Citrus reticulata Blanco)

Bi-layered coating by 1.5% CMC
+1.5% CH Brushing

Multilayer coating consisted of inner CMC and
outer chitosan embedded with glycerol, oleic acid,

and stearic acid, delayed ripening and reduced
quality losses of mandarins compared to synthetic

waxes.

[82]

Carboxymethylcellulose (CMC) and
pectin (Pec) Plums (Prunus domestica L.) CMC 1% +Pec 1.5% Dipping

Combination of 0.5% Pectin + 1.5% CMC
prevented loss of total phenols, flavonoids,

anthocyanins corresponding to higher antioxidant
properties and maintained firmness of plum fruit.

[83]

Chitosan (CH), alginate (AL), and
carboxymethyl cellulose (CMC)

Indian blackberry or Jamun
(Syzygium cumini L.) 1.5% CH and 1.5% CMC Dipping

CH (1.5%) and CMC (1.5%) coatings delayed
weight loss, improved higher amount of

antioxidant compounds, and inhibited cell wall
degrading enzymes, thereby prolonged shelf life

of Indian blackberry (jamun fruit) for better
marketability.

[84]

Alginate (AL), pectin (PE),
carboxymethyl cellulose (CMC) or

chitosan (CH)
Mango (Mangifera indica L.) 0.5% CH Dipping

Fresh-cut mangoes with CH coating showed

lower microbial counts (1 log CFU g−1). AL and
CH coatings having different monomers enhanced

antioxidant properties and AL, PE, and CMC
maintained yellow colour of mangoes. AL-coated

samples were toughest with higher consumer
acceptance (90.2%) during 14 days of storage at 4

± 1 ◦C.

[85]

Sodium alginate (Al), pectin (Pe) and
sodium alginate plus pectin (Al + Pe) Blueberries

Sodium Alginate and Pectin (Al +
Pe) in equals amounts of 10 g/kg

+ 10 g/kg
Dipping

Blueberries coated with Al or Pe, lowered the
growth kinetics of mesophilic aerobic bacteria and
yeasts. However, Al, Pe and Al + Pe improved the

firmness and showed no significant changes in
weight loss, pH, soluble solid, and solid content

during storage of 14 days at 4 ◦C.

[86]

Peach gum Cherry tomato 1% Peach gum Dipping

Polysaccharides from peach gum with antioxidant
and antimicrobial characteristics effectively

maintained firmness, inhibited rate of respiration,
decreased weight loss, and delayed changes in
ascorbic acid, sugar content, and total acidity of

cherry tomatoes during refrigerated storage (4 ◦C)

[87]

Pullulan Rastali and Chakkarakeli bananas 10% w/v pullulan Dipping

Pullulan coating emulsion prepared at 60 ◦C and
dipping time for 10 min 10% w/v level showed

reduced weight loss (5.466%), lower color
saturation (64.92), minimum browning Index

(212.17), decreased peel-pulp ratio (15%), reduced
vitamin C content (19%) with augmented firmness

(55%) and total sugar contents (12–13%),
respectively, in coated bananas stored for 20 days

at 25 ± 1 ◦C and 70% RH.

[88]

Lemon basil seed mucilage (LBSM) and
Chinese quince seed mucilage (QSM) Japanese cucumber fruit (JCF) 0.3% LBSM and 1% QSM Dipping

JCF coated with LBSM and QSM showed similar
coating thickness, reduced weight loss, and minor

changes in texture, pH, and peel color up to 18
days of storage at 11 ± 1 ◦C and 95% RH,

respectively.

[89]

Commercial CMC (CMCc) and CMC
from pineapple core (CMCpc) Cherry tomatoes 2% CMCc and 2% CMCpc Dipping

Cherry tomato coated with CMCc and CMCpc
had lower weight loss TSS content and higher

vitamin C content. Stored for 20 days at 25 ◦C and
70% RH.

[90]

Rice starch ‘Cavendish’ banana fruit
Rice starch (3%, w/w),

ι-carrageenan and glycerol (1%,
w/w)

Spray

Starch-ι-carrageenan coating blended with
sucrose ester was developed that delayed the
ethylene production, chlorophyll and starch

degradation rate, showed reduced weight loss,
and increased firmness of coated banana fruit

stored at 20 ± 2 ◦C; RH 52 ± 3%.

[91]

Cassava starch Mangoes (Mangifera indica cv
“Tommy Atkins”)

Citric acid (CA) (5 g/L) and
coated with cassava starch (10

g/L) (CS)
Dipping

CS-CA coating delayed browning reactions,
respiration rate with lower carotenoid formation
and improved firm ness, color, and consumers

acceptance of mango storage at 5 ◦C for 15 days.

[92]

Cassava starch (CS) and alginate (AL) Pineapple (Ananas comosus var.
comosus)

1.5% Cassava starch + 0.5%
alginate + ascorbic acid (AA) Dipping

CS-AL with AA preserved the fresh like
characteristics of taste and odor, and better

appearance of pineapple stored at 23 ± 1 ◦C, 88 ±
2% RH for 18 days.

[93]

Table 2. Polysaccharides combined with essential oils for the quality preservation of fresh fruits
during postharvest storage.

Polysaccharide Essential Oils Fruit Cultivar Treatment Dose Coating Method Comprehensive Findings References

Sodium alginate (AL) and
pectin (PE)

Citral (Cit) and eugenol
(Eug)

Strawberry (Fragaria ×
ananassa Duch.)

AL (2% AL + 0.1% Eug) and
(2% AL + 0.15% Cit + 0.1%

Eug) PE (2% PE + 0.1% Eug)
and (2% PE + 0.15% Cit)

Dipping

AL and PE based edible coatings formulations
revealed acceptable color, higher firmness and
antioxidant activity with lower weight loss and
microbial counts in strawberries during storage

of 14 days at 0.5 ◦C.

[94]

Arabic gum (AG) Cinnamon oil (CO) and
lemongrass oil (LGO) Guava (Psidium guajava L.)

5% AG + 1% sodium
caseinate (SC) + 2% CO and

5% AG + 1% SC + 2% LG
Dipping

Guava fruits coated with emulsions containing
AG, SC supplemented with CO and LGO
inhibited PPO, POD and showed higher

ascorbic acid, phenol, and flavonoid contents
up to 40 days at 25 ± 2 ◦C

[95]
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Table 2. Cont.

Polysaccharide Essential Oils Fruit Cultivar Treatment Dose Coating Method Comprehensive Findings References

Gum arabic (GA) Zataria multiflora Boiss
essential oil (EO)

Pistachio (Pistacia vera L.) cv.
‘Ahmad-Aghaei’ 6% GA + 0.3% EO Spraying

GA (6 and 8%) with Shirazi thyme (Zataria
multiflora) (0.3 and 0.5%) protect the quality of
fresh in-hull pistachio stored at 85 ± 5% RH

and 2 ± 1 ◦C up to 36 days.

[96]

Arabic gum (AG) Jojoba oil (JO) Date palm (phoenix
dactylifera L.)

Jojoba oil (JO) at 5%
combined with Arabic gum

(AG) at 10%
Dipping

10% AG fortified 5% JO mitigated decay
incidence, reduced weight loss, and retained

higher firmness, total phenols, flavonoids,
tannins, sugars, and antioxidant activity and
protected membrane integrity of date palm
stored at 0 ± 1 ◦C and RH 85–90% up to 6

weeks.

[97]

Gum arabic Cinnamon essential oil
(CEO) Guava (Psidium guajava L.)

Gum Arabic (10%), oleic
acid (1%) and cinnamon

essential oil (1%)
Dipping

Gum Arabic, oleic acid and CEO delayed
browning on guava during cold storage at 10 ±

1 ◦C and 90% RH for 28 days.
[98]

Guar gum (GG)

Nigella sativa, Coriandrum
sativum, Foeniculum vulgare
and Laurus nobilis essential

oils (EOs)

Unripe green mango
(Mangifera indica L.)

0.2 mL of each EOs were
supplemented in 1.5% of

GG solution
Dipping

GG with EOs extracted in ethanol and methanol
had lower changes in physiological,

biochemical quality and showed lower
microbial counts up to 24 days of storage at 10

◦C and 80–85% RH.

[99]

Gum Arabic (GA) Cinnamon oil (CEO) Guava (Psidium guajava L.) 10% GA +1% CEO Dipping

GA enriched with CEO preserved color,
firmness, chlorophylls, and carotenoids and

showed minor changes in pH, flavor index, and
TSS content during storage at 10 ± 1 ◦C,

90–95% RH) for 28 days

[100]

Cassava starch (CS) Cinnamon oil (CEO) Table guava cultivar Pedro
Sato

2% starch + 0.01% cinnamon
essential oil (S + EO) Dipping

2% CS with 0.01% CEO reduced weight loss by
30.23%, retained firmness of 12.23 N and

displayed green color by lowering the activity
of pectin methyl esterase guava stored at 25 ◦C

and 76% ± 5 RH for 8 days.

[19]

Gum Arabic (GA)
Oregano (OEO) and

rosemary essential oils
(REO)

Plums (Prunus domestica L.)
GA at 1 mg/mL + OEO at
0.06 mL/mL + REO at 0.25

mL/mL
Dipping

GA with OEO inhibited the mycelial growth,
sporulation of R. stolonifer and delayed soft rot
at 25 ◦C for 12 days and at 12 ◦C for 24 days.

[101]

Cassava starch (CS) Cinnamon bark essential oil
(CBEO)

Apples (Malus domestica
Borkh cv. “Fuji”)

2% (w/v) of cassava starch
containing 0.30% (v/v) of

the cinnamon bark essential
oil

Dipping

2% CS with 0.3% (v/v) CBEO inhibited the
growth of Staphylococcus aureus and Salmonella

choleraesuis, and 0.30% fennel essential oil
inhibited just Staphylococcus aureus in coated

apple during storage at 5 ◦C.

[102]

chitosan–cassava starch
(CH–CS)

Lippia gracilis Schauer
genotypes LGRA106 and

LGRA107
Guava (Psidium guajava L.)

2% cassava starch, 2%
chitosan and 3%

LGRA106/LGRA107
mixture

Dipping

CH-CS-coated guavas demonstrated excellent
microbiological qualities in terms of yeast and
mold counts (which are primarily responsible
for the degradation of fruit) during storage at

room temperature (25 ◦C) for 10 days.

[103]

Cassava starch (CS) Babassu flour (Orbignya
phalerata) Cagaita and mangaba Cassava starch with 50%

babassu flour Dipping

CS coating along with babassu flour reduced
water loss and increased lightness (a) values

and total soluble solids were stable for coated
fruits along storage.

[104]

Table 3. Polysaccharides combined with plant polyphenolic extracts for the quality preservation of
fresh fruits during postharvest storage.

Polysaccharide Plant Polyphenolic Extracts Fruit Cultivar Treatment Dose Coating Method Comprehensive Findings References

Gum Arabic (GA) Red roselle extract (RRE) Blueberries 10% GA + 1% (v/v) glycerol
+ 1.5% (v/v) RRE Dipping

GA lowered loss of anthocyanins, total phenols,
weight loss, and decay with improved firmness

of blueberries. Additionally, GA with RRE
reduced microbes, enzyme activities, and
anthocyanins degradation and enhanced

phenolic content during storage at 4 ± 0.5 ◦C
up to 12 days.

[105]

Gellan gum (GG) Apple fiber extract (APE) Golden delicious apples 0.2% AFE, gellan gum and
ascorbic acid Dipping

AFE fortified in GG along with ascorbic acid
preserved antioxidant properties and firmness

of apples stored at 4 ◦C up to 16 days.
[106]

Chitosan (CH) and alginate
(AL)

Pomegranate Peel Extract
(PPE)

Capsicum (Capsicum
annuum L.) 1% PPE+ 1% chitosan Dipping

PPE in chitosan coating retained firmness, color,
and ascorbic acid. PPE in CH and AL coatings
retarded microbial growth and extend the shelf
life with higher sensory scores up to 25 days at

10 ◦C, respectively.

[107]

Chitosan (CH) Green tea leaves extracted
(GTE)

Walnut fruit (Juglans regia L.,
Kaghazi cultivar)

Chitosan 10 g/L and GTE 5
g/L Dipping

The CH and GTE inhibited lipid oxidation and
fungal growth during storage of walnut kernels

18 weeks of storage with acceptable sensory
properties.

[108]

Sodium alginate (AL) and
chitosan (CH)

Apple fiber, orange fiber,
inulin and oligofructose

Blueberries (Vaccinium
corymbosum L.) cv. Emerald

Fiber-enriched CH
treatments Dipping

CH enriched with inulin, oligofructose, and
apple fiber enhanced antioxidant properties,

lowered yeast/mold counts with higher sensory
scores of ready-to-eat blueberries kept at 5 ◦C

up to 18 days.

[109]

Peach gum (PG) Bamboo vinegar (BV) Blueberries (Vaccinium spp.) Bamboo vinegar (1.5% v/v)
and peach gum (2% w/v) Dipping

The combined treatment of BV and PG
increased the activities of defense enzymes such

as chitinase; β-1,3-glucanase; phenylalanine
ammonia-lyase; peroxidase and polyphenol

oxidase during storage at 22 ◦C, 85–95% RH for
25 days.

[110]

Agar, alginate or
agar/alginate matrices Larrea nitida (Ln) extract Blueberries 1% polysaccharide + 50

mg/100 mL Ln Dipping

The coatings of agar and Ln extract were able to
reduce the infectivity of murine norovirus

below the limit of detection after over-night
incubation at 25 ◦C and after 4 days at 10 ◦C

storage

[111]

Chitosan (CH)
Aqueous cashew

(Anacardium occidentale) leaf
extract (CLE)

Lime fruit 2% CH and 5% CLE Dipping

CH incorporated with CLE revealed higher
firmness, color, TA, vitamin C content,

antioxidants activities, reduced weight loss, and
TSS. CH-CLE A. had the lowest percent disease

incidence and disease severity niger in
inoculated lime fruit stored at 15 ◦C and 90%

RH up to 42 days.

[112]

Cassava Starch–Chitosan
(CS-CH)

Rosemary pepper (Lippia
sidoides Cham.) EOs and
Pomegranate peel extract

(PPE)

Italian Tomatoes
(Lycopersicon esculentum

Mill.)

10 g L−1 cassava starch, 10

g L−1 chitosan, 10 mL L−1

essential oil and 20 mL L−1

pomegranate peel extract

Dipping
CS-CH coating with EOs and PPE maintained

firmness, TSS, and color values of tomatoes
during storage at 25 ◦C for 12 days.

[113]

Cassava Starch (CS) Propolis extract (PE) Strawberry (Fragaria
ananassa Duch.)

3% cassava starch + 66%
ethanolic PE Dipping

CS-PE coating showed higher vitamin C
content, anthocyanin content, and antioxidant

activity during 12 days of storage of coated
strawberries.

[114]
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4.1. CMC-Based Active Coatings

CMC is a cellulose derivative that is generally odorless and tasteless, flexible, trans-
parent, and non-toxic and can be labelled as an edible coating [115]. CMC usually forms
a clear, colorless and tasteless solution. It is cold water soluble and shows tolerance to
high concentrations of sugar. I is available in a wide range of viscosities and has good
heat stability and film forming properties [116]. Several studies have applied CMC or
CMC in combination with other polysaccharides as BECs (Table 1). To provide bioactiv-
ity in the CMC coating material against physical, chemical, and microbial deterioration,
EOs and plant extracts have been incorporated to form active BECs [117]. In some of the
recent studies, garlic EO fortified in CMC coatings maintained higher concentrations of
total phenols and anthocyanins in strawberries [118]. CMC coatings containing Mentha
spicata EO inhibited Listeria monocytogenes and preserved physicochemical and organoleptic
properties of strawberries [119]. CMC-based coatings incorporated with Zataria multiflora
Boiss EO and grape seed extract (GSE) retarded changes in chemical, microbial, and sensory
characteristics of coated fresh food during low temperature storage [120]. CMC coating
enriched with clove EO delayed fungal growth and ripening and also reduced the rate of
respiration and weight loss with enhanced commercial acceptability of ‘Xinyu’ mandarin
oranges [121]. CMC reduced decay, weight loss, chilling injury, and hydrogen perox-
ide and malondialdehyde content in ‘Kinnow’ mandarin fruits during low temperature
storage [122]. CMC along with pistachio (Pistacia atlantica L.) EO supplemented coating
material showed higher anthocyanin, antioxidant capacity, phenol, tannin, and titratable
acidity with a slight increment in TSS of grape cv. Rasheh during postharvest storage [123].
CMC Impatiens balsamina L. stem extract acted as an antimicrobial barrier to pathogen
and gases, reduced the decay rate and weight loss, and inhibited the enzyme activities
involved in the biochemical deterioration and softening in “Xinyu” tangerines [124]. CMC
acted as a barrier to mold damage by forming a thick layer on the surface of oranges [125].
Methyl cellulose coating with thyme oil retained the higher antioxidant activity and re-
duced weight loss, total yeast, mold and total plate counts of mesophilic and psychrophilic
microorganisms in “Acco” Pomegranate Arils [126].

4.2. Chitosan-Based Active Coatings

Chitosan is a renewable biopolymer derived from chitin. The cationic linear structure
of chitosan composed of β-(1–4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-
glucosamine (acetylated unit) is derived from crustaceans, fungi, and yeast [76]. Chitosan
incorporated with Mentha spicata EO and coated on the surface of strawberries prevented
growth of L. monocytogenes and retarded changes in physicochemical and organoleptic
properties [119]. Chitosan with Origanum vulgare L. EO reduced the incidence of black mold
and soft rot triggered by R. stolonifer and Aspergillus niger in cherry tomato fruit [127]. Chi-
tosan with thymol EO prevented weight loss, retarded the rate of respiration, maintained
TSS and the ratio of TSS to TA, lowered fungal decay incidence, and retained firmness,
TA, anthocyanin, and sensory characteristics of fresh fig (Ficus carica L.) under low tem-
perature storage [128]. Chitosan with Mentha piperita L. EO delayed changes in peel and
pulp color and retained the catechins, procyanidins B1 and B2 in mango cultivar ‘Tommy
Atkins’ during cold storage [129]. Chitosan applied with cinnamon EO reduced weight
loss and preserved physical and biochemical quality of jujube fruits during 60 days of cold
storage [130]. Clove EO fortified in chitosan inhibited activity of enzymes corresponding to
browning of freshly cut lemons [131]. Chitosan–pullulan (50:50) edible coating prepared
with pomegranate peel extract (0.02 g/mL) reduced weight loss and maintained TSS, pH,
firmness, phenolic content, and antioxidant activity of mango fruits during 18 days of
postharvest storage at 4 ◦C [132]. Chitosan coating incorporated with olive oil residues
extracts (2% w/v) showed higher inhibition of Penicillium expansum compared with Rhizopus
stolonifer in vitro and in vivo, thereby maintained the fresh quality of apple and strawberry
fruits during postharvest storage [133]. Chitosan (1.5% w/v) enriched with hairy fig (Ficus
hirta Vahl.) fruit extract coating applied to “Newhall” navel orange showed the lowest
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decay rate (5.2%), weight loss (5.16%), and malondialdehyde content while enhancing the
activities of protective enzyme such as superoxide dismutase, peroxidase, chitinase, and
β-1,3-glucanase during 120 days of cold storage [134]. Additionally, chitosan (1% w/v)
and alginate (2% w/v) coatings in combination with pomegranate peel extract (1% w/v)
recorded reduced losses in ascorbic acid (29%), total phenolics (8%), total flavonoids (12%),
and antioxidant activity measured by DPPH (12%) and FRAP (9%) in coated guavas (cv Al-
lahabad safeda) for 20 days at 10 ◦C [135]. Different chitosan-based coatings with bioactive
properties applied to fruits are presented in Tables 2 and 3.

4.3. Pectin-Based Active Coatings

Pectin is a complex network-forming biopolymer consisting of high molecular weight
glycanogalacturonans in which 1,4-linked α-D-galacturonic acid molecules are linked to a
small number of rhamnose and arabinose residues in the main chain and galactose and
xylose in the side chains. Pectin is extracted from fruit peels and apples and is widely
used as fruit coating material alone or in combination with other polysaccharides and
EOs or plant extracts [136]. Apple pectin, cellulose nanocrystals, and lemongrass EO were
documented to minimize weight loss and physiological and chemical attributes in coated
strawberries (Fragaria Ananassa) [123]. Pectin coatings enriched with citral and eugenol
EOs reduced microbial spoilage and maintained sensory attributes of raspberries [137].
Pectin enriched with lemon EO reduced loss of weight and retained higher antioxidant
activity of strawberry fruit. Oregano (Lippia graveolens) EO added with pectin delayed
the growth of A. alternata under in vitro conditions with an increase in total phenols and
antioxidant activity in coated tomatoes [138]. Pectin-based coating incorporated with EO
extracted from orange peel showed higher antibacterial and antifungal properties, reduced
weight loss, and maintained TSS and ascorbic acid levels in coated oranges [139]. Pectin
coating effectively delayed respiration and ripening processes, reduced weight loss, and
restricted color change in coated lime (Citrus aurantifolium) [140]. Pectin-coated sapota
fruits also recorded minimum weight loss and maintained acidity, TSS, pH, color, ascorbic
acid content, and firmness up to 11 days of postharvest storage at room temperature [141].

4.4. Alginate-Based Active Coatings

Alginate is a natural polysaccharide commonly obtained from algae and consists of
unbranched, linear binary copolymers of β-D-mannuronic acid and α-L-guluronic acid
residues linked by 1–4 glycosidic bonds [142]. Alginate combined with citral and eugenol
EOs revealed lower microbial and higher sensory acceptability in coated raspberries [143].
Shirazi thyme EO incorporated into alginate increased phenolic content and antioxidant
activity and reduced mold and yeast growth in fresh pistachio (Pistacia vera L.) [144].
Alginate mixed with thyme, cinnamon, and oregano EOs in which thyme EO with alginate
effectively inhibited the microbial growth, respiration rate, weight loss, firmness, and
browning of fresh cut ‘Red Fuji’ apples [145]. Lemon (Citrus lemon L.), orange (Citrus sinensis
L.), and grapefruit (Citrus paradisi L.) coated with sodium alginate edible coating lowered
rates of O2 consumption and CO2 production and yeast and mold counts. Lemon and
orange EOs improved firmness and ascorbic acid content during storage of kiwifruit [146].
Ficus hirta fruit extract with alginate coating retarded the growth of blue mold increased
antioxidant content, and activity of defense enzymes in Nanfeng mandarin [147]. Alginate
coating incorporated with cinnamon EO effectively reduced the rate of respiration and
weight loss, retained original color, increased lightness, and inhibited polyphenoloxidase
and peroxidase activity in fresh-cut apple cv Golden Delicious [148]. Rhubarb extract
with alginate inhibited Penicillium expansum and preserved the physiological and sensory
attributes in coated peaches (Prunus persica) [149]. Sodium alginate with cinnamon EO
(0.9%, v/v) inhibited the growth of A. carbonarius on coated sliced apples and pears [150].
Different alginate-based coatings with bioactive properties applied on fruits are presented
in Tables 2 and 3.
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4.5. Starch-Based Active Coatings

Starch is the main component of plant crops such as maize, wheat, edible cassava,
potato, amaranth, and quinoa mainly constituted of linear amylose and branched amy-
lopectin fractions amounting to 98–99% of the dry weight [151]. The linear structure of
amylose tends to orient itself in a parallel direction to facilitate the hydrogen bonding
between hydroxyl groups that increases hydrophobicity in coating films [152]. Starches
with higher amylose content have better film-forming properties, i.e., better mechanical
strength, elongation, and gas barrier properties [153]. To produce starch-based coatings
with a higher amylose content, it can be extracted via selective leaching of starch in hot wa-
ter (50–70 ◦C) [154]. Different starches from pea (61–88%), corn (50–85%), potato (21–30%),
and tapioca (17%) have been reported with higher amylose content for functionality, barrier,
mechanical, and sorption properties of the starch-based coatings [10]. During the retrogra-
dation of starch, the dissociated amylose and amylopectin chains in a gelatinized starch
dispersion reunite to form more ordered structures that affect the permeability, solubility,
and mechanical properties of starch coating films [155,156]. Additionally, starch-based
edible coatings are odorless, tasteless, colorless, non-toxic, act as a good barrier to gases
(carbon dioxide, oxygen), and show adequate durability and cohesive strength in coated
foods [157]. Rice starch coated on apple (Malus L.) retained color, firmness, total soluble
solids, titratable acidity, antioxidant activity, and reduced weight loss, respiration rate, and
fruit greasiness [155]. Corn starch with Moringa oleifera extract decreased weight loss and
retained firmness and ascorbic acid content in orange (Citrus sinensis L. Osbeck) [158]. The
various starch-based coatings incorporated with EOs and plant extracts on the quality of
fresh fruits during storage are presented in Tables 1 to 3.

Polysaccharide-based edible coating films added with bioactive compounds from
plants have been documented to show excellent barrier, optical, and mechanical properties
that play an important role in the postharvest shelf-life of fruits. Barrier properties of
polysaccharide coating films include water vapor transmission rate (WVTR) and oxygen
or carbon dioxide gas transmission rate (GTR). Chitosan films containing essential oils or
other plant extracts addition of carvacrol (0.5, 1.0, and 1.5% v/v) significantly decreased
the WVTR of chitosan film [159]. Several reports of decreased WVTR using EOs and plant
extracts such as tea tree essential oil, carvacrol, cinnamon essential oil, and turmeric EO
were attained in chitosan coating films, possibly due to the hydrophobicity of the EO
particles and their ability to occupy the amorphous regions of the films [160–163]. A gellan
gum-chitosan multilayer coating film incorporated with thyme essential oil (TEO) nano-
emulsion showed improved elongation at break (EB) and UV blocking ability and increased
the water vapor permeability (WVP) of the films with the addition of TEO [163]. The
incorporation of turmeric essential oil in chitosan film notably inhibited Aspergillus flavus
and prevented biosynthesis of aflatoxin [159]. Generally, the chitosan network interacts
with essential oil components via hydrogen and covalent bonds, limiting the accessibility
of hydrogen groups in forming hydrophilic bonds with water, which leads to a consequent
reduction in affinity of chitosan film to water. The color and opacity of the coating films are
important indices regarding the appearance and consumer acceptability of the coated fruits.
The opacity of films has also been of interest, as an increase in opacity can be positively
related to an improved light barrier property. In addition, the incorporation of rosemary
essential oil reduced the light transmission in UV light of the chitosan films by more than
25% [164]. The introduction of thyme essential oil nano-emulsion obviously enhanced the
UV blocking property and the yellowness index of chitosan films [165].

Mechanical properties of chitosan coating films have been directly related to the type
of essential oil contained in the chitosan matrix. The Young’s modulus, strength, and
maximum elongation of chitosan increased with higher olive oil concentrations (5, 10, and
15%, w/w) [166]. The tensile strength (TS) of chitosan composite film significantly increased
with the incorporation of cinnamon essential oil (CEO) at levels ranging from 0.4%, to 2%
(v/v). CEO generated a strong cross-linked effect with chitosan, which reduced the free
volume and the molecular mobility of the polymer that forms a compact sheet-like structure
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resulting in increased TS and decreased elongation in break (EB) [167]. Additionally,
intermolecular interaction and molecular compatibility between the functional group of
citronella essential oil and cedarwood oil ingredients and hydroxyl and amino groups
in the CH matrix could influence the mechanical properties of the films [163]. Therefore,
organic compounds in essential oils consist primarily of hydrocarbon molecules such as
alcohols, esters, terpenes, ketones, and phenols are categorized as benzene derivatives and
terpenes [168]. The most common functional group in essential oils is aromatic that can
interact with polysaccharides to exhibit efficient mechanical properties [169].

5. Conclusions

BECs fortified with EOs and plant extracts as active coating materials could extend
the postharvest shelf life of coated fruits to achieve longer storage periods. This review
compiled data from recent studies on active edible coatings in which the dipping method
was the most reliable on both rough and smooth fruit surfaces compared to other coating
methods. The dipping method is an inexpensive manual method and was recommended
for small-scale or batch processes in industries for coating of fruits. Polysaccharides like
alginate, pectin, CMC, and chitosan added with EOs and plant extracts have been employed
over the past decade in fruits and have shown promising results related to the preservation
of quality attributes such as firmness, weight loss, delayed ripening, and retardation of
the biochemical and microbial changes in coated fruits. EOs and plant extracts containing
bioactive compounds are safe additives compared to chemicals additives to be incorporated
in BECs. Therefore, this review concludes that polysaccharides fortified with bioactive
compounds from plant sources could be a potential means to extend shelf life of fresh fruits
during postharvest storage.
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