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Abstract: Various annealing atmospheres were employed during our unique thermal-diffusion type
Ga-doping process to investigate the surface, structural, optical, and electrical properties of Ga-doped
zinc oxide (ZnO) nanoparticle (NP) layers. ZnO NPs were synthesized using an arc-discharge-
mediated gas evaporation method, followed by Ga-doping under open-air, N2, O2, wet, and dry
air atmospheric conditions at 800 ◦C to obtain the low resistive spray-coated NP layers. The I–V
results revealed that the Ga-doped ZnO NP layer successfully reduced the sheet resistance in the
open air (8.0 × 102 Ω/sq) and wet air atmosphere (8.8 × 102 Ω/sq) compared with un-doped ZnO
(4.6 × 106 Ω/sq). Humidity plays a key role in the successful improvement of sheet resistance
during Ga-doping. X-ray diffraction patterns demonstrated hexagonal wurtzite structures with
increased crystallite sizes of 103 nm and 88 nm after doping in open air and wet air atmospheres,
respectively. The red-shift of UV intensity indicates successful Ga-doping, and the atmospheric effects
were confirmed through the analysis of the defect spectrum. Improved electrical conductivity was
also confirmed using the thin-film-transistor-based structure. The current controllability by applying
the gate electric-field was also confirmed, indicating the possibility of transistor channel application
using the obtained ZnO NP layers.

Keywords: thin-film-transistor; Ga-doping; nanoparticles; ambient effects; spray coating;
photoluminescence; X-ray diffraction

1. Introduction

The use of semiconductor nanoparticles (NPs) and coating techniques for the manufac-
ture of channel layers of thin-film transistors (TFTs) has drawn considerable interest, owing
to certain advantages such as a high selectivity of substrate materials, surface morphology,
low cost, and large process area [1–3]. ZnO has been extensively studied because of its ex-
ceptional properties, such as a high chemical and thermal stability (even when surrounded
by hydrogen plasma, as compared with other oxides (such as SnO2 and ITO)), wide band
gap [4], large exciton binding energy of 60 meV at room temperature [5], non-toxicity,
and low costs. These attributes, combined with its applicability in various fields such as
electronics, optics, optoelectronics, and conversion photovoltaics [6,7], make it a model
material. ZnO has significant achievements based on its various fields of application [8];
most recently, different ZnO-based sensing devices have received considerable attention
because of the excellent piezoelectric, optical, and electrochemical properties demonstrated
by the ZnO nanostructure. The use of a ZnO nanomaterial in GAS sensors typically re-
quires large specific surface areas, which help by increasing the contact area between the
substance to be detected and the semiconductor materials, thereby improving sensor per-
formance. As a result, in recent years, refining the ZnO nanomaterial fabrication process
to increase the specific surface area has been a topic of considerable research interest [9].
Recently, using laboratory-synthesized ZnO NPs [10], the presence and functioning of both
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n-channel and p-channel back-gate TFTs on the Si/SiO2 substrates have been successfully
demonstrated [11]. However, the resistivity of the NP layer was excessively high, limiting
the TFT performance. Substitutional doping of Group III elements effectively reduces
the resistivity of n-type ZnO NPs [12]. Gao et al. published a comprehensive review of
doped ZnO, and summarized that the Ga-doped ZnO achieves a low resistive NP layer
and improves electrical properties compared to various doping elements [13]. Various tech-
niques have been used to prepare ZnO thin films [14], such as magnetron sputtering [15],
chemical vapor deposition (CVD)/atomic layer deposition (ALD) [16–19], and chemical so-
lution deposition (CSD), including the sol−gel method [20]. These deposition methods are
vacuum-based deposition processes and are suitable for forming thin films. However, they
are inapplicable for our solution-based deposition technique, namely Ga-doping into ZnO
NPs. Several findings on thermal-diffusion-type Ga-doping using a multilayer system [21]
suggest the possibility of achieving Ga-doping of ZnO NPs with the thermal-diffusion
process. Based on this background, our group previously attempted to obtained Ga-doped
ZnO NPs using the thermal diffusion method with Ga2O3 NPs, and to form NP layers on
a glass substrate using the spray coating method [22]. Our Ga-doping process exhibited
significantly reduced resistance behavior when the temperature was 800 ◦C or greater;
however, detailed circumstances such as the effect of atmosphere on the thermal-diffusion
process and the doping mechanism were not clarified.

In this study, ZnO NPs were doped with Ga in a manner resembling thermal diffusion
using Ga2O3 NPs under various atmospheric conditions, and the mechanism of doping
behaviors for each atmospheric condition, namely open air, wet air, N2, O2, and dry air,
were clearly described using X-ray diffraction (XRD), photoluminescence (PL), and two-
probe (I–V) measurements. TFT-based structures were also tested to confirm the current
controllability with the gate electric field.

2. Materials and Methods

ZnO NPs were synthesized using an arc-discharge-mediated gas evaporation process.
In the arc plasma method [23], a commercially available zinc (4N) rod (metal Zn 99.99%,
The Nilaco Corporation, Ginza, Tokyo, Japan) was used as the zinc source, and dry air was
used as the oxygen source, while a carbon rod acted as the cathode. A schematic of the
ZnO NP fabrication process is shown in Figure 1a.
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An arc current of 20 A was produced and a rotary vacuum pump (ULVAC KIKO
Inc., Saito, Miyazaki, Japan) was used to maintain the pressure inside the chamber at
approximately 610 Torr. Dry air was flown through the chamber at 5 L/min using a flow
controller (KOFLOC (KOJIMA Instruments Inc.), Kyotanabe, Kyoto, Japan) (suppressing
the nitrogen doping mode). This fabrication condition yielded the lowest N2 concentration
of approximately 0.01 (wt.%), whereas the condition with an arc current of 60 A yielded the
highest N2 concentration of approximately 0.31 wt.% [24]. The aforementioned conditions
(610 Torr, 20 A) were used to fabricate n-type ZnO NPs (designated as-prepared ZnO),
which were the primary type of ZnO NPs used in this study. Ga-doping was carried out
by mixing 0.2 g of ZnO NPs with 0.06 g of Ga2O3 NPs (Sigma-Aldrich Co. Ltd. 99.99%
Purity) and annealing at 800 ◦C for 60 min in ambient air (high humid open air atmosphere)
containing atmospheric N2 and O2, wet air, pure N2, pure O2, and dry air (designated
“ZnO:Ga-open air”, “ZnO:Ga-wet air”, “ZnO:Ga-N2”, “ZnO:Ga-O2”, and “ZnO:Ga-dry air”,
respectively). Here, wet air refers to air with a humidity of approximately 100% generated
with water bubbling. Dispersions were prepared by dispersing 0.26 g of the aforementioned
annealed NPs in 10 g of water using an ultrasonic homogenizer (Iida trading co., Ltd.,
Yao-shi, Osaka, Japan) (150 W, 3 min) with a frequency of 20 kHz, and then centrifuging
them (3000 G, 1 min) to remove residual Ga2O3 NPs. This led to the successful removal of
almost all of the residual Ga2O3 particles and the precipitation of large ZnO NPs. Then, 7 mL
of the dispersion fluid was sprayed on a heated quartz substrate (hot plate temperature of
500 ◦C) at 5-s intervals for ~15 min. An airbrush spray coating method was used to sinter the
NPs and avoid agglomeration. A schematic of this process is presented in Figure 1b. Metal-
semiconductor (MES)-gate type TFT structures using ZnO NP layers as channel layers were
fabricated by Al evaporation (~50 nm) for the source (S) and drain (D) ohmic contacts,
and by sputtering for the Au Schottky electrode (~30 nm) gate. Figure 1c shows a schematic
of the MESFET structure used in this study. Al/Au electrodes with a width and distance
of 0.3 mm were constructed for the two-probe (I–V) measurements. To determine the
variation in sheet resistances and TFT performance, I–V measurements were acquired using
a shielding probe system and an E5270B precision measurement mainframe with an E5287A
Atto-level high-resolution SMU module (Keysight Technologies, Santa Rosa, California,
USA). The surface morphologies were observed using a field-emission scanning electron
microscope (FESEM; JSM-7001FA, JEOL, 5 kV, Akishima, Tokyo, Japan) and scanning
probe microscopy/dynamic force mode (SPM/DFM; SPM-9700, SHIMAZU). Powder X-ray
diffraction (SmartLab, Rigaku Corporation, λ = 0.154 nm, Austin, TX, USA) was used to
determine the crystallographic structure, whereas a Fluromax-4 spectrofluorometer (Horiba
Advanced Techno Co. Ltd. Kisshoin Minami-Ku, Kyoto, Japan) was used to measure the
photoluminescence (PL) with an excitation wavelength of 325 nm and exposure time
of 0.2 s.

3. Results and Discussion

Scanning electron microscopy (SEM) was used to analyze the surface morphologies of the
as-synthesized ZnO NPs (without centrifugal separation and before spraying), as-prepared
ZnO, ZnO:Ga-open air, and ZnO-open air layers, which are shown in Figure 2a–d, respectively.
Here, “as-prepared ZnO” indicates ZnO NPs that had not undergone the Ga-doping process,
and “ZnO-open air” indicates ZnO-NPs annealed in open air without Ga2O3 NPs, which
is a reference sample for comparing only the effects of heat treatment. From Figure 2a,
it can be seen that the obtained ZnO NPs exhibited different morphologies in each NP;
however, the basic shape was that of a hexagonal column. The surface morphology of the
NP-layer with as-prepared ZnO (Figure 2b) showed a higher density layer with smaller
NPs due to the centrifugal separation process. After Ga-doping (Figure 2c), the size of
the particles became large as the small particles were fused, and the particles seemed to
form a spherical shape due to the lowering of surface energy with Ga-diffusion. It was
confirmed that performing only thermal treatment without Ga2O3 NPs caused only the
enlargement of the particle size, while retaining the hexagonal column shape (Figure 2d);
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therefore, the variation of shape shown in Figure 2c indicates the existence of Ga in ZnO
NPs. Scanning probe microscopy/dynamic force mode (SPM/DFM) was used to confirm
the surface roughness of the as-prepared ZnO sample (as shown in Figure 3), yielding
a surface roughness of 178 nm (20 µm × 20 µm measured area). The size of the NPs
increased slightly after Ga-doping, which was attributed to the incorporation of smaller
NPs during annealing at high temperatures. However, the variations were negligible
(within 34 nm) compared to the original surface roughness, suggesting that the surface
roughness of the other Ga-doped ZnO NP surfaces was comparable to that of the as-
prepared ZnO.
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The electrical properties of the ZnO layers were measured using a two-probe method.
The sample was shielded from light by placing it in a shield box, and two probes were
placed in contact with the Al/Au electrodes to evaluate the conductivity of the sample
within a range of −10 V to 10 V. We used 0.3 mm × 0.3 mm square electrodes spaced
0.3 mm apart, so that the sheet resistance (Rs) could be obtained from the slope of the I–V
curves, calculated using Equation (1).

Rs =
RM × W

L
(1)

where RM is the measured resistivity, W is the width, and L is the distance. As for the
two-probe (I–V) measurement, the contact resistance is also a major issue in the achievement
of relatively low resistivity. The contact resistance (2Rc) was estimated using the transfer
length method (TLM) and the value was found to be about 140 Ω. Figure 4 shows the
distribution of sheet resistance values across different sprayed-NP layers. The average
sheet resistances of each of the samples are summarized in Table 1.
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Table 1. Average sheet resistance of each sprayed NPs layer.

Samples as-prepared ZnO Zno-open air Zno:Ga-open air ZnO:Ga-wet air ZnO:Ga-N2 ZnO:Ga-O2 Zno:Ga-dry air

Sheet
resistance (Ω/sq) 4.6 × 106 6.8 × 109 8 × 102 8.8 × 102 7.5 × 105 7.5 × 107 3.9 × 109

While several prior studies have demonstrated that the resistivity depends on the
annealing temperature [25], this study attempted to demonstrate that the resistivity induced
by Ga-doping depends on the annealing atmosphere. The resistivity distribution graph
clearly indicates that the lowest resistivity was obtained with ZnO:Ga-open air and ZnO:Ga-
wet air layers. The high resistivity of the ZnO-open air layer was retained after thermal
annealing without Ga diffusion, which can be explained generally by the reduction in
electron carriers with the re-oxidation of oxygen vacancies. Here, compared to the resistivity
of the ZnO-open air layer, all Ga-diffused samples showed a reduction in resistivity, and the
properties of the ZnO particles were influenced by the thermal diffusion of Ga. Specifically,
the resistance reduction for ZnO:Ga-open air and ZnO:Ga-wet air layers was significant,
and the resistance reached the order of kΩ/sq, whereas the other three types of layers
showed high resistivity. The ZnO:Ga-N2 layer showed a relatively low resistance value
compared to the ZnO-open air layer; however, this layer did not contain oxygen gas in
the thermal process, i.e., re-oxidation of oxygen vacancy could not occur. Consequently,
the resistance value of the ZnO:Ga-N2 layer should be compared to that of the as-prepared
ZnO. Therefore, as shown in Figure 4, only the ZnO:Ga-open air and ZnO:Ga-wet air layers
showed a substantial reduction in resistivity. The only plausible difference here is in the
level of humidity present during the Ga thermal diffusion process.
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Figure 5a shows the X-ray diffraction (XRD) patterns of the as-prepared ZnO, ZnO:Ga-
open air, ZnO:Ga-wet air, ZnO:Ga-N2, ZnO:Ga-O2, and ZnO:Ga-dry air layers. It can be
seen that all the NPs had a hexagonal wurtzite crystal structure [26,27], matching well with
the space group P63mc (No. 186, JCPDS No. 79-0208). Strong peaks at (100) and (101), along
with a weaker peak at (002), were observed in all of the samples. The as-prepared ZnO layer
had a high preferential orientation along the (100) plane. The crystalline dimensions of 2θ
along the a-axis and the c-axis were approximately 31.78◦ and 34.42◦, respectively, for all of
the samples. This indicates that the crystal structure of the sprayed layer was dependent on
its thermal atmosphere, whereas the strong (100) peak indicated that the deposited layers
had a preferred orientation with the a-axis perpendicular to the substrate [28]. The (002)
peak position (34.414◦) observed for all samples in this study was marginally lower than
the corresponding value (34.467◦) for bulk ZnO (COD 10 11 258) [29], which in turn was
owing to a deviation in the surface effects that caused lattice deformations and an increased
lattice constant along the c-axis [30]. The thermally Ga-diffused NP samples exhibited
a relatively high intensity, indicating improved crystallite growth and crystallinity. This
was partly because, at this annealing temperature, Ga3+ ions were incorporated into the
ZnO matrix as substitutional impurities on the Zn lattice sites [31].
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Figure 5. (a) X-ray diffraction patterns of spray coated NP layers, (b) the calculated crystallite size,
and (c) lattice constant for a and c value.

The crystallite size (D) of the sprayed layers was estimated from the FWHM values
based on the (100) peaks using Scherrer’s formula, as shown in Equation (2) [32], and the
results are shown in Figure 4b.

D =
0.9λ

βcosθ
, (2)

where λ is the wavelength of the incident XRD, β is the FWHM in radians, and θ is the
Bragg angle of the diffraction peak. The crystallite sizes of the samples are summarized
in Table 2.

Table 2. The crystallite sizes of each sprayed NPs layer.

Samples as-prepared ZnO Zno:Ga-open air ZnO:Ga-wet air ZnO:Ga-N2 ZnO:Ga-O2 Zno:Ga-dry air

Crystallite size
(nm) 41 103 88 42 54 55
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The crystallite sizes of the Ga-doped NPs increased during annealing, particularly
when annealing was performed in open air and in wet air. Owing to annealing, significant
crystallite development in nanoparticles occurs because the atoms move to an inclinable
position and then tend to combine with neighboring crystallites, resulting in the formation
of large crystallites. Comparatively, the crystallite size of the annealed NP layer was larger
than that of the as-prepared ZnO because of the smaller lattice distortion after annealing,
which is attributed to the similarity between the atomic radii of Ga and Zn [33]. Owing
to the smaller crystallite size of the sprayed NP layer, the density of boundaries between
the crystallites increased, leading to a higher resistivity of the conducting layer. After
annealing, the crystallite size increased, resulting in a decrease in crystallite boundaries
and reduced resistivity. Bragg’s law (2dsinθ = nλ) and the relationship formula (Equation
(3)) were used to obtain the lattice constants a and c [34].

1
d2

hkl
= [

4
3
(h2+k2+hk) + l2(

a
c
)

2
]

1
a2 (3)

where dhkl is the interplanar spacing calculated from Bragg’s equation, and h, k, and l
are the Miller indices. The lattice parameters usually depend on many variables such as
free-electron concentration, concentration of doping atoms, defects, the variation of ionic
radii of the substituted matrix ion, external strains on the substrate, and temperature. The
calculated lattice parameters for the as-prepared ZnO layer were found to be a = 3.2485
Å and c = 5.2057 Å, where the lattice constants range from 3.2475 to 3.2501 Å for the “a”
parameter and from 5.2042 to 5.2075 Å for the “c” parameter [35]. After thermal treatment
and Ga-doping, these values varied with the temperature and atmospheric conditions.
The calculated results for the lattice constant values in Å are shown in Figure 5c. The
lattice constant values of “a” and “c” showed a decreasing trend in ZnO:Ga-open air and
ZnO:Ga-wet air layers compared to those in the as-prepared ZnO. The smaller ionic radii
of Ga3+ (0.62 Å) compared to that of Zn2+ (0.74 Å) indicates that Ga atoms substitute
Zn atoms effectively [34]. Based on this consideration, the results also indicate that the
ZnO:Ga-O2 layer successfully achieved the Ga-doping effect; however, other factors such
as the high density of crystallite boundaries analyzed from the XRD spectrum and the low
crystallinity considered from the suppressed PL intensity described below degraded the
current transporting ability in the ZnO:Ga-O2 layer. Further investigation is required to
clarify how these mechanisms reduced the lattice constant of the ZnO:Ga-O2 layer.

The PL spectra of the as-prepared ZnO, ZnO:Ga-open air, ZnO:Ga-N2, ZnO:Ga-O2,
ZnO:Ga-wet air, and ZnO:Ga-dry air layers are comprised of ultraviolet (UV) emissions at
a wavelength of 376–384 nm and a broad emission band in the visible range at
450–550 nm, which are shown in Figure 6a. The variation of the UV peak positions is
also shown in the inset of Figure 6a. The enhanced UV emissions caused by the improve-
ment of the crystalline and the red-shift phenomena caused by exciton and donor–acceptor
(D–A) pair emissions were both observed in ZnO:Ga-open air and ZnO:Ga-wet air lay-
ers. These results could indicate an effective Ga-doping effect in these two samples,
where a substantial reduction in the sheet resistance values was also observed, as sum-
marized in Table 1. For the ZnO:Ga-dry air layer, the UV peak position also showed red-
shifting comparable to that for the ZnO:Ga-wet air layer, as shown in Figure 6a; however,
the luminescence intensity was small. This was caused by the existence of high-density
non-radiative recombination levels such as surface defects of the NPs, which can possibly
explain why the conductivity did not improve. The comparison of the surface state density
of the NPs will be a topic of future research. To investigate the defect mechanism involved,
the broad emission peaks were deconvoluted using the Gaussian function distribution,
as shown in Figure 6b–g. The number of native defects in numerous ZnO samples may
vary among samples, as it largely depends on the particular history of each sample, e.g.,
the synthesis method and thermal treatment. In fact, under different conditions (e.g.,
n-/p-type doping, annealing temperature/atmosphere/pressure, and Zn/O-rich), the
positions of the defect emission may change and may also combine several emissions.
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Based on the aforementioned considerations, we deconvoluted the PL spectra consisting
of four sub-bands located at 382 (±3) nm for UV, 449 (±5) nm for Zni, 477 (±3) nm for
VO, and 514 (±6) nm for VZn [36]. Although VO is a deep donor, its formation energy is
lower than that of Zni, which is a shallow donor in ZnO and, compared to all other native
defects in n-type ZnO, VZn is considered to be the most significant deep level acceptor [37].
Here, the ratio of VZn in the defect components was calculated as 81%, 65%, 5%, 43%,
and 46% for ZnO:Ga-open air, ZnO:Ga-wet air, ZnO:Ga-N2, ZnO:Ga-O2, and ZnO:Ga-dry
air, respectively. From these calculations, the ratios of VZn were found to be significantly
larger in ZnO:Ga-open air and ZnO:Ga-wet air compared to those in the other three con-
ditions. Several researchers have reported that the sublimation of Zn atoms occurred
when the ZnO material was annealed at a high temperature (700–900 ◦C) in an ambient
humid environment [38,39].
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Clearly, there was humidity (H2O) in the Ga diffusion process for the ZnO:Ga-open
air and ZnO:Ga-wet air conditions; therefore, the sublimation of Zn atoms and the effective
substitution of Ga atoms into the Zn sites could have occurred simultaneously. In contrast,
although sufficient Ga diffusion occurred in the other three conditions [22], Ga atoms could
not be introduced into a suitable site, and the crystallites of ZnO NPs were degraded. Based
on the XRD spectra in Figure 5a, the peak height ratios of (002) and (101) to (100) for the
ZnO:Ga-dry air, ZnO:Ga-O2, and ZnO:Ga-N2 layers differed from those of the ZnO:Ga-wet
air and ZnO:Ga-open air layers. The details are not yet clear; however, one possible reason
is that many diffused Ga atoms that could not substitute Zn sites prevented the coalescence
of crystallites. Therefore, the ambient humidity may be one of the key conditions for the
successful thermal diffusion of Ga atoms into ZnO NPs.

Here, the current controllability of TFT-based structure by the gate electric-field were
confirmed in Figure 7. Each TFT-based structure had a channel length of 450 µm and a gate
width of 300 µm. The gate current of the MESFET exhibits behavior that is similar to that
of a Schottky diode. The isolated work functions of the n-ZnO and gold (gate electrode)
were in very close proximity at approximately 4.2 and 5.1 eV, resulting in the creation of
a Schottky barrier along the channel [40]. The Schottky barrier between the Au gate elec-
trode and the ZnO NP layer was biased in the opposite direction for negative gate voltages,
and the gate current was approximately equal to the voltage-independent saturation current
of the Schottky junction. In a MESFET device, the density of free charge carriers (and there-
fore, the conductivity of the semiconductor) is determined by the depletion width of the
Schottky contact between the metal gate electrode and the semiconductor [41]. Figure 7a–d
shows the ID–VDS characteristics of the fabricated TFT-based structures whose channels
were made of as-prepared ZnO, ZnO:Ga-open air, ZnO:Ga-N2, and ZnO:Ga-O2 layers,
respectively. For all cases, the gate leakage current was confirmed to be sufficiently low,
on the order of 10−14 A. The ID–VDS results imply that, by using Ga-doped ZnO NP layers
(especially in ZnO:Ga-open air), the drain current is increased by at least 1000 times or more
compared with the as-prepared samples. The decrease in the drain current observed in
ZnO:Ga-N2 (10−6) and ZnO:Ga-O2(10−7) is consistent with the resistivity behavior graph
(shown in Figure 4). This suggests that the doped Ga atoms in the ZnO NPs act as activated
donors and generate carriers, effectively reducing the channel resistance. In addition,
clear electric field effects were also observed by varying the applied gate voltage (VG) for
all cases.
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When the gate voltage is zero (VG = 0 V), the highest drain current is observed, indicat-
ing that the device is typically ON. Furthermore, after applying the negative gate voltage
(−VG), the drain current decreases gradually, causing the depletion region to increase and
inhibit the electron flow in the conduction layer. If the gate voltage is sufficiently negative,
the device will turn OFF. These results strongly indicate the possibility of realizing TFT
devices using our Ga-doped ZnO NP layers.

4. Conclusions

Thermal diffusion-type Ga-doping processes were carried out on ZnO NPs with differ-
ent atmospheric conditions. Annealing atmospheres such as air and wet air conditions were
found to be the most effective at reducing the resistivity of the ZnO NP layers. The presence
of humidity (H2O) in Ga diffusion was observed to be one of the factors facilitating the
improvement. Throughout the PL and XRD studies, the impact of the ambient atmosphere
was fully outlined. These findings indicate that the lowest sheet resistance was attributed
to the improved crystallinity, and that the high Vzn ratio enhanced the current transporta-
tion ability of NPs layers. The current controllability was also confirmed by applying the
gate electric-field using TFT-based structures, suggesting the possible realization of TFT
operation using our unique Ga-doped ZnO NP layers.
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chemical vapour deposition. Thin Solid Films 2015, 576, 88–97. [CrossRef]
19. Illiberi, A.; Scherpenborg, R.; Wu, Y.; Roozeboom, F.; Poodt, P. Spatial Atmospheric Atomic Layer Deposition of AlxZn1–xO.

ACS Appl. Mater. Interfaces 2013, 5, 13124–13128. [CrossRef]
20. Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vetruyen, B. Optical and structural study of Ga and in co-doped ZnO films.

Colloids Surf. A Physicochem. Eng. Asp. 2017, 532, 357–362. [CrossRef]
21. Bhoomanee, C.; Ruankhama, P.; Choopun, S.; Prathan, A.; Wongratanaphisan, D. Effect of Al-doped ZnO for Electron Transporting

Layer in Planar Perovskite solar cells. Mater. Today Proc. 2019, 17, 1259–1267. [CrossRef]
22. Yoshida, T.; Maruful, I.M.; Fujita, Y. Trial of Ga-doping on ZnO Nanoparticles by Thermal Treatment with Ga2O3 Nanoparticles.

e-J. Surf. Sci. Nanotechnol. 2020, 18, 12–17. [CrossRef]
23. Senthilkumar, K.; Senthilkumar, O.; Morito, S.; Ohba, T.; Fujita, Y. Synthesis of zinc oxide nanoparticles by dc arc dusty plasma.

J. Nanoparticle Res. 2012, 14, 1205. [CrossRef]
24. Fujita, Y.; Moriyama, K.; Hiragino, Y.; Furubayashi, Y.; Hashimoto, H.; Yoshida, T. Electroluminescence from nitrogen doped ZnO

nanoparticles. Phys. Status Solidi 2014, 11, 1260–1262. [CrossRef]
25. Chin, H.-S.; Chao, L.-S. The Effect of Thermal Annealing Processes on Structural and Photoluminescence of Zinc Oxide Thin Film.

J. Nanomater. 2013, 2013, 424953. [CrossRef]
26. Chen, T.-H.; Liao, T.-Y. Influence of annealing temperature on the characteristics of Ti-codoped GZO thin solid film. J. Nanomater.

2013, 2013, 502382. [CrossRef]
27. Li, Z.-Z.; Chen, Z.-Z.; Huang, W.; Chang, S.-H.; Ma, X.-M. The transparence comparison of Ga- and Al-doped ZnO thin films.

Appl. Surf. Sci. 2011, 257, 8486–8489. [CrossRef]
28. Jun, M.-C.; Park, S.-U.; Koh, J.-H. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin

films. Nanoscale Res. Lett. 2012, 7, 639. [CrossRef]
29. Muchuweni, E.; Sathiaraj, T.; Nyakotyo, H. Synthesis and characterization of zinc oxide thin films for optoelectronic applications.

Heliyon 2017, 3, e00285. [CrossRef]
30. Liu, Y.; Shen, D.; Zhong, G.; Fan, X.; Kong, X.; Mu, R.; Henderson, D. Preferred orientation of ZnO nanoparticles formed by

post-thermal annealing zinc implanted silica. Solid State Commun. 2002, 121, 531–536. [CrossRef]
31. Yang, Q.; Zhang, X.; Zhou, X.; Liang, S. Growth of Ga-doped ZnO films by thermal oxidation with gallium and their optical

properties. AIP Adv. 2017, 7, 055106. [CrossRef]
32. Trinh, B.N.Q.; Chien, T.D.; Hoa, N.Q.; Minh, D.H. Solution-processable zinc oxide based thin films with different aluminum

doping concentrations. J. Sci. Adv. Mater. Devices 2020, 5, 497–501. [CrossRef]
33. Zhi, Z.Z.; Liu, Y.; Li, B.S.; Zhang, X.T.; Lu, Y.M.; Shen, D.Z.; Fan, X.W. Effects of thermal annealing on ZnO films grown by plasma

enhanced chemical vapour deposition from Zn(C2H5)2 and CO2 gas mixtures. J. Phys. D Appl. Phys. 2003, 36, 719–722. [CrossRef]
34. Mosquera, E.; Diosa, J.E. Luminescence of ZnO/MgO phosphors. Optik 2021, 243, 167416. [CrossRef]
35. Ozgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doğan, S.; Avrutin, V.; Cho, S.J.; Morkoç, A.H. A comprehensive
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