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Abstract: LiFePO4 (LFPO)has great potential as the cathode material for lithium-ion batteries; it has
a high theoretical capacity (170 m·A·h·g−1), high safety, low toxicity and good economic benefits.
However, low conductivity and a low diffusion rate inhibit its future development. To overcome
these weaknesses, three-dimensional carbon-coated LiFePO4 that incorporates a high capacity, su-
perior conductivity and low volume expansion enables faster electron transport channels. The use
of Cetyltrimethyl Ammonium Bromid (CTAB) modification only requires a simple water bath and
sintering, without the need to add a carbon source in the LFPO synthesis process. In this way, the
electrode shows excellent reversible capacity, as high as 159.8 m·A·h·g−1 at 2 C, superior rate capabil-
ity with 97.3 m·A·h·g−1 at 5 C and good cycling ability, preserving ~ 84.2% capacity after 500 cycles.
By increasing the ion transport rate and enhancing the structural stability of LFPO nanoparticles, the
LFPO-positive electrode achieves excellent initial capacity and cycle life through cost-effective and
easy-to-implement carbon coating. This simple three-dimensional carbon-coated LiFePO4 provides a
new and simple idea for obtaining comprehensive and high-performance electrode materials in the
field of lithium cathode materials.

Keywords: LiFePO4; CTAB-modified; lithium-ion batteries; cathode materials

1. Introduction

Nowadays, with the rapid and sustainable development of energy, people have
gradually shifted their attention from traditional fossil energy to new clean energy, and
lithium-ion batteries (LIB) being a form of this [1–7]. Over the past few decades, LIBs
have dominated the portable electronics market due to their much higher energy density
compared with other energy storage systems. They have been widely used in traffic
applications in hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV)
and electric vehicles (EV) to reduce environmental pollution, and further consideration
is being given to store and utilize intermittent renewable energy such as solar and wind
energy [8–11]. Since Padhi et al.’s groundbreaking report in 1997, LiFePO4 has attracted
significant attention and has been widely used as a LIB cathode material because of its
high theoretical capacity (170 m·A·h·g−1), high safety, low toxicity and the possibility of
good economic benefits [12–15]. However, further development has been limited due to
its low conductivity and slow lithium ion diffusion rate [16,17]. Researchers have made
substantial efforts to address this issue, such as cation doping [18], surface coating [19–24],
morphological control [25] and electrolyte modification [26].
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Recently, with the deepening of the understanding of electrode materials, it has been
found that the surface structure of electrode materials has an important effect on the
electrochemical performance of Li-ion batteries. Carbon coating can efficiently enhance
the conductivity of the electrode, improve the surface chemistry of the active substance
and protect the electrode from direct contact with the electrolyte, thus increasing the cycle
life of the battery. Carbon coating, together with nanotechnology, offers good electrical
conductivity and rapid diffusion of lithium ions, which also results in good rate capability.
Therefore, carbon coating is an efficient approach to promote the performance of electrode
materials for lithium-ion batteries. As a cathode material for lithium-ion batteries, LFPO
has a 500-billion market capacity, the third largest market capacity, but it has the key
problem of poor electrical conductivity. The addition of a conductive carbon layer can
significantly solve this problem; as previously reported [27–30], more graphene oxide
can be added as a conductive carbon layer. For example, Li [31] et al. used graphene-
modified LFPO to achieve a capacity of 208 m·A·h·g−1 beyond the theoretical capacity
at 0.1 C, and Park [32] et al. used graphene-modified LFPO to achieve a capacity of
171.9 m·A·h·g−1 above theoretical capacity at 0.1 C. However, the production of GO is
complex and dangerous, so it is imperative to find a method for the synthesis of conductive
carbon layers with good safety that is simple and allows for mass production. Therefore,
some researchers have begun exploring direct carbon coating. For example, Cui et al. [33]
use CTAB to achieve carbon coating of porous silicon micron-sized particles for lithium
battery anodes, Cheng et al. [34] use Bis-GMA to achieve carbon-coated NbO2 for lithium
battery anodes and Guo et al. [35] use PAN to achieve carbon-coated SnO2 for lithium
battery anodes.

Herein, we demonstrate that by using CTAB to obtain three-dimensional carbon-
coated LiFePO4, the performance of the electrode materials can be significantly enhanced.
The carbon layer at the surface of LiFePO4 nanoparticles was obtained from a simple
water bath and sintering. When used as the electrode material of LIBs, during the
charge/discharge process, the carbon layer can effectively inhibit the volume expansion of
LiFePO4 nanoparticles in the process of insertion/de-insertion [36]. A thin layer of carbon
covering the surface of LiFePO4 can remarkably improve the conductivity of the electrode
and speed up ion and electron transfer rates. In the meantime, the surface active sites of
LiFePO4 nanoparticles were increased by the covering of the carbon layer, thus increasing
the capacity even closer to 170 m·A·h·g−1. The electrode shows excellent reversible capac-
ity as high as 159.8 m·A·h·g−1 at 2 C, good rate capability with 97.3 m·A·h·g−1 at 5 C and
prominent cycle ability, preserving ~84.2% capacity after 500 cycles. As shown in Table
S1 [27,30,37–41], we compared the capacity of our 3D carbon-modified LFPO with that of
other published materials, and it is clear that our material performs an excellent capacity
at a relatively high current density, while the synthesis method is relatively simple. The
three-dimensional carbon-coated LiFePO4 is regarded as a promising electrode material
for LIBs.

2. Materials and Methods
2.1. Materials Synthesis

LiFePO4 and CTAB were purchased from Sinopharm Chemical Reagent Co. Ltd., (Shang-
hai, China) at analytical grade. All chemicals were used as received without further treatment.
For a representative synthesis, 5 g LiFePO4 and 0.75 g CTAB were added into 100 mL of H2O
at 80 ◦C under vigorous stirring for 8 h. After reaction, the precipitates were collected and
cleaned thoroughly, followed by drying in a ventilated drying oven at 80 ◦C for 24 h. Finally,
the obtained product was further annealed at 500 or 800 ◦C for 3 h in N2 with a ramping
rate of 2 ◦C·min−1 and furnace-cooled to room temperature to obtain the target samples.
We defined LiFePO4 without CTAB as LFPO, added 0.75 g (mass fraction 15%) of CTAB at
sintering temperature of 500 ◦C as LFPO_15%_500 ◦C and added 0.75g (mass fraction 15%)
of CTAB at sintering temperature of 800 ◦C, defined as LFPO_15%_800 ◦C. We also prepared
LFPO_5%_500 ◦C and LFPO_5%_800 ◦C, LFPO_10%_500 ◦C and LFPO_10%_800 ◦C and
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LFPO_20%_500 ◦C and LFPO_20%_800 ◦C in the same way. (In order to avoid ambiguity, we
have explained the definitions of various abbreviations in Tables S3 and S4.)

2.2. Characterization

X-ray diffraction (XRD) data were collected using Cu Kα radiation (λ = 1.5418 Å)
in the 2θ (5◦–90◦) at room temperature by a Bruker D8 Discover X-ray diffractometer
(Bruker, Karlsruhe, Germany). Field-emission scanning electron microscopy (FESEM) and
energy dispersive X-ray spectra (EDS) were recorded by JEOL-7100F (JEOL, Tokyo, Japan).
Brurauer–Emmerr–Teller (BET) surface areas were tested with a micromeritics TriStar II
Surface Area (Micromeritics, Norcross, GA, USA) and Porosity by adsorption of nitrogen at
80 ◦C. Transmission electron microscopy (TEM) and high-resolution transmission electron
microscopy (HRTEM) images associated with selected area electron diffraction (SAED)
were collected by a JEM-2100F microscope (JEM, Tokyo, Japan).

2.3. Electrochemical Measurements

The 2016 coin batteries were assembled in a glove box filled with argon. In lithium half
batteries, lithium metal was used as the anode, 1 M solution of LiPF6 in ethylene carbonate
(EC)/dimethyl carbonate (DMC) (EC:DMC = 1:1, w%) was used as the electrolyte and
glass fiber (GF/A) from Whatman was used as the separator. The working electrode was
prepared by mixing the as-synthesized samples with carbon black and polyvinylidene fluo-
ride (PVDF) in a weight ratio of 70:20:10. After coating it with aluminum foil, the electrode
film was uniformly cut into circular slices over an area of ~0.4 cm2 and a mass loading of
1.0–2.5 mg·cm−2. Galvanostatic charge/discharge measurements were performed at a
potential window ranging from 2.5–4.2 V (vs. Li+/Li) using a multi-channel battery testing
system by LAND CT3001A (LAND, Wuhan, China). The test current is represented by
C, 1 C = 170 mA·g−1. Cycle voltammetry (CV) and Electrochemical Impedance Spectra
(EIS) were performed using an electrochemical workstation by CHI 760E (CHI, Shanghai,
China). The EIS test frequency range was 0.01–100 kHZ, amplitude was 5 mV and the
initial voltage was the open-circuit voltage of the battery. All tests were performed at room
temperature. We show more detailed test standard parameters in Table S5 and in order to
demonstrate the electrochemical measurements more clearly, we show the physical picture
of the test in Figure S10.

3. Results and Discussion

Figure 1a depicts the X-ray diffraction patterns (XRD) of LFPO, LFPO_15%_500 ◦C and
LFPO_15%_800 ◦C. Sharp diffraction peaks could be consistent in patterns corresponding
to highly crystalline structures. All the main peaks could be well-matched to the monoclinic
layered structure LiFePO4 (JCPDS No. 01-081-1173); the lattice parameters are refined
to be a = 10.3320 Å, b = 6.0100 Å and c = 4.6920 Å with α = β = γ = 90◦, corresponding
with a space group of P62. When the pure-LFPO nanoparticles were coated with carbon
which was sintered by CTAB, the structure of the nanoparticles was preserved with a peak
belonging to LFPO. These results demonstrate that carbon sintered by CTAB not only does
not change the crystalline phase of LFPO, but also provides a protective layer for LFPO
nanoparticles to inhibit volume expansion and improve electrical conductivity.

The LFPO crystal has a layered structure consisting of FeO6 octahedra and PO4
tetrahedra and an oxygen atom point-shared with neighboring PO4 tetrahedra and FeO6
octahedral, as shown in Figure 1b. The lithium atoms are sandwiched between these FeO6
octahedra and PO4 tetrahedra. The O atoms in LFPO are in a single configuration which
is surrounded by 1 Fe and 1 P. In some lithium-based oxide cathode materials, one of
the reasons for structural degradation is the movement of metal ions from the octahedral
to a tetrahedral site. Since the thin carbon layer can protect the LFPO, the volume of
carbon-coated LFPO is probably free from the migration of the Li ion.



Coatings 2021, 11, 1137 4 of 11Coatings 2021, 11, 1137 4 of 11 
 

 

 
Figure 1. (a) XRD patterns of LFPO, LFPO_15%_500 °C and LFPO_15%_800 °C, (b) Schematic illustrations of the crystal 
structure of LiFePO4 (purple ball: Li, pink ball: O, blue octahedron: FeO6 and yellow tetrahedron: PO4). 
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surface of particles began to become rough and was covered with a small amount of 
floccule (Figure 2b). When increasing the annealing temperature to 800 °C, it is clear that 
the surface of particles became rougher and was covered in a great deal of flocculent 
substance (Figure 2c). It can be seen that when the CTAB doping amount is 15%, the 
floccule on the surface of LFPO nanoparticles increases with the increase of the sintering 
temperature. In order to verify whether the flocculent substance is carbon, the EDS test 
was performed on LFPO_15%_800 °C, as shown in Figure 2d–f. Observation from the EDS 
image shows that the surface of LFPO nanoparticles is covered with a layer of carbon, 
which can be seen from the brightness of EDS as a carbon layer and their even distribution 
on the surface of the LFPO. At the same time, EDS also shows the uniform distribution of 
P, O and Fe (Li cannot be detected due to its relatively small molecular mass), indicating 
that the addition of a carbon layer does not impact the structure of LFPO nanoparticles. 
As can be seen from Figure 2g–i, N2 adsorption–desorption measurements indicated that 
LFPO_15%_800 °C has a BET surface area of ∼21.0 m2 g−1 (Figure 2i) bigger than that of 
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surface area increases with the rise of temperature. The test results of BET correspond well 
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Figure 1. (a) XRD patterns of LFPO, LFPO_15%_500 ◦C and LFPO_15%_800 ◦C, (b) Schematic illustrations of the crystal
structure of LiFePO4 (purple ball: Li, pink ball: O, blue octahedron: FeO6 and yellow tetrahedron: PO4).

We characterized the individual SEM images of the pure LFPO, LFPO_15%_500 ◦C and
LFPO_15%_800 ◦C (Figure 2a–c). For the pure LFPO, the morphology is of regular shape with
a particle size of 100–300 nm (Figure 2a), and LFPO nanoparticles have a fairly smooth surface.
As depicted in Figure 2b,c, when the annealing temperature is 500 ◦C, the surface of particles
began to become rough and was covered with a small amount of floccule (Figure 2b). When
increasing the annealing temperature to 800 ◦C, it is clear that the surface of particles became
rougher and was covered in a great deal of flocculent substance (Figure 2c). It can be seen
that when the CTAB doping amount is 15%, the floccule on the surface of LFPO nanoparticles
increases with the increase of the sintering temperature. In order to verify whether the floc-
culent substance is carbon, the EDS test was performed on LFPO_15%_800 ◦C, as shown in
Figure 2d–f. Observation from the EDS image shows that the surface of LFPO nanoparticles
is covered with a layer of carbon, which can be seen from the brightness of EDS as a carbon
layer and their even distribution on the surface of the LFPO. At the same time, EDS also
shows the uniform distribution of P, O and Fe (Li cannot be detected due to its relatively small
molecular mass), indicating that the addition of a carbon layer does not impact the structure
of LFPO nanoparticles. As can be seen from Figure 2g–i, N2 adsorption–desorption measure-
ments indicated that LFPO_15%_800 ◦C has a BET surface area of ∼21.0 m2·g−1 (Figure 2i)
bigger than that of LFPO (~16.0 m2·g−1, Figure 2g) and LFPO_15%_500 ◦C (~17.2 m2·g−1,
Figure 2h). BET surface area increases with the rise of temperature. The test results of BET
correspond well with SEM and EDS. With the increase of the carbon layer, the BET surface
area does increase, indicating that the carbon layer coating the LFPO has a significant ef-
fect. As shown in Figure S1 from the BET surface areas of LFPO_5%_500 ◦C (~16.0 m2·g−1,
Figure S1a) and LFPO_5%_800 ◦C (~15.2 m2·g−1, Figure S1d), LFPO_10%_500 ◦C
(~16.4 m2·g−1, Figure S1b) and LFPO_10%_800 ◦C (~16.1 m2·g−1, Figure S1e), LFPO_20%_
500 ◦C (~15.4 m2·g−1, Figure S1c) and LFPO_20%_800 ◦C (~18.8 m2·g−1, Figure S1f), it is not
hard to see that the doped CTAB and the sintering temperature must be suitable to increase the
BET surface area and thus the capacity. At the same time, TEM, HRTEM and corresponding
SAED tests were also performed to further observe the carbon layer on the surface of LFPO
nanoparticles. As shown in Figures 3a–c and S2a, the surface of LFPO nanoparticles is sur-
rounded by a thin layer of carbon flocculation, and the thickness gradually increases with
the increase of temperature. Through HRTEM of LFPO, LFPO_15%_500 ◦C and LFPO_15%_
800 ◦C in Figures 3d–f and S2b, it can be further observed that through three-dimensional
carbon coating, the carbon layer on the surface of LFPO nanoparticles increases from 0 to
5 nm and then to 8 nm, indicating that the carbon layer covering is indeed realized. The corre-
sponding selected area electron diffraction (SAED) patterns in the illustrations in Figure 3d,f
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represent the single crystallinity of LFPO and that carbon coating does not change the lattice
orientation of LFPO nanoparticles. As shown in Figure S3, it can be clearly seen that with
the increase of temperature, the mass loss rate of LFPO increases, indicating that the amount
of carbon on the surface of LFPO increases. According to previous reports, [42–45] at about
400 ◦C, LiFePO4 will be oxidized into Li3Fe2(PO4)3 and Fe2O3, resulting in a mass increase.
Therefore, the TG curve will rise first and then decline, and the declining part represents the
content of carbon. According to the results of TEM and TGA, we conclude that the thickness
of the carbon layer increases with the increase of the sintering temperature. All these results
show that CTAB-modified LFPO can indeed achieve three-dimensional carbon-coated LFPO
and improve the BET surface area.
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Figure 2. FESEM images of (a) LFPO, (b) LFPO_15%_500 ◦C and (c) LFPO_15%_800 ◦C; Elemental mapping images
of (d–f) LFPO_15%_800 ◦C; Nitrogen adsorption–desorption isotherms of (g) LFPO, (h) LFPO_15%_500 ◦C and
(i) LFPO_15%_800 ◦C.

Coin-type cells are assembled to investigate the lithium storage performances. CV
curves of LFPO, LFPO_15%_500 ◦C and LFPO_15%_800 ◦C are measured at a scan rate of
0.1 mV·s−1 from 2.5 to 4.2 V (vs. Li+/Li) at room temperature (Figure 4a). Generally speak-
ing, three samples exhibit semblable CV curves, implying their identical electrochemical
behaviors. The CV curves show that the reduction peaks appear at ~3.6 V, corresponding
to the reduction of the formation of a solid electrolyte interphase (SEI) layer. One oxidation
peak at ~3.3 V can be observed which may be imputed to the oxidation of Li to Li+. The
areas of CV curves for LFPO_15%_800 ◦C are larger than LFPO and LFPO_15%_500 ◦C,
indicating the higher capacity of LFPO_15%_800 ◦C. Figure S4 shows the typical CV curves
of LFPO_15%_800 ◦C at various scan rates from 0.1 to 1.0 mV·s−1 in a voltage range of 2.5 to
4.2 V. The CV curves exhibit a similar shape, demonstrating that the lithiation/de-lithiation
processes are highly reversible with few side reactions.
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Figure 4. (a) Cycle voltammograms at a scan rate of 0.1 mV·s−1 in a voltage range of 2.5 to 4.2 V. (b) Cycle performance of
LFPO, LFPO_15%_500 ◦C and LFPO_15%_800 ◦C at 2 C. (c) Galvanostatic charge and discharge curves of LFPO_15%_800 ◦C at
the current of 2 C. (d) Rate performance of LFPO_15%_800 ◦C at rates of 0.1, 0.2, 0.5, 1, 2, 5 C and back to 0.1 C. (e) Cycling
performance of LFPO, LFPO_15%_500 ◦C and LFPO_15%_800 ◦C measured at a current density of 5 C.
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When the current density is 2 C, the first discharging capacity of LFPO_15%_800 ◦C is
159.8 m·A·h·g−1 with the initial coulombic efficiency of ~75%. Although the initial coulomb
efficiency is only 75%, it increases with the charging and discharging process. As shown
in Figure S5, good coulomb efficiency is achieved at different C rates. With the increase of
the number of cycles, the capacity gradually stabilized and reached 156.9 m·A·h·g−1 after
100 cycles, showing a good cycling capacity (Figure 4b). However, the first discharging capacity
of LFPO_15%_500 ◦C is 121.6 m·A·h·g−1 and reached 111.2 m·A·h·g−1 after 100 cycles; the
first discharge capacity of LFPO is even lower, being only 103.9 m·A·h·g−1, and reached
100.0 m·A·h·g−1 after 100 cycles. The high electrode capacity of LFPO_15%_800 ◦C is probably
because of (i) the carbon layer covering the surface of LFPO nanoparticles, which enhances the
integral conductivity, and (ii) the carbon layer on the surface of LFPO nanoparticles inhibiting
the volume expansion between Li insertion/de-insertion processes [21,27,28,43]. Therefore,
the capacity is even closer to 170 m·A·h·g−1. It should be noted that LFPO_15%_500 ◦C
exhibits capacity behavior and coulombic efficiency similar to LFPO_15%_800 ◦C. This result
indicates that carbon coating can also be achieved at 500 ◦C, which improves the battery
capacity and stability. It may be because the carbon layer is closely covered, so the BET area
does not increase significantly. This is also confirmed by the charging-specific capacity at
5 C current density (Figure S6); LFPO_15%_500 ◦C and LFPO_15%_800 ◦C have a similar
specific capacity and are both higher than LFPO. As shown in Figure S7, we also tested the
cycling performance of LFPO_5%_500 ◦C and LFPO_5%_800 ◦C, LFPO_10%_500 ◦C and
LFPO_10%_800 ◦C and LFPO_20%_500 ◦C and LFPO_20%_800 ◦C at 2 C current densities.
Their capacity performance corresponds to the size of the BET surface area. Their capacity
corresponds to the BET surface area. The larger the BET surface area, the higher the specific
capacity. It can be seen that the BET surface area does not increase with the increase of
sintering temperature [46,47], nor is a higher CTAB doping amount [48] better. LFPO_10%_
500 ◦C and LFPO_20%_800 ◦C are higher than LFPO, LFPO_5%_500 ◦C and LFPO_10%_
800 ◦C are close to LFPO and LFPO_5%_800 ◦C and LFPO_20%_500 ◦C are lower than LFPO.
This also indicates that only can the sintering temperature and the CTAB doping amount’s
effective collocation have a good and specific capacity gain effect. Figure 4c shows the charging
and discharging voltage platform of LFPO_15%_800 ◦C, with the discharging platform at
~3.3 V and the charging platform at ~3.5 V. Moreover, each cycle platform is similar and
each circulation platform corresponds well to the redox peak in Figure 4a, indicating its good
cycling stability. The same is true for LFPO and LFPO_15%_800 ◦C in the case of 2 and 5 C
(Figures S8 and S9).

The average charge capacities of 164, 150, 151, 138, 125 and 97 m·A·h·g−1 are ob-
tained for LFPO_15%_800 ◦C at rates of 0.1, 0.2, 0.5, 1, 2 and 5 C, respectively (Figure 4d).
Remarkably, when the current density returns to 0.1 C, it also indicates a capacity of up
to 169 m·A·h·g−1. This performance demonstrates the excellent high-rate capability and
outstanding cyclability of the LFPO_15%_800 ◦C. Besides superior specific capacity and
good rate capability, LFPO_15%_800 ◦C and LFPO_15%_500 ◦C also show excellent cycling
performance (Figure 4e). After 500 cycles, LFPO_15%_800 ◦C maintains a good capacity
of 100.5 m·A·h·g−1 at a current density of 5 C and maintains ~84.2% of the first cycle
discharge capacity, corresponding to a capacity decay of 0.0316% at each cycle. All these
results show that LFPO nanoparticles can bind tightly to the carbon layer and greatly
improve the overall cycling stability. This is because LFPO nanoparticles are uniformly
fixed and firmly connected to the CTAB sintered nanofibers, resulting in a process of charge
and discharge and an adaptive three-dimensional grid structure with strain relaxation
ability formed to stabilize the charge and discharge cycles.

In Figure 5a, we can clearly see that a modified LFPO battery can light up 51 LED
lights with CUG in the row. It is safe to say that the modified LFPO battery maintained
high power, high capacity and high stability well during the charging/discharge pro-
cess. Nyquist plots (Figure 5b) present a semicircle and a quasi-straight line, which are
associated with the charge transfer resistance (Rct) and the impedance of Li+ diffusion
in solid materials (Warburg impedance, Zw), respectively. The specific fitting data of
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EIS is presented in Table S2; the Rct of LFPO_15%_500 ◦C and LFPO_15%_800 ◦C are
lower than those for LFPO and the Zw of LFPO_15%_500 ◦C and LFPO_15%_800 ◦C are
higher than those for LFPO, indicating that the electronic transmission capability of the
LFPO_15%_500 ◦C and LFPO_15%_800 ◦C electrodes are superior to LFPO. Based on
the data obtained from the EIS test, the diffusion coefficient values of the lithium ions
(D) can be calculated using the formula D = 0.5 (RT/AF2σwC)2, where R is the gas con-
stant, T is the temperature, A is the area of the electrode surface, F is Faraday’s constant,
σw is the Warburg factor and C is the molar concentration of Li ions [49]. The calcu-
lated lithium diffusion coefficient value for LFPO is 5.9 × 10−13 cm2·s−1, LFPO_15%_
500 ◦C is 8.9 × 10−13 cm2·s−1 and LFPO_15%_800 ◦C is 3.36 × 10−12 cm2·s−1. It is obvi-
ous that the lithium diffusion coefficient values of LFPO_15%_500 ◦C and LFPO_15%_
800 ◦C are much higher than that of LFPO. The results show that the three-dimensional
carbon-coated LFPO can improve the lithium ion diffusion rate, which can improve the
specific capacity of LFPO.
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4. Conclusions

In this work, three-dimensional carbon-coated LFPO was successfully fabricated
through a facile water bath and a calcination method. The LFPO and CTAB formed a
thin carbon layer on the LFPO surface by N2 sintering after the water bath, thereby en-
hancing the conductivity of the electrode. The electrochemical mechanisms of LFPO and
modified LFPO were investigated. As a cathode material for LIBs, the modified LFPO ex-
hibited excellent specific capacity (159.8 m·A·h·g−1 at 2 C), extraordinary rate performance
(97.3 m·A·h·g−1 up to 5 C) and ultralong cycling stability (~84.2% maintained even after
500 cycles at 5 C). Such mesmerizing performances are ascribed to (i) the carbon layer
covering the surface of LFPO nanoparticles, which enhances the integral conductivity, and
(ii) the carbon layer on the surface of LFPO nanoparticles inhibiting the volume expansion
between Li insertion/de-insertion processes. It can be seen that LFPO cathode can achieve
good initial capacity and cycle life by carbon coating, which is cost-effective and easy to
realize. This work suggests that using a carbon layer covering to modify electrode material
is a promising strategy for obtaining high comprehensive performance electrode materials
in the field of lithium cathode materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/coatings11091137/s1, Table S1: Specific capacity of different cathode materials for lithium-ion batteries,
Table S2: Fitting data of LFPO, LFPO_15%_500 ◦C and LFPO_15%_800 ◦C equivalent circuit components,
Table S3: The definitions of Nomenclature, Greek symbols, subscripts, superscripts, and acro-nyms,
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Figure S4: Cyclic voltammograms of LFPO_15%_800 ◦C at various scan rates from 0.1 to 1.0 mV s−1 in a
voltage range of 2.5–4.2 V, Figure S5: Coulomb efficiency at all C rates, Figure S6: Cyclic performance
of LFPO, LFPO_15%_500 ◦C and LFPO_15%_800 ◦C at 5C, Figure S7: (a) Cyclic performance of LFPO,
LFPO_5%_500 ◦C, LFPO_10%_500 ◦C and LFPO_20%_500 ◦C at 2C; (b) Cy-clic performance of LFPO,
LFPO_5%_800 ◦C, LFPO_10%_800 ◦C and LFPO_20%_800 ◦C at 2C, Figure S8: Galvanostatic charge and
discharge curves of (a) LFPO and (b) LFPO_15%_500 ◦C at the current of 2C, Figure S9: Galvanostatic
charge and discharge curves of (a) LFPO, (b) LFPO_15%_500 ◦C and (c) LFPO_15%_800 ◦C at the current
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