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Abstract: This paper presents the results of a study on the high-temperature oxidation characteristics
after mechanical and laser removal of TA15 titanium alloy oxide film. The morphology, components,
and roughness of the surface were characterized by scanning electron microscope (SEM), X-ray
diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and laser confocal microscope (OM). The
oxide film can be effectively removed with mechanical grinding and laser cleaning, and the oxide
film after mechanical grinding is thicker and looser than that of after laser cleaning. The oxide film is
principally composed of TiO2, Ti2O3 and TiO. Besides, there is a small amount of aluminum oxide on
the surface. The surface after mechanical grinding was rougher than that of after laser cleaning. Thus,
this work indicates that laser can not only clean the oxide film completely, but also strengthen the
surface, which is a promising way to favor the widespread application of laser cleaning technology.

Keywords: high-temperature oxidation; mechanical grinding; laser cleaning; surface roughness;
titanium alloy

1. Introduction

Titanium, a very reactive metal, is easy to form oxide film with, which has characteris-
tics of being thin, stable, adherent and compact, and is often applied in aerospace, chemical,
medical and electrochemical industries [1–4]. However, the oxide film on titanium alloy will
be formed during long-term storage and high-temperature forming for strong oxidation
diffusion ability [5]. Joanna Małecka [6] researched the kinetics of oxidation and the oxide
scale morphologies on Ti2AlNb at 700 and 800 ◦C in air, and the oxide film is composed of
TiO2 and Al2O3. R. Mythili [7] studied the corrosion mechanism of the Ti–5%Ta–1.8%Nb
alloy passive oxide film, and the component of passive oxide film is anatase-TiO2 and a
small amount of Nb2O5 and Ta2O5. Kai Ma [8] obtained the ideal cutting temperature range
by studying the oxidation mechanism of biomedical titanium alloy. I. Jouanny [9] found
that the anatase-TiO2 film could be the best candidate as a titanium oxide intermediate
layer between hydroxyapatite and titanium alloy in the field of biomedical implants. Y.
Tanaka [10] searched that the oxide film of Ti–29Nb–13Ta–4.6Zr was a Ti, Nb, Ta and Zr
very thin composite oxide. Maja Voncina [11] analyzed the oxidation resistance of titanium
alloys. The Al and V can improve oxidation resistance. Soon Yong Park [12] proved Al, Nb
and Si to increase the oxidation resistance of Ti–44Al–6Nb–2Cr–0.3Si–0.1C alloy, and Nb,
Cr and Si have tended to segregate the oxide scale-matrix interface. Dongjun Wang [13]
investigated the oxidation behaviors of the TA15 titanium alloy and TiBw/TA15 composite
in the temperature range of 873–1073 K, and TiBw/TA15 composite exhibited a higher
oxidation resistance than TA15. It is of great significance to study the oxidation properties
of titanium alloy for its subsequent application.

Coatings 2021, 11, 1090. https://doi.org/10.3390/coatings11091090 https://www.mdpi.com/journal/coatings

https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings11091090
https://doi.org/10.3390/coatings11091090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/coatings11091090
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings11091090?type=check_update&version=2


Coatings 2021, 11, 1090 2 of 14

Laser cleaning, which was often used to remove oxide film, paint, rust and microor-
ganism, is a new green and efficient cleaning technology. Aniruddha Kumar [14] applied
pulsed fiber laser to clean the Ti–3Al–2.5V tubes for welding. The tube surface micro-
hardness was improved after laser cleaning. Yao Lu [15] found that the surface roughness
and corrosion resistance of the AH36 steel were, respectively, reduced and increased after
laser cleaning. Ze Tian [16,17] obtained superhydrophobicity and an antibacterial surface
with laser cleaning micro-biofoulings from the aluminum alloy. Tianyi Shi [18] applied a
120 W mopa pulsed fiber laser to remove the oxide film on aluminum alloy, and the tensile
and bending properties were improved. Qiyu Gao [19] analyzed the adhesive bonding ten-
sile properties of residual resin and surface energy by controlling the ultraviolet (UV) laser
cleaning the carbon fiber resin matrix reinforced polymer (CFRP). Laser cleaning is benefi-
cial to improve the bonding properties of CFRP sheets. Buxiang Zheng [20] successfully
used ultra-fast laser pulses to produce the self-cleaning property of a micro/nanostructured
surface. Shusen Zhuang [21] studied the corrosion properties of bare carbon steel plates
after laser cleaning. The corrosion resistance of carbon steel plates was improved for denser
iron oxide formed when higher laser power density was irradiated. Bowen Liu [22] stud-
ied how the wear resistance of material was strengthened by grain refinement after laser
cleaning. The surface after laser cleaning often has high wear resistance, hydrophobicity
and hardness. Besides, surface roughness after laser cleaning played an important role in
the machinability and corrosion resistance of materials. Roughness is usually represented
by average surface roughness (Ra), the average height of element of roughness profile (Rc)
and the maximum height of roughness profile (Rz) [23]. The height change of the surface
profile has a direct impact on the change of surface roughness [24]. However, there is no
detailed study on the oxidation resistance of the material surface by laser cleaning. The
oxidation behavior between mechanical grinding and laser cleaning was also not reported.

In our paper, we first applied silicon carbide (SiC) paper and laser to remove natural
oxide films on TA15 titanium alloy. Then, the samples, after removing oxide film, were
heated at 800 ◦C in air for different times. Finally, the composition and morphology of
oxide film was analyzed with a scanning electron microscope (FE-SEM), X-ray diffraction
(XRD), X-ray photoelectron spectroscopy (XPS) and a laser scanning confocal microscope
(OM). Then, the surface oxidation behavior of titanium alloy after mechanical grinding and
laser cleaning was analyzed.

2. Materials and Methods

The material used in this experiment is TA15 titanium alloy (Ti-89.5 wt.%, Al-6.5 wt.%,
Mo-1 wt.%, V-1 wt.%, Zr-2 wt.%) sheets. The TA15 sample, with initial oxide film after
long-term storage, was trimmed into fifty-six pieces samples (20 mm × 20 mm × 2 mm).
The twenty-eight samples were abraded with silicon carbide (SiC) paper, successive grades
from 200 to 2000, grit to remove oxide film (mechanical grinding). The other samples were
cleaned, the oxide film from TA15 titanium alloy by nanosecond pulse laser. The laser
cleaning system used an IPG ytterbium pulsed laser (IPG Photonics, Oxford, Ma, USA)
as the laser source, with a 100 ns pulse duration, 1064 nm wavelength, 500 W power and
20 kHz repetition rate. Then, all samples were ultrasonically cleaned in ethanol solution,
degreased in alkaline, rinsed in deionized water and retained after vacuum drying. Finally,
the samples were continuously heated and oxidized in air at 800 ◦C isothermal conditions
tubular furnace. The four samples were taken out and tested at oxidation time of 0.5, 1, 2, 4,
6, 8 and 10 h after mechanical grinding and laser cleaning, respectively. The experimental
scheme is shown in Figure 1.
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Figure 1. Schematic diagram of experimental scheme.

The surface morphology and oxide film thickness of samples were observed by means
of laser scanning confocal microscope (OM, Olympus, Tokyo, Japan) and scanning electron
microscope (FE-SEM, Quanta 200FEG, FEI, Hillsboro, OR, USA). The phase composition
and changes of the surface in the elemental contents were measured by X-ray diffraction
(XRD, Empyrean, Panalytical, Almolo, Holland) and X-ray photoelectron spectroscopy
(XPS, ESCALAB 250Xi, ThermoFisher, Waltham, MA, USA). The high-temperature ox-
idation behavior of TA15 titanium alloy was studied by comparing the changes of ox-
ide film composition and morphology after oxidation. Vickers microhardness was mea-
sured by digital microhardness tester (HVS-1000A, Laizhou Huayin Instrument Co., Ltd,
Laizhou, China).

3. Results
3.1. Surface Morphology Analyses

Figure 2a displays surface morphology of original samples. There are lots of particles
and pits on the surface, and the subsequent forming of materials will be unsatisfactory.
Figure 2b,c show the surface topography of TA15 titanium alloy after original oxide film
was removed by mechanical and laser treatment, respectively. The scratches were formed
on the TA15 titanium alloy surface after silicon carbide (SiC) paper removal of the original
oxide film. However, the surface is smooth without damage material for laser cleaning.

Figure 2. Surface morphology of TA15 titanium alloy: (a) Original sample (b) mechanical grinding,
(c) laser cleaning.

The surface morphologies of TA15 titanium alloy sheets after high-temperature oxi-
dation that have been, respectively, treated with mechanical and laser to remove original
oxide film are shown in Figure 3. For mechanical grinding, the lamellar structure is formed
after oxidation for 0.5 h heating at 800 ◦C, then continues to grow by increasing oxidation
time. The granular structure will appear on the surface as the oxidation time increases
to 2 h. The surface oxide film will produce acicular structure at 6 h, so the oxide film
porosity was increased. The surface acicular and laminar structure continues to grow,
then forms a porous structure in Figure 3e. However, the oxide film continues to grow
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and the porosity decreases in Figure 3f. Compared with mechanical grinding, uniformly
distributed particles formed on the surface after laser cleaning for 0.5 h at 800 ◦C, and
there is no acicular structure during the growth of oxide film. The material surface does
not easily form a lamellar structure in a short time. With the increase of heating time,
the surface oxide particles increase continuously, and formed lamellar structure or large
particle structure in Figure 3j,l.

Figure 3. Microscopic SEM images of the removal oxide film surfaces with different heating times:
(a–f) mechanical grinding, (a) 0.5 h, (b) 1 h, (c) 2 h, (d) 4 h, (e) 6 h and (f) 8 h; (g–l) laser cleaning,
(g) 0.5 h, (h) 1 h, (i) 2 h, (j) 4 h, (k) 6 h and (l) 8 h.

3.2. Section Analyses

Figure 4 shows the cross-section morphology of the oxide film with different removal
methods. With the increase of oxidation time, the thickness of the oxide film was increased
for the strong oxygen diffusion ability at a high temperature. The upper surface of oxide film
is fluffy at 2 and 4 h for mechanical removal of the original oxide film in Figure 4c,d. The
high-temperature oxide film was formed on the surface, and the texture is more uniform, but
the oxide film will become slightly loose with the time increase. The high-temperature oxide
film was more uniform after laser cleaning. The oxide film was thin at 0.5 h. Figure 5 shows the
oxide film thickness with different heat treatment time. After laser cleaning, the thickness of
the high-temperature oxidation film is only about 0.5 µm in 0.5 h, and the thickness is about
1 µm after mechanical removal of the oxide film. Besides, the diffusion depth of the oxygen
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will be further increased with long high-temperature time, and the thickness of the oxide film is
increasing. Compared with the mechanically removal oxide film, the surface after laser cleaning
can hinder the secondary high-temperature oxidation of titanium alloy, and the oxide film
thickness after laser cleaning is always less than that after mechanical removal.

Figure 4. Microscopic SEM images of the removal of the oxide film section with different heating
times: (a–f) silicon carbide (SiC) paper, (a) 0.5 h, (b) 1 h, (c) 2 h, (d) 4 h, (e) 6 h and (f) 8 h; (g–l) laser
cleaning, (g) 0.5 h, (h) 1 h, (i) 2 h, (j) 4 h, (k) 6 h and (l) 8 h.

Figure 5. The thickness of the oxide film under different treatment methods and heating times.
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In order to study the composition distribution of the high-temperature oxidation
sample, the energy spectrum curves are measured from the surface vertical to the substrate.
Figure 6 shows energy spectrum curves of oxide film after high-temperature oxidation. The
oxide film thickness is comprised as in Figure 5. The main components of the oxide film
are Al, Ti and O, and the oxide film consisted of titanium oxides and alumina. Oxygen not
only forms oxide film on the surface, but also a small amount of oxygen will also diffuse
into the substrate for strong diffusion at a high temperature [6,11,12]. The aluminum
content is concentrated on the upper surface for the sample after laser cleaning, which
can inhibit the further oxidation of titanium alloy. Therefore, the high-temperature oxide
film thickness after mechanical grinding is greater than that after laser cleaning. After
laser cleaning, aluminum in titanium alloy will be more easily enriched or form nano
scale alumina film under the residual heat of the laser [16], and aluminum is more active
than titanium and it is easy to form alumina on the upper surface [13,25]. Therefore, the
surface after laser cleaning will inhibit the further oxidation of titanium alloy. With the
oxidation time increase, the aluminum content is limited, and the inhibition oxidation effect
is weakened, so the oxide film growth rate slightly increases. In addition, there will be
small scratches on the TA15 titanium alloy after mechanical cleaning, which will increase
the contact area between the material and oxygen, and also further promote the oxidation
ability of mechanical removal.

Figure 6. The contents of different elements change with depth at 800 ◦C: (a) 0.5 h and (b) 2 h after
mechanical grinding, (c) 0.5 h and (d) 2 h after laser cleaning.

3.3. XPS Analyses

The XPS survey spectrum of TA15 oxide films was recorded after high-temperature
oxidation in air condition (0.5 h), as shown by Figure 7. Results show that the dominant
surface elements are O, Ti and Al, which suggests titanium oxides and alumina were
formed. The C and N elements identified by XPS may be from the air. The results indicate
that the surface formed titanium and aluminum oxide during high-temperature oxidation
in air.
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Figure 7. XPS survey spectrum of high-temperature oxide films at 800 ◦C for 0.5 h: (a) Mechanical
grinding, (b) Laser cleaning.

Figure 8 presents Ti 2p XPS spectra of re-oxidation at 0.5, 2 and 10 h after removing
oxide film by mechanical grinding and laser cleaning. The Ti 2p spectra displayed three
oxidation states of Ti4+ (2p3/2 peaks at 459.2 ± 0.2 and 2p1/2 peaks of at 465.0 ± 0.2), Ti3+

(2p1/2 peaks at 463.5 ± 0.2) and Ti2+ (2p1/2 peaks at 461.5 ± 0.2) [26,27]. Oxygen is rapidly
diffused into the material at high temperature, then the thicker oxide film can be formed
with time increases. The oxide film is mainly composed of Ti4+, a small amount of Ti3+ and
Ti2+. With the increase of heating time, the content of Ti4+ increased significantly. The Ti3+

and Ti2+ obtained energy at high temperature and further reacted to Ti4+. However, there
are always Ti4+, Ti3+ and Ti2+ in the oxide film.

Figure 8. XPS spectrum of Ti 2p at different heating times: (a), (c) and (e) mechanical grinding at 0.5,
2 and 10 h, (b), (d) and (f) laser cleaning at 0.5, 2 and 10 h.
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The O 1s photoemission signal could be split in three peaks (Figure 9), the first at the
energy of 530.5 eV O2+ bonds (Ti–O, Al–O), the second at the energy of 531.7 eV, attributed
to OH bonds at (531.8 ± 0.2) eV, and the third at the energy of 532.7 eV, attributed to
adsorbed H2O at (532.6 ± 0.3) eV [28,29]. Oxygen content after mechanical grinding is
higher than that after laser cleaning at any heating time. Thus, the surface after laser
cleaning can inhibit oxidation of TA15 titanium alloy. The water vapor can be absorbed
in the oxidation formation process due to the fluffy oxide film, then the energy spectrum
forms a strong water peak at different times.

Figure 9. XPS spectrum of O 1s at different heating times: (a), (c) and (e) mechanical grinding at 0.5,
2 and 10 h, (b), (d) and (f) laser cleaning at 0.5, 2 and 10 h.

Figure 10 shows the XPS spectrum of the Al 2p region of oxide film. Aluminum is
the second largest alloy composition of TA15 titanium alloy (about 6.5 wt.%), and alumina
will be produced in the process of alloy oxidation. Al is stronger than that of titanium
in reaction activity, unlike the formation of TiO2, Ti2O3 and TiO, and has a tendency to
form Al2O3. However, the peak intensity of Al 2p is much lower than that of Ti, and laser
cleaning is obviously weaker than mechanical grinding. Besides, the energy spectrum
peak of Al still exists on the oxide surface after laser cleaning with 0.5–2 h heat treatment
time, which indicates that the oxide film may be thinner and the Al element signal in the
substrate is collected. Thus, Ti is not only oxidized at high temperature, but alloy elements
such as Al will also be oxidized.
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Figure 10. XPS spectrum of Al 2s at different heating times: (a), (c) and (e) mechanical grinding at
0.5, 2 and 10 h, (b), (d) and (f) laser cleaning at 0.5, 2 and 10 h.

3.4. XRD Analyses

The Figure 11 shows the XRD of the sample surface after mechanical grinding and
laser cleaning at different heating times. The peaks of anatase-TiO2, rutile-TiO2, Ti, Ti2O3
and TiO mainly exist on the TA15 titanium alloy surface after removing the original oxide
film [13,30]. There is a small amount of aluminum oxide on the surface, and the diffraction
peak of aluminum oxide is obviously increased on the sample surface with the increase
of heating time, and the anatase phase transformed into rutile titanium dioxide with
increasing treatment time. XRD was used to measure the diffraction peak at a certain depth
of the surface for semi-qualitative analysis. For the sample after mechanical grinding, the Ti
peak decreases rapidly after two hours of heating, while there is still a strong Ti diffraction
peak on the sample surface after laser cleaning, indicating that the growth rate of the oxide
film after laser cleaning is much lower than that of the mechanical grinding. At the same
time, the weak peaks of Ti2O3 and TiO still exist on the surface of the mechanical grinding
and laser cleaned samples, which are consistent with the XPS analysis results.
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Figure 11. The XPS spectrum at different heating times: (a) mechanical grinding, (b) laser cleaning.

3.5. Roughness Analysis

The surface roughness (Ra) is expressed as an arithmetic mean of the absolute value
of contour offset within the specified sampling length. Figures 12 and 13 are surface
morphology and roughness of oxide films with heating time. Due to the different speed
of oxide film formation on the surface of TA15 after cleaning, there are high and low
protrusions on the surface of TA15. The height difference between the wave crest and
the wave trough of the material surface section first increases and then decreases with
the heating time (Figure 12). The roughness of titanium alloy after oxidation also reflects
the new oxide film formation. There will be scratches on the surface after mechanical
grinding, so the roughness of mechanical grinding is always higher than that of laser
cleaning. After 0.5 h, a small amount of oxide film particles was formed on the surface.
The oxide film particles increased slowly and the roughness increased slightly at 1 h. The
surface roughness increases to 1.75 µm with the increase to 2–4 h. The oxide film particles
size on the surface increase when the heating time reaches 6–8 h, and the surface becomes
relatively flat. The surface roughness slightly decreases.
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Figure 12. Surface morphology of oxide film at different heating times: (a), (c) mechanical grinding
at 0.5 and 2 h, (b), (d) laser cleaning at 0.5 and 2 h.
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Figure 13. Roughness of surface oxide film at different times with mechanical grinding and laser
cleaning.

Figure 14 shows the Vickers hardness data for the mechanical grinding and laser
cleaning. Vickers hardness measurement has been carried out by a diamond pyramid
indentor under a load of 100 g for 11 s [14]. When the high-temperature treatment time
is 0.5 h, the hardness of the laser cleaned surface is 498 HV, which is lower than 556.5
HV after mechanical grinding. The main reason may be that the thickness of oxide film
after mechanical grinding is greater than that after laser cleaning. With the increase of
high-temperature treatment time, the oxide film hardness was increased.

Figure 14. Hardness plot of the laser-cleaned and un-cleaned areas on the tube surface.

4. Conclusions

(1) Mechanical grinding and laser cleaning can remove titanium alloy oxide film. A small
amount of scratches appear on the surface after mechanical grinding. However, the
surface is relatively smooth after laser cleaning.
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(2) TA15 titanium alloy is easy oxidized in air at high temperature, and the thickness of
oxide film is increased when the high-temperature time increases. Surface roughness
increases first and then decreases with time, but hardness increases continuously.
Compared with mechanical grinding, TA15 titanium alloy after laser cleaning has
high-temperature oxidation resistance.

(3) The main components of high-temperature oxide film of TA15 titanium alloy after
mechanical grinding and laser cleaning are TiO2, Ti2O3 and TiO, and also contain a
small amount of alloy element oxides such as Al2O3. Alumina is mainly concentrated
on the surface of the oxide film, which may play an important role in the high-
temperature oxidation resistance of titanium alloy.

(4) Compared with mechanical grinding, laser cleaning technology can provide excellent
subsequent processing characteristics, which has great significance for the develop-
ment of laser cleaning technology.
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