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Abstract: A decorated and carved wooden door of the late Byzantine period (14th Century), which
belongs to the Dionysiou Monastery in Mount Athos, Greece, constitutes an important relic of
valuable technological information due to its construction technology and history. Seventeen (17)
samples detached from the door are studied using optical microscopy, scanning electron microscopy
(SEM) with energy dispersive X-ray analysis (SEM-EDX), and micro-Raman and FTIR spectroscopy.
The following materials are identified in the cross sections of the door samples using micro-Raman
spectroscopy: orpiment, lead white, red lead, red ochre, cinnabar, carbon black, gypsum, anhydrite,
and calcite, and an organic colourant of the indigoid family. SEM-EDX studies supported to the
aforementioned Raman results. Interestingly, a combination of inorganic and organic colourants was
detected. The main goals of this particular study were to: (a) reveal the colour palette and materials,
(b) identify the type of varnish and its condition, and (c) contribute to future restoration processes
and aid conservators in selecting compatible restoration materials.

Keywords: 14th century; wood-carved; microscopy; Raman; SEM-EDX; FTIR; materials; pigments

1. Introduction

A decorated wood-carved door, in functional condition, located in the Church of
Dionysiou Monastery of Mount Athos, has received attention due to its historical impor-
tance. According to sources [1], the door dates back to the 14th century, thus corresponding
to the first period of the history of the Dionysiou Monastery. In this period, the monastery
suffered from a severe fire incident, and the decorated door is among the few surviving
objects from that first period. Moreover, the door panel is covered with a metal leaf on
which a coloured, carved decoration, a rare and excellent example of Byzantine wood
carving, is mounted.

The origins of the decoration’s colourants/pigments from this particular period have
only been briefly studied on some selected icons and relics [2–5]. The goal of the present
report was to document and qualitatively analyse the materials used for the decoration of
this door by applying microscopy and elemental and molecular analytical techniques, and
also to assess their current condition as a result of past historical events. For this reason,
seventeen (17) samples (sampling spots shown in Figure 1) were sampled and investigated.
Attention was focused on the pigments, the varnish coating condition, and the related
stratigraphy that could reveal more possible interventions or repairing/retouching actions.

The goals of the investigation were achieved using the following methods: (i) micro-
Raman and SEM-EDX were employed to identify the pigments; (ii) FTIR was used to
study the organic materials of the varnish layer; (iii) and finally, optical microscopy was
applied to investigate sample stratigraphies. Consequently, the final goal of the study was
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to reveal the combinations of inorganic and organic materials, and, where possible, also
their condition.
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Figure 1. (a) Sampling spots and (b) detail from the decorated wood-carved door of the Church of
Dionysiou Monastery in Mount Athos. Dimensions of each door leaf: 240 cm × 60 cm.

2. Materials and Methods

Aiming to investigate the apparently variable stratigraphy of the object, fifteen of the
seventeen microsamples were taken from the artwork (sampling points shown in Figure 1),
embedded in transparent polyester resin (Struers), and subsequently ground and polished
using a Struers LaboPol-5 polishing, rotating table. The cross sections of the samples were
then studied using optical microscopy, Raman and FTIR spectroscopies, and SEM-EDX
scanning electron microscopy (SEM) with energy dispersive X-Ray analysis. Another two
microsamples, which were scraps from the varnish layer, were extracted from the relic and
subjected to FTIR analysis (samples 13 and 16).

Microsamples were studied using a Zeiss Axioskop 40 polarising light microscope
equipped with a UV source, and by scanning electron microscopy (SEM; JEOL, JSM-
6510, Tokyo, Japan) with energy dispersive X-ray spectroscopy (EDX; Swift-ED, Oxford
Instruments, High Wycombe, United Kingdom). For the SEM and SEM-EDX studies,
samples were coated with a thin layer of carbon.

The micro-Raman spectra were obtained using a Renishaw Raman device (Renishaw,
London, England) equipped with a microscope and a CCD detector. As a source of
excitation, a diode laser with a radiant emission wavelength of λ = 785 nm was used. The
beam size of the laser was of the order of ~2 µm. The power density on the surface of
the sample was ~0.5 mW/µm2 and the spectral resolution was ~4 cm−1. Alignment and
calibration of the spectrometer, before and after each measurement, was achieved by using
a crystalline silicon (Si) wafer.

Finally, the FTIR spectroscopy analyses were conducted so as to provide enhanced
information. In particular, a Perkin-Elmer® model Spectrum 400 FT-IR spectrometer
(PerkinElmer, Inc., Waltham, MA, USA) operating at the medium and near-infrared range
was used. The spectra were collected with a spectral resolution of 4 cm−1, in the spectral
range of 4000–450 cm−1 and 256 scans. The analysis was performed in diffuse reflectance
mode with Perkin Elmer’s special ‘KBr pad’ design involving a standard KBr disc holding
the powder sample on its surface.
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3. Results
3.1. Cross Section Analysis

The investigation of the sample cross sections with optical microscopy revealed the
various layers and provided the background for the subsequent spectroscopic study. In
certain areas of the door, later interventions (overpaints) were revealed. The most interest-
ing result was recorded in the samples D14 and D17 (shown in Figure 2 in visible-reflected
and UV-fluorescence light, respectively), as two successive ground and painting layers
(3,4 and 2,3 in Figure 2a–d, respectively) beyond the original painting layers (2 and 1 in
Figure 2a–d, respectively) were observed in the microphotographs.
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Figure 2. Sample cross sections D17 (a,b) and D14 (c,d). Cross sections in (a,c) visible-reflected light and (b,d) UV
fluorescence (λexc = 365 nm) are shown. Complete stratigraphy for (a) and (b) is as follows: (1) first layer of gesso ground:
gypsum; (2) first painting layer: cinnabar and grains of carbon black; (3) second layer of gesso ground: gypsum; (4) second
painting layer: orpiment; (5) varnish. For (c) and (d): (1) first painting layer: orpiment; (2) layer of gesso ground: gypsum,
calcite, and orpiment; (3) second painting layer: carbon black; (4) first varnish layer; (5) second varnish layer.

As the varnish layer between the overpainted layer and the original layer (layer (2)
and layer (3) in Figure 2a,b and layer (1) and (2) in Figure 2c,d) is not observed, it is
concluded that the overpainted area corresponds to the same period of time and the same
artist, and it is probably a redaction of the artist’s final work.

The results of the microscopic, Raman, and EDX analyses are summarized in Table 1,
which reveals the materials used in the layers of the sample cross sections. The extensive
use of lead white is shown in the data of Table 1.
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Table 1. Cross sections of the samples. Pigments were identified using micro-Raman spectroscopy
and SEM-EDX.

Sample/Sampling Point Stratigraphy Raman Results EDX Results

D 1-Metal leaf
from decoration

Back side - Cu, Zn

Front side - Cu, Zn, Au

D 2-Yellow spot

1st painting layer Orpiment As, S, C, O

1st varnish layer - -

Soot layer Carbon black C, O

2nd varnish layer - -

D 3-Red spot

Gesso ground Gypsum Ca, S, C, O

1st painting layer Lead white Pb, O, C

2nd painting layer Minium and lead white Pb, O, C

Varnish layer - -

D 4-Light blue spot

1st painting layer
Indigo/woad, lead

white, red ochre, calcite,
and gypsum

Ca, S, Pb, C, O

2nd painting layer
Lead white,

indigo/woad, red ochre,
calcite, and gypsum

Ca, S, Pb, C, O

Varnish layer - -

D 5-Light blue spot

1st painting layer Lead white Pb, Cu, C, O

2nd painting layer
Indigo/woad, lead

white, red lead,
and calcite

Pb, Cu, Ca, C, O

3rd painting layer Indigo/woad, lead
white and calcite

1st varnish layer - -

Soot layer Carbon black C, O

2nd varnish layer - -

D 6-Blue spot

Gesso ground Gypsum Ca, S, C, O

1st painting layer Lead white Pb, C, O

2nd painting layer Indigo/woad, gypsum,
and lead white Pb, Ca, S, C, O

1st varnish layer - -

2nd varnish layer - -

D 7-Green spot

1st painting layer Lead white Cu, Pb, C, O

1st varnish layer - -

Soot layer Carbon black C, O

2nd varnish layer - -

D 8-Light red spot

1st painting layer Red lead and lead white Pb, C, O

1st varnish layer - -

Soot layer Carbon black C, O

2nd varnish layer - -

D 9-Light blue spot

1st painting layer Lead white Pb, Cu, C, O

2nd painting layer Lead white Pb, Cu, C, O

1st varnish layer - -

Soot layer Carbon black C, O

2nd varnish layer - -
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Table 1. Cont.

Sample/Sampling Point Stratigraphy Raman Results EDX Results

D 10-Red spot

Gesso ground Gypsum Ca, S, C, O

1st painting layer Lead white Pb, C, O

2nd painting layer Red lead Pb, C, O

1st varnish layer - -

Soot layer Carbon black C, O

2nd varnish layer - -

D 11-Light blue spot

1st painting layer Red lead Pb, C, O

2nd painting layer Indigo/woad and
lead white Pb, C, O

Varnish layer - -

D12-Red spot

Gesso ground Gypsum Ca, S, C, O

1st painting layer Cinnabar Hg, S, C, O

Varnish layer - -

D 14-Black spot

1st painting layer Orpiment As, S, C, O

Gesso ground Gypsum, calcite,
and orpiment Ca, S, As, C, O

2nd painting layer Carbon black C, O

1st varnish layer - -

Soot layer Carbon black C, O

2nd varnish layer - -

D 15-Green spot

Gesso ground: Gypsum and anhydrite Ca, S, C, O

1st painting layer Orpiment, indigo/woad,
and anhydrite Ca, S, As, C, O

Varnish layer - -

D 17-Yellow spot

1st layer of gesso ground Gypsum Ca, S, C, O

1st painting layer Cinnabar and
carbon black Hg, S, C, O

2nd layer of
gesso ground Gypsum Ca, S, C, O

2nd painting layer Orpiment As, S, C, O

Varnish layer - -

3.2. SEM-EDX Results

Figures 3 and 4 are provided as examples of the SEM-EDX results. The identification
of the elements in the designated spot of the SEM image is provided. The same analysis
was carried out for all samples included in the study [6–12].

The detection of Cu and Zn in sample D1 (Figure 3) is indicative of a metal alloy [6]
containing the above metals, where the small amount of gold (Au) suggests that the
particular metal leaf was gold-gilded (gold plated brass) [7]. The detection of As and S
in sample D2 (Figure 4) shows the use of orpiment pigment by the artist [8,9]. Moreover,
in samples D5, D7, and D9, the green pigment granules were investigated by SEM-EDX
analysis, where copper was identified. Since luminescence prevented efficient Raman
analysis in these pigments, further study is needed for more detailed identification.
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Figure 4. SEM image of the sample D2 and EDX spectrum. Elements of As and S were identified and confirm the Raman
results, which revealed the presence of orpiment (As2S3).

3.3. Raman Results

Colourants and gesso ground materials identified in cross sections using micro-Raman
spectroscopy are summarized in Table 2. Assignments of Raman peaks detected in the
spectra are described next.

The Raman spectra of cinnabar displayed the characteristic strong band at ~254 cm−1

as well as the two weak peaks at ~284 and ~43 cm−1, which were attributed to the stretching
vibrations of the Hg–S bond [13–15].

In the Raman spectra of red ochre (hematite), the phonon modes of the pigment’s
octahedral structure at ~225, 295, 408, 498, and 611 cm−1 were observed, as well as the
broad high-energy overtone line at ~1320 cm−1 [14,16].

Cross section analyses of samples D3 and D11 revealed the presence of red grains that
consist of minium (Pb3O4), according to the characteristic predominant Raman bands at
~480 and 550 cm−1, which are attributed to the stretching vibrations of the Pb–O bonds
of the PbO6 octahedra that are formed along the main symmetry axis of the structure [9].
Furthermore, three low-energy weak modes at ~232, 314 and 391 cm−1 were recorded in
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the Raman spectrum, which involve vibrations of longer Pb–O bonds interconnected by
the above-mentioned chains of octahedra [17].

Table 2. Colourants identified in the investigated samples using micro-Raman spectroscopy. Charac-
teristic peaks used for the identifications are included.

Pigment Sample Composition Raman Characteristic Peaks and
Relative Intensities 1 (cm−1)

Orpiment D1, D14, D15, D17 As2S3
105 m, 136 s, 154 s, 179 m, 202 s, 293 s,

311 vs, 355 vs, 383 m

Lead white
D3, D4, D5, D6,

D7, D8, D9,
D10, D11

2PbCO3·Pb(OH)2 1055 vs

Minium D3 Pb3O4 232 w, 314 w, 391 w, 480 s, 550 vs

Red ochre D4 Fe2O3
225 vs, 295 s, 408 m, 498 w, 661 vw,

1320 m and br
Cinnabar D12, D17 HgS 254 vs, 285 w, 343 m

Indigo/woad D4, D5, D6,
D11, D15 C16H10N2O2

547 w, 600 w, 942 w, 1015 w, 1147 m,
1253 s, 1313 w, 1366 vs, 1463 m, 1486 m,

1573 s, 1585 s, 1616 s, 1700 s

Carbon black D2, D5, D7, D8,
D9, D10, D14, D17 C 1318 s and br, 1584 vs and br

Gypsum
D3, D4, D6,

D10, D12, D14,
D15, D17

CaSO4·2H2O 1008 vs

Anhydrite D15 CaSO4 1016 vs
Calcite D4, D5, D14 CaCO3 155 w, 280 w, 1088 vs

1 vs: very strong, s: strong, m: medium, w: weak, vw: very weak, br: broad, sh: shoulder.

The results in Table 1 reveal the extensive use of lead white; this pigment was identified
in several samples. Lead white (2PbCO3·Pb(OH)2) was identified through the characteristic
peak at 1055 cm−1 in its Raman spectrum due to the v1, or the symmetric stretch vibration
of CO3

2− [14].
Small black areas (granules) were revealed in the cross sections of several samples,

which consisted of carbon black as observed in the appearance of a characteristic broad
band at ~1584 cm−1, assigned to a doubly degenerate deformation vibration of the aromatic
ring and a second one at ~1318 cm−1, and attributed to a crystalline size effect [18,19].

Apart from the inorganic pigments described above, an organic blue indigoid colourant
of plant origin was also detected, which can either be correlated with indigo (Indigofera
tinctoria L. and other species) or woad (Isatis tinctoria L.). Its Raman spectrum (Table 1)
showed the two weak, low-energy peaks at ~547 and 600 cm−1 that were assigned to the
bending vibrational modes involving the central [-C=C-] coordinate [20]; a weak ~942 cm−1

band due to the C–H out-of-plane bending motion; the peaks at ~1015 and 1147 cm−1,
attributed to vibrations involving the C–H in-plane bending; the 1313, 1463, 1486, 1573,
and 1616 cm−1 spectral lines due to the C–C stretching vibrations of the benzene rings; the
band at 1585 cm−1, attributed to the in-phase stretching vibrations of the aromatic C=C
bonds; and finally, the considerably stronger three modes at ~1253, 1366, and 1700 cm−1,
which were assigned to C–H/C=O bending, N–H/C–H in-plane bending, and C=O/C=C
stretching vibrations, respectively [20,21].

In several samples, calcite was detected within the painting layers, possibly as
a filler/dispersing medium; its Raman spectrum showed the predominant band at
~1088 cm−1, which was due to the v1 or the symmetric CO3

2− stretching vibration [21].
Moreover, the two low-energy weak peaks at ~155 and 280 cm−1 included in the Raman
spectrum of calcite arose from the external vibrations of the CO3

2− groups that involved
translatory and rotatory oscillations of those groups within the crystal lattice mode [22].

Gypsum and anhydrite were detected in the gesso ground layers of samples D3,
D10, D12, D14, D15, and D17. The Raman spectra of gypsum showed a strong peak at
1008 cm−1, which was attributed to the v1(a1) symmetric stretching vibration modes of
SO4

2− tetrahedra [14]. Anhydrite (CaSO4,) is often found with gypsum, and a study of the
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Raman spectrum of the former showed that the band attributed to the symmetric stretch
vibration v1(a1) SO4

2− appeared at approximately 1016 cm−1 [14].
The Raman spectra of orpiment (As2S3) displayed the characteristic strong bands at

136, 154, 202, 293, 311, and 355 cm−1. Each As atom was surrounded by three sulphur
atoms, and each (S) atom was shared by two (As) atoms, while the layers were held together
by van der Waals forces [23]. The region between 100 and 200 cm−1 were bands due to the
S-As-S angle bending, while the one from approximately 300 to 400 cm−1 was the As–S
stretching vibrations [24].

Figure 5 is shown as examples of the micro-Raman results. The identifications of
pigments and their assignments in the sample’s cross section D17 (Figure 2a,b), based on
the photographs obtained using optical microscopy, are described in the figure caption.
This type of analysis was carried out for all samples included in the study.
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3.4. FTIR Results 

Figure 5. Four Raman spectra, which led to the identification of pigments and the gesso ground in
the sample cross sections D17 (Figure 2a,b), are included as examples. In particular, the following
were identified: (a) gypsum, (b) cinnabar, (c) carbon black with cinnabar, and (d) orpiment.

3.4. FTIR Results

Varnish samples were taken from two different spots of the door surface, sampling
spots #13 and #16; their powder infrared spectra are shown in Figure 6.

In both samples, complex organic materials were detected, with natural resin (possibly
mastic, a triterpenoid) being the most abundant common component, with strong max-
ima at 2956/2926 cm−1 and 2857 cm−1 (C-H stretching), 1738/1709 cm−1 (C=O stretch),
1458 cm−1 and 1384 cm−1 (CH2, CH3 bending vibrations), along with weaker ones at 1171,
1124, 1073, 1040, 952 cm−1 (generally, C-O stretch), and 744 cm−1 (C=C–H bend) [25–27].
Additionally, the relatively intense band at 848 cm−1 in sample D13 could also be assigned
to aromatic C–H vibrations. The pronounced 2926 cm−1 component indicates additional
material such as oil, or possibly another resin, while the feature at 1290–1280 cm−1 (stronger
in sample D13) [28] could be assigned to aromatic ethers or phenolic moieties formed as a
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result of the heat shock. This, in combination with the weaker, typically aromatic bands at
3064 (w), 1608 (sh), 1513 (w) cm−1, may account for the heat-induced aromatization of the
triterpenoid resin [29,30] on the object’s surface [31,32]. This may occur according to the
following reaction scheme [30], showing the aromatization of ring A of oleanolic acid, a
typical mastic component (Figure 7).
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Figure 6. Infrared spectra of varnish powder samples; (a) D13 and (b) D16. Dashed vertical lines depict correspondence of
aromatic and metal salt features between the two samples.
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Figure 7. Possible oxidation route of oleanonic acid, a typical triterpenic mastic component leading to aromatic product
(formation of aromatic ring A).

The weak but characteristic peaks observed at 1581 (sh), 1541 cm−1 (also stronger
in sample D13) are indicative of the antisymmetric carboxylate vibration of metal
salts [33–35], possibly due to interactions between Pb2+ and Ca2+ (due to lead white
and gypsum, respectively, in the vicinity of the samples), and either the acidic fraction
of the resin or a possible oil component, which, however, is not clearly detectable in the
recorded spectra due to overlaps of its most prominent peaks (i.e., ester or acidic carbonyls
and C-H vibrations) by those of the resin material. More specifically, the maxima can be
assigned to the antisymmetric stretch (or vas) of unidentate (~1580 cm−1) and bidentate
(~1540 cm−1) calcium carboxylate complexes [33,36], while the weak peak at 1513 cm−1

(more prominent in sample #16), where lead white is detected, can be assigned to the vas of
lead carboxylate [37,38].

The heat shock experienced by the varnish layer first led to the significant softening
of the material, allowing for metal ion migration through the layers and the consequent
formation of metal salts with the acid resin components.
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4. Conclusions

Beyond its historical importance, including a documented fire incident [39] in 1535,
the wood-carved door has a specific technological significance, which was investigated
through this study. A striking feature of the door’s decoration is the extended palette of
inorganic and consecutive organic colourant layers, along with consecutive varnish layers;
while in another sample from a nearby area, the alternating ground and pigment layers
arguably suggested a correction at a later, unspecified time (samples D14 and D17).

The varnish samples showed a triterpenoid resin, possibly mastic, with added com-
ponents (oil or other resin). Their infrared spectra showed signs of deterioration due to
interactions of the acidic organic components, with the metal ions of pigments and the
ground layer, and indications of heat-induced oxidations (aromatization); this may well be
in accordance with the recorded history of the object involved in a fire incident.

As shown in Table 2, Raman spectra and SEM-EDX revealed the presence of a wide
colourants palette, including yellow (orpiment), red (lead red, red ochre, and cinnabar),
blue (indigo/woad), lead white, and carbon black; green could also be assigned to a copper
pigment, although more evidence is needed. Furthermore, gypsum, anhydrite, and calcite
were identified as the ground-layer materials in most samples.

As objects of the late Byzantine period have rarely been studied through multi-
analytical physicochemical approaches [2–4], the data of Table 2 can be considered as
a reference point for researchers who are interested in having a broad view of the Byzantine
painting palette and techniques.
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