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Abstract: This paper reports the effect of Silicon substrate orientation and Aluminum nitride buffer
layer deposited by molecular beam epitaxy on the growth of aluminum nitride thin films deposited
by a DC magnetron sputtering technique at low temperatures. The structural analysis has revealed
a strong (0001) fiber texture for both Si(100) and (111) substrates, and a hetero-epitaxial growth on
a AlN buffer layer, which is only a few nanometers in size, grown by MBE onthe Si(111) substrate.
SEM images and XRD characterization have shown an enhancement in AlN crystallinity. Raman
spectroscopy indicated that the AlN film was relaxed when it deposited on Si(111), in compression on
Si(100) and under tension on a AlN buffer layer grown by MBE/Si(111) substrates, respectively. The
interface between Si(111) and AlN grown by MBE is abrupt and well defined, contrary to the interface
between AlN deposited using PVD and AlN grown by MBE. Nevertheless, AlN hetero-epitaxial
growth was obtained at a low temperature (<250 ◦C).

Keywords: hexagonal AlN; thin films; direct current magnetron sputtering; texture; fiber;
heteroepitaxial growth

1. Introduction

Aluminum nitride (AlN) thin films can be a promising candidate in optical, mechanical,
and electronic applications. It can serve as a semiconductor when doped [1] and also as
a passivation layer for semiconductors [2]. Besides, AlN thin films are integrated in
surface acoustic wave (SAW) devices, where they insure high frequency ranges, a large
electromechanical coupling factor (K2

s ), and temperature stability of the respective device.
Nevertheless, the quality of these integrated films has a strong impact on the performance
of the SAW devices [3,4]. The film properties depend not only on the crystal structure of
AlN, but alsoon its preferential orientation [5], the c-axis of the wurtzite AlN structure in
our case. The films can be composed of multiple crystal orientations scored (002), (100)
etc. AlN thin films are grown using physical vapor deposition (PVD) on several substrates
such as silicon (Si) [6], sapphire [7], and indium phosphide (InP) [8].

To realize an epitaxial growth of AlN thin films, the Si substrates have been extensively
regarded because of their large scale and easiness to carry out industrial mass production [9].
Nevertheless, it is very difficult to achieve the epitaxial growth of AlN thin films deposited
on Si substrates by PVD methods, in particular at low temperatures, owing to the lattice
mismatch and different coefficient of thermal expansion between AlN film and Si substrates,
which will lead to a high density of defects to AlN thin films layers [10,11]. Furthermore,
depositing AlN layers on Si simplify the process and the device structure for a low cost [12].
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Currently, a lot of research works have been proposed in the domain of AlN epitaxial
films synthesized on both (100) and (111) Si substrates to reach the high quality of AlN
films. Liegen Huang et al. [13] reported the epitaxial growth of AlN films grown on Si
substrates by metal organic chemical vapor deposition (MOCVD) by enhancing the Si
substrate surface by changing the concentration of HF solutions. Holger Fiedler et al. [14]
investigated the effect of long-term stability on the interface between AlN films and silicon
for microwave frequency electronic devices [14]. The effect of substrate temperature,
ammonia (NH3), flow rate, and layer thickness on the characteristics of AlN layers was
reported [15,16]. In the literature, most investigators concentrate on the optimization of
the growth parameters. On the other hand, the optimization of the Si substrate is rarely
investigated.

In fact, the Si substrate surface has an impact on the epitaxial growth of AlN, as
the chemical contaminants and particulate impurities on the Si surface influence the
characteristic of AlN films, and also the device performance and the yield [13,17,18]. For
that, the Si surface condition is very important. Generally, the wet etching method is used to
clean the Si substrate surface [19–21]. The impact of the Si substrate surface on the epitaxial
growth of AlN was studied [13], but, unfortunately, the mechanism is still not clear. K. Ait
Aissa et al. [22] showed that the interface between the AlN film and the Si(100) substrate is
abrupt, which indicates a local epitaxial growth of AlN on Si(100) deposited by high-power
impulse magnetron sputtering (HiPIMS), However, an amorphous intermediate layer was
seen in the case of the AlN film grown on Si(100) by direct current magnetron sputtering
(DCMS).

In this study, the quality of AlN thin films deposited by DCMS was investigated. We
report on the growth of AlN films deposited at low temperatures on Si(100), Si(111), and
on a 1-nm composite substrate of AlN buffer layer deposited by molecular beam epitaxy
(MBE) on Si(111). Special attention was given to the effect of the AlN buffer layer on the
epitaxial growth and quality of AlN films deposited by DCMS.

2. Materials and Methods

AlN films, with ~600 nm thickness, were deposited on different substrates using a
DCMS technique with the AV01 reactor. Before the deposition, the silicon (100) and (111)
substrates were ultrasonically cleaned in both acetone and ethanol solvents, and then dried
under nitrogen gas flow. An 8” target was used, consisting of 99.99 pure aluminum (Al)
water-cooled magnetron cathode. The sputtering system used to deposit AlN films was a
Pinnacle Plus + 5kW® DC power supply, with a power of 1800 W DC power supply. The
system was pumped to a base pressure of 3 × 10−5 Pa using a turbo molecular pump prior
to introducing argon (Ar) and nitrogen (N2) gases. The distance between the target and
substrate holder was 37 mm. The temperature during the deposition was <250 ◦C. The
target was cleaned before deposition using Ar gas discharge followed by a pre-sputtering
step using the same conditions as the subsequent film deposition with a shutter shielding
the sample in order to remove surface oxidation of the target. The sputtering pressure was
fixed at 0.3 Pa. The reactive N2 gas was fixed at 55%. The silicon substrate temperature
was about 150 ◦C during the growth, as measured by the thermal couple, which was fixed
to the substrate holder.

In order, to realize the epitaxial growth of AlN, we proposed to cover the substrate by
a 1-nm-thick AlN deposited by molecular beam epitaxy MBE on HF-cleaned 2-in.-diameter
Si(111) substrates. After hydrogen desorption at 700 ◦C under high vacuum (~10−8 mbar),
the nucleation process was initiated at 600–650 ◦C before grading the substrate temperature
for growing the rest of the film at 920 ◦C. The buffer layer’s thickness was measured by the
reflection high-energy electron diffraction (RHEED) method [23–25].

The crystal structures of AlN films were investigated by X-ray diffraction (XRD) using
a PANanalytical Empyrean® X-ray diffractometer (Malvern Panalytical, Malvern, UK),
with Cu Kα radiation (λ = 0.154 nm), voltage and current (40 kV-40 mA), respectively, as
described early by B. Riah et al. [26]. In addition, The reflection spectra of the respective
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molecular structure for the prepared AlN films were identified, studied and presented
using Raman spectrometer (Horiba Jobin-Yvon lab-RamT64000®, Horiba, Kyoto, Japan), in
backscattering z(x, unpolarised)z, configuration, with z orthogonal to the substrate surface
and utilizing the 514 nm lines of a (Cd-He) green laser as the excitation source at room
temperature. Furthermore, Raman spectroscopy was used in order to obtain the quality of
the deposited films and calculate the residual stress which was developed after deposition.
Moreover, scanning electron microscopy (SEM) (Jeol, Tokyo, Japan) and the high-resolution
transmission electron microscopy (HRTEM) (Hitachi, Marunouchi, Tokyo, Japan) were
used in order to thoroughly study the films of the micro-structure, the morphology, and the
interfaces between the layers. The HRTEM is used only in the case of the AlN deposited on
AlN MBE/Si(111).

A DEKTAK VEECO 8 profilometer was used to estimate the thickness and residual
stresses of the films by measuring the substrate curvature before and after deposition [27].

σ =
E

6 (1−υ)

t2
s

tf

(
1
rc
− 1

ru

)
(1)

where:

σ is the stress on GPa.
E is the Young’s module of the substrate in GPa.
υ is the Poisson’s ration for the silicon substrate.
ts is the silicon thickness in m.
tf is the film thickness in m.
rc the radius of curvature of the substrates before AlN deposition in m.
ru are the radius of curvature of the substrates after AlN deposition in m.

However, the measurement of substrates radius curvature was very significant in
order to estimate the internal stress of the film. The thickness was derived from the
difference in height between a first area coated with the deposited film and a second which
was previously hidden during deposition. Moreover, the residual stress data were coupled
with Raman shifts. The variation of the stress as function of the (EH

2 ) band shift was linear,
as represented in Figure 1 [28]. For a given position of E2 band, the residual stress was
easily deduced.
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3. Results and Discussion

The XRD patterns of the θ-2θ (Bragg-Brentano Geometry) and the θ-θ scans of
AlN/Si(100), AlN/Si(111), and AlN/AlN MBE (1 nm)/Si(111) are shown in Figure 2a,b,
respectively. The highest intensity of the (002) reflection indicates an oriented growth along
the c-axis perpendicular to substrate for all samples, which is ascribed to wurtzite-type
hexagonal structure. The measure of peak width and the full width at half maximum of the
X-ray rocking curve (RC-FWHM) for determining the quality of the film (Gaussian curve)
shows that the FWHM values decreases from 3.2◦ for AlN/Si(100) to 2.3◦ in the case of
AlN/Si(111). This result indicates that the quality of AlN films improves depending on the
Si orientation. The enhancement is due to the lattice mismatch which is very important
in the case of Si(100) compared to that in Si(111). On the other hand, the diffraction peak
intensity of the (0002) AlN increases and the RC-FWHM of the AlN film decreases from
2.3◦ to 1.2◦ using the AlN (MBE) interlayer; this can indicate that the use of a AlN buffer
layer enhances the crystalline quality of AlN film and facilitates its deposition. In the case
of AlN deposited on a AlN buffer layer on Si(111), the peak position of the (0002) plan
is 2θ = 36.15◦. An evident shift of this peak toward lower angles with the film deposited
directly on both Si(100) and (111) is observed. This may be due to the stress effect within
the film. The shift of (0002) peak in the case of AlN deposited on Si(111), where 2θ = 36.09◦,
is less important compared to the film deposited on Si(100), where 2θ = 36.04◦.
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Figure 2. Diffractogram in the (a) θ-2θ mode and in the (b) θ-θ mode showing the AlN peak of (0002) orientation for the
three samples.

To understand this change, XRD pole figures (0001), {1011}, {1012} and {1013} of
hexagonal AlN were obtained [26], but only the pole figures {1011} and {1012} are used in
this study. The {1011} pole figures of AlN/Si(100), AlN/Si(111), and AlN/AlN MBE/Si(111)
films are shown in Figure 3a–c, respectively. For both AlN/Si(100) and AlN/Si(111)
samples, the {1011} pole figures intensity maxima are distributed along a ring located at
χ = 62.5◦, demonstrating the presence of a polycrystalline film with a (0001) strong fiber-
texture, where the grains of the film are composed of one family of parallel planes at the
substrate’s surface with an axis of rotation around the normal of these planes. Moreover, the
ring at χ = 62.5◦ caused by the {1011} facets implies that no preferred in-plane orientation is
formed for both cases. However, in the case of AlN deposited on AlN (MBE) /Si(111), the
{1011} pole figure shows a maximum intensity with a six-fold symmetry at χ = 62.5◦. This
confirms that the AlN thin film deposited on AlN /Si(111) does not have a fiber texture
any more, but has grown epitaxially on the AlN /Si(111) substrate.
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The morphological and cross sectional characterization of AlN films synthesized
at different substrates, i.e., Si(100), Si(111), and AlN buffer layer/Si(111), were realized
using SEM analysis. Figure 4 shows the cross-section SEM images for the three samples
synthesized. The AlN layer shows several columnar grains which are perpendicular to the
substrate surface for all samples, and for fairly similar thicknesses. The AlN film deposited
by DCMS does not show any meaningful change in the film morphology for both (100)
and (111) Si substrates. However, it can be noted that the AlN film deposited on AlN
MBE/Si(111) has the best columnar crystalline compared to those deposited on both Si(100)
and Si(111) substrates.
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Figure 4. Cross section SEM image for (a) AlN/Si(100), (b) AlN/Si(111) and (c) AlN/AlN MBE/Si(111).

Figure 5 represents the Raman spectra collected at room temperature from all sam-
ples. The peaks that are situated at approximately 604 cm−1 (and 655.57 cm−1) for AlN
DCMS/Si(100), 654.86 cm−1 for AlNDCMS/Si(111), and 648 cm−1 for AlNDCMS/AlNMBE/
Si(111)) are attributed to the A1(TO) and E2 (high) Raman mode of AlN, respectively [29]
(TO corresponds to transversal optical phonons). The E2 (high) peak became broader in the
case of the film AlN deposited by DCMS on a AlN buffer layer on Si(111). The expansion
of the E2 (high) peak may be related to the crystalline deterioration or to the intrinsic
stress [30]. However, as the XRD results (Figure 2a,b) validate the high crystalline quality
of the AlN deposited films on the AlN buffer layer on Si(111), the theory of crystalline
deterioration can be excluded. It can be seen from Figure 5 that the AlN film deposited on
the Si(111) substrate is almost relaxed (stress = 0.03 GPa). Nevertheless, for AlN deposited
on Si(100), the stress is equal to −0.37 GPa, meaning that the film is in compression. The
residual stresses in the films deposited by PVD methods comes from the intrinsic stresses
due to defects, lattice mismatch stresses, and thermal residual stress due to coefficient
thermal expansion mismatches between substrates and the deposited films. The defects
in the deposited AlN films are complex, such as vacancies, dislocations, grain boundary
density of the film, impurities, and surface atomic arrangements of the substrates. As both
the atomic arrangements of Si(111) surface and AlN (0002) oriented films are hexagonal,
vertical columnar growth of the AlN film is observed with minimal residual stress [31,32].
On the other hand, AlN films deposited on the AlN buffer layer/Si(111) have shown a
stress of 3.23 GPa. This result indicates that the film is under tension, which is in good
agreement with XRD results.
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The interfacial between the AlN film and the silicon substrate is very important to
achieve the epitaxial growth of AlN sputtered films [13]. In order to further study the
interfacial between AlN films deposited by DMCS grown on the AlN buffer layer on Si(111)
substrates, TEM characterizations are investigated. The TEM cross section image of AlN
deposited on 1 nm of AlN MBE/Si(111) by DCMS is shown in Figure 6a. The presence
of a 3-nm continuous layer between the AlN deposited by DCMS and AlN buffer layer
can be seen; this 3-nm layer corresponds to the 1-nm AlN buffer layer, as the thickness
measurement of the buffer layer was made by RHEED technique, as well as the 2-nm
interfacial AlN deposited by DCMS method. The interface between AlN MBE and Si(111)
is abrupt, which means that there is a discontinuity of the composition between the AlN
buffer layer and Si(111) on weak thicknesses from 0.2 to 0.5 nm. On the other hand, that
there is a good continuity at the interface between the AlN film deposited by DCMS and
AlN buffer layer, which can show the presence of defects. Furthermore, a dense structure
is highlighted for AlN film deposited by DCMS [33].

Figure 6b represents a HRTEM image of the AlN deposited on AlNMBE on Si(111).
The AlN film deposited by DCMS method exhibits very beautiful planes, some of which
are perfectly matched. However, in some parts, there is a lake in continuity. This can be
attributed to the ionic bombardment, which can be enough to eliminate a part of the AlN
buffer layer deposited by molecular beam epitaxy MBE [22]. It is noteworthy to mention
that the DCMS method is a subsurface method [34]. This proves that the heteroepitaxial
growth of AlN deposited on Si(111) was achieved using a 1-nm AlN buffer layer deposited
by molecular beam epitaxy.
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4. Conclusions

In this study, a hetero epitaxial growth of AlN films deposited by DCMS was obtained
using a 1-nm AlN buffer layer grown on Si(111) by molecular beam epitaxy. The effect
of the buffer layer on the quality of AlN hetero epitaxial film was carefully studied by
various methods. The crystallinity of AlN layers was improved using a 1-nm AlN buffer
layer. The FWHM’s of the (0002) X-ray rocking curves were decreased using an AlN buffer
layer. The XRD pole figures revealed a strong (0001) fiber texture for both (100) and (111) Si
substrates and a hetero-epitaxial growth in the case of AlN deposited by DCMS on AlN
buffer layer on Si(111).The SEM cross section images indicate that the AlN film deposited
on AlN MBE/Si(111) has the best columnar crystalline compared to those deposited on
both Si(100) and (111) substrates. The Raman spectroscopy indicated that the film AlN is
relaxed in compressive stress and under tension when it was deposited on Si(111), Si(100),
and AlN buffer layer, respectively. HRTEM confirmed that the heteroepitaxial growth
of AlN deposited by DCMS was reached using a 1-nm AlN buffer layer deposited by
molecular beam epitaxy.
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