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Abstract: Both non-metallic g-C3N4 and BiVO4 are novel photocatalysts responsive to visible light,
but their low charge separation efficiency restricts their inconspicuous photocatalytic activity. In this
paper, direct Z-type g-C3N4/BiVO4 photocatalyst was constructed by calcination and hydrothermal
for the degradation of methylene blue. The existence of g-C3N4/BiVO4 heterojunction was confirmed
by the detailed study of its chemical structure and morphology by various characterization methods,
such as X-ray diffraction (XRD), Scanning electron microscope (SEM), and X-ray photoelectron
spectroscopy (XPS). The evaluation of photocatalytic performance showed that the MB degradation
performance of 1.0-CN/BVO was significantly enhanced, which was 4.528 times and 2.387 times
higher than pristine BiVO4 and g-C3N4, respectively, which was mainly due to the enhanced light
capture ability and effective electron transfer in the photocatalytic reaction. The 1.0-CN/BVO
composite exhibited extremely catalytic stability and recyclability.

Keywords: g-C3N4/BiVO4; photocatalysis; heterojunction; Z-scheme

1. Introduction

The use of visible light (λ≥ 420 nm) with abundant solar energy to degrade pollutants
in aqueous solution is considered to be one of the most effective solutions to solve the
energy and environmental crisis [1–3].

BiVO4 has attracted extensive attention due to its nontoxicity, physical stability, rela-
tively appropriate band gap, low preparation cost, and better photocatalytic application
prospects [4,5]. There are primarily three crystal phases of BiVO4 in nature, including
monoclinic scheelite (ms-BiVO4), tetragonal zircon (tz-BiVO4), and tetragonal scheelite
(ts-BiVO4) [6–9]. The light utilization rate of tz-BiVO4 and ts-BiVO4 with a wide band
gap (2.9 eV) [10,11] is low, mainly in the ultraviolet light region. While ms-BiVO4 is
a narrow band gap (2.4 eV) semiconductor [12,13], and thus exhibits the outstanding
visible-light-driven photocatalytic behavior. However, the pristine ms-BiVO4 presents poor
charge-transport and weak surface adsorption characteristics, which restrict its wide photo-
catalytic application [7]. Heterojunction constructed by two semiconductors with matching
band structure is an effective approach to suppress recombination of the photoexcited
electron-hole pairs [14,15].

For the past few years, the two-dimensional layered nonmetallic graphite phase
carbon nitrification (g-C3N4) with a suitable band gap (2.7 eV) [16] can effectively degrade
environmental pollutants under visible light, which has attracted extensive attention from
researchers in different fields [17]. In addition, g-C3N4, with a suitable electronic structure,
excellent physical and chemical stability, high surface area, many exposed active sites,
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high photocarrier mobility, simple synthesis methods, and other outstanding features,
has attracted extensive attention in both the research community and industry. It has
been widely verified that the energy band of pristine g-C3N4 and BiVO4 are perfectly
matched to construct heterojunction composites [18,19]. The application of g-C3N4/BiVO4
heterojunction can effectively deal with high a recombination rate of photogenerated
electron-hole pairs, and exhibits the excellent ability of separation and transfer of electron-
hole pairs [20,21].

Herein, the proposed Z-scheme g-C3N4/BiVO4 heterojunction composites were con-
structed by thermal polymerization and showed outstanding photocatalytic performances
for the degradation of methylene blue (MB) under visible light irradiation. The reasonable
photodegradation mechanism was discussed in detail, according to the material characteri-
zation. This will provide a clear research strategy for the synthesis of efficient and practical
heterojunction composites based on BiVO4 in the field of visible light catalysis.

2. Experimental
2.1. Materials

Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), ammonium metavanadate (NH4VO3),
36% acetic acid, ammonium hydroxide (NH3·H2O, 25%), ethyl alcohol (C2H5OH, 95%), and
melamine were purchased from Sinopharm Chemical Reagents Co., Ltd (Xi’an, China). The
methylene blue (MB, C16H18ClN3S·3H2O) were obtained from Shanghai Maikun Chemical
Co., Ltd (Shanghai, China). All reagents involved in this work are all analytical grade and
did not need further purification.

2.2. Synthesis of BiVO4 and g-C3N4/BiVO4 Composites

In a typical synthetic procedure (Schematic 1), firstly, 5 mmol Bi(NO3)3·5H2O was put
into 25 mL 36% acetic acid with stirring by magnetic force for 30 min at room temperature
to obtain solution A for Bi source. An amount of 5 mmol NH4VO3 was added into 25 mL
of deionized water and magnetically stirred at 60 ◦C for 30 min to obtain solution B for
V source. For the next step, drop solution B into solution A and stir evenly, adding an
appropriate amount of NH3·H2O to adjust the pH value of the solution to 7, and then stir
vigorously with magnetic force for 2 h. After the mixture, orange solution was transferred
into a 100 mL of Teflon-lined stainless-steel autoclave and introduced into an oven and
maintained at 180 ◦C for 15 h. At the end of 15 h, the autoclave cooled naturally to room
temperature. Finally, the obtained yellow products were separated by centrifugation,
thoroughly cleaned with deionized water and anhydrous ethanol for 4 times, to remove
impurities, and then the bright yellow pristine BiVO4 was obtained after drying at 70 ◦C
for 6 h, which was labeled as BVO.

The prepared 0.3 g BVO was fully mixed with 0.5, 1.0, and 1.5 g melamine, respectively,
and then transferred into a ceramic crucible with a cover and heated to 600 ◦C at a rate of
5 ◦C per minute, maintained for 2 h (Scheme 1). After the reaction, it was naturally cooled
to room temperature and the reaction products were ground into powder. The preparation
of pristine g-C3N4 was the same as the above process, except that bismuth vanadate was
not added, which was labeled as CN. The as-prepared g-C3N4/BiVO4 samples were labeled
as x-CN/BVO, where x stands for the different addition amount of melamine (x = 0.5, 1.0,
and 1.5 g).
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2.3. Characterization

The XRD data were examined on a Shimadzu 6100 Diffractometer with Cu Kα radia-
tion (40 KV, 30 mA) (Shimadzu, Kyoto, Japan). The morphologies of as-prepared catalysts
were investigated by using a Zeiss IGMA/VP (Carl Zeiss AG, Jena, Germany) emission
SEM. The chemical composition and chemical status were obtained with XPS (Shimadzu
AXIS-ULTRADLD spectrometer) (Shimadzu, Kyoto, Japan). UV–Vis diffuse reflectance
spectra (DRS) of the samples were recorded using Shimadzu UV-3600 plus UV–Vis-NIR
spectrophotometer (Shimadzu, Kyoto, Japan). Infrared spectra were recorded on a Fourier
transform infrared (FT-IR, VECTOR-22) (BRUKER, Karlsruhe, Germany) spectrometer at
room temperature by the standard KBr disk method.

2.4. Photocatalytic Degradation Experiments

The photocatalytic performance was studied by degrading methylene blue (MB) solu-
tions under a 100 W 410 nm LED light array (CEL-LED 100) (CEAULIGHT, Beijing, China).
For each degradation experiment, 30 mg of as-prepared catalyst were used to degrade
50 mL of MB solution (30 mg·L−1). The distance between the light source and solution
sur-face was 1 cm. The adsorption of MB molecules on the catalyst was related to the
degradation performance of the catalyst. Therefore, before light irradiation, we first stirred
the catalyst with the MB solution for 30 min to fully mix it to reach the equilibrium of
adsorption and desorption. The time interval of irradiation was programmed to be 15 min.
After a period of reaction, 5 mL of mixed solution was extracted and centrifuged to obtain
a clear solution, which was used to detect the content of MB in the solution. The clean
supernatant was measured by UV–Vis spectrophotometer (DH-2000, Ocean Optics) (Ocean
Optics Asia, Shanghai, China) to analyze the degradation rate of MB.

3. Results and Discussion
3.1. XRD Analysis

XRD is the main technology to characterize the crystal structure and phase of the
samples. The XRD results of the CN, BVO, and various heterostructure composite samples
are presented in Figure 1, respectively. In the case of pristine CN, the diffraction intensity
relatively weak peak at 12.86◦ is indexed as the (100) diffraction plane, which is characteris-
tic of the in-plane structural repeat motif of tri-s-triazine [22,23]. Another strong diffraction
peak at 27.50◦ is assigned to the (002) plane of CN, which is consistent with the interplanar
stacking of aromatic systems [24]. For all BVO-based catalysts, the characteristic XRD
peaks at 18.6◦, 28.9◦, 30.5◦, 35.2◦, 40.2◦, 47.3◦, 50.3◦, 53.3◦, and 58.5◦ are ascribed to the
(110), (–121), (040), (002), (–112), (042), (202), (–161), (321) planes of ms-BiVO4 (JCPDS card
No. 14–0688) (a = 5.1971 Å, b = 5.0959 Å, c = 11.702 Å), respectively [25]. The XRD results
of as-prepared material x-CN/BVO have almost no characteristic peak of CN. This may
be because the high content of BVO and good crystallinity mask the characteristic peak of
CN [26–28]. In addition, the absence of other characteristic peaks except BVO indicated that
no excess substances were produced during the synthesis process. According to the XRD
data, the dominant peak is at the position of 2θ = 28.9◦ and the Full Width Half Maximum
(FWHM) is 0.519, 0.493, 0.500, and 0.483 of pristine BVO, 0.5-CN/BVO, 1.0-CN/BVO, and
1.5-CN/BVO. With the help of the Scherrer formula (D = K γ/B cos θ), the grain size of the
samples can be determined, in which K is the Sheller constant (0.89), D is grain size, and γ

is the wavelength of X-ray Cu-Kα radiation (1.5406). The lattice sizes of the x-CN/BVO
complexes with different amounts of CN hardly changed, and we can conclude that CN
has almost no effect on the size of BVO.
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Figure 1. The XRD patterns of as-prepared samples.

3.2. Morphology of Catalyst

The morphological characteristics of the samples were analyzed by SEM to study
the morphological changes before and after combining, as depicted in Figure 2. Pristine
CN is composed of a small number of irregular particles and nanosheets, which is the
fold structure (Figure 2a). Figure 2b shows that pristine BVO is an irregular polygon with
a smooth surface, showing the ideal crystallization state and high crystallinity, which
identifies with the results of XRD. Interestingly, the morphology gradually changed into
round and the surface was coated by CN, and became unsmooth with the addition of some
CN nanosheets (Figure 2c). The shape and position mapped, respectively (Figure 2e–i),
by the Bi, V, O, C, and N elements were basically consistent with the SEM image, which
indicated that the five elements exist and CN was evenly distributed on BVO. The EDS
patterns shown in Figure 2j indicated that the contents of the N element was less than others,
which was consistent with the XRD and FT-IR (Figure S1, Supplementary Materials) results.

3.3. XPS Analysis

To better explore the interaction between CN and BVO, the surface chemical constitu-
tion and electronic states of 1.0-CN/BVO photocatalysts were verified by XPS measure-
ments (Figure 3). As illustrated in Figure 3a, the XPS survey spectrum confirmed that the
composites contained five elements: Bi, V, O, C, and N, and no characteristic peaks for
other elements. The N 1s XPS spectrum was recorded in Figure 3b, where the two apparent
peaks of binding energies of 400.0 and 397.6 eV were assigned to N–(C)3 and C=N–C,
respectively [27,29]. As observed in Figure 3c, the C 1s binding energy could be split into
three peaks; the characteristic peak at 284.5 eV was due to the amorphous carbon on the
surface of as-prepared samples. The other two peaks presented at 288.5 and 285.9 eV were
indexed to sp2 hybridized C (C–(N)3). These characteristic peaks confirmed the existence of
CN in the 1.0-CN/BVO. As shown in Figure 3d, the O 1s signals of 1.0-CN/BVO could be
divided into 532.9, 529.6, and 531.7 eV assigned to the lattice oxide species (Bi-O bonds) and
from the adsorbed oxygen species (hydroxyl groups), respectively. For the Bi 4f spectrum
indicated in Figure 3e, the Bi 4f7/2 and Bi 4f5/2 were associated with binding energies of
158.7 and 164.0 eV, respectively. From Figure 3f, the first V 2p peak at 524.0 eV belonged to
V 2p1/2, and the second at 516.3 eV referred to V 2p3/2. According to the above analysis,
the close binding between CN and BVO could be proved.
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3.4. UV–Vis DRS and Band Structure Analysis

UV–vis spectroscopy is a widely recognized method to characterize the optical prop-
erties of semiconductors. As depicted in Figure 4a, the absorption edges of the pristine
CN, BVO, and 1.0-CN/BVO corresponded to approximately 451.79, 526.67, and 586.82 nm,
respectively, which is consistent with previous reports [27]. Compared with pristine CN
and BVO, the absorptive capacity of 1.0-CN/BVO composite was greatly enhanced in
the visible and ultraviolet light range, which was due to the formation of heterojunction
and could lead to the generation of more charge carriers involved in the degradation of
pollutants during the photocatalytic process. The following Tauc equation to estimate the
band gap of CN, BVO, and 1.0-CN/BVO [30] was used:

αhν = A(hν − E g)
n
2

Herein, α, hν, A, and Eg are the optical absorption coefficient, photon energy, pro-
portional constant, and the bandgap. The value of n is determined by the type of semi-
conductor, which is 1 for direct and 4 for indirect [31,32] (sm-BVO and platelike CN were
determined to have a direct band gap like [27,33]). The curve fitting of (αhν)2 was extended
as a straight line, and the intersection points of the straight line and the abscise were Eg
of pristine CN, BVO, and 1.0-CN/BVO, respectively. It can be identified in Figure 4b that
the band gap of pristine CN, BVO, and 1.0-CN/BVO is 2.75, 2.45, and 2.39 eV, respectively.
Therefore, we could conclude that the visible light response of 1.0-CN/BVO heterostructure
was stronger than that of BVO. The valence band (VB) and conduction band (CB) potentials
can be estimated by the following empirical formula [24]:

EVB= X − Ee + 0.5Eg

ECB= EVB − Eg

X is the electronegativity of semiconductor and Ee is a constant (4.5 eV, vs. NHE,
pH = 7) [34]. X values for the CN and BVO were 4.64 and 6.04 eV, respectively [29]. The
calculation based on the above formula showed that the VB potentials of CN and BVO
were about 1.52 and 2.77 eV, respectively, and the CB potentials of CN and BVO were about
−1.23 and 0.32 eV, respectively, which matched well with other works [35].
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3.5. Photocatalytic Degradation Performance

In order to assess the photocatalytic degradation performance for MB under visible
light, the photocatalytic activity of the samples was evaluated. As shown in Figure S2
(Supplementary Materials), the photolysis of MB changed slightly during the light irra-
diation in the absence of the catalyst. As exhibited in Figure 5a, both pristine BVO and
CN show relatively weak expression. However, the photocatalytic performance of the
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x-CN/BVO composite was significantly enhanced, in which the decomposition of MB
solution reached 93% after 75 min of visible light irradiation by 1.0-CN/BVO. In addition,
the photocatalytic performance of a certain amount of catalyst for different concentrations
of MB solution and the different amounts of catalyst for a certain concentration of MB
solution were investigated. The results show that the higher the ratio of catalyst to MB con-
centration, the higher the photocatalytic efficiency (Figure S2, Supplementary Materials).
To further obtain the degradation kinetics intuitively, pseudo-first-order model was used
to fit the data, and the formula was as follows:

ln(C0/C)= kt

Herein, C0, C, and k are the initial MB concentration (mg/L), the MB concentra-
tion at time t (mg/L), and the apparent pseudo-first-order rate constant (min−1), re-
spectively. The calculated MB degradation pseudo-first-order kinetic curve of the as-
prepared catalyst was shown in Figure 5b. The reaction constant k value of MB degra-
dation of 1.0-CN/BVO was the highest, which was about 0.03808, 2.39 and 4.53 times
of pristine BVO and CN. This outstanding performance (Table S1) confirmed that the
enhanced photocatalytic activity of x-CN/BVO should be attributed to the introduction
of CN. The k value of MB degradation in the prepared samples followed the sequence of
1.0-CN/BVO > 0.5-CN/BVO > 1.5-CN/BVO.

The photostability and recyclability are crucial indexes of the photocatalyst in prac-
tical and industrial applications. In this work, the stability measure of 1.0-CN/BVO was
obtained through four repeated experiments in the same environment and equipment pa-
rameters. As displayed in Figure 5c, after four cycles of degradation of MB by 1.0-CN/BVO,
the performance was slightly different from the first one. In addition, XRD pattern spec-
trum of the fresh and used 1.0-CN/BVO sample (in Figure 5d) showed that the crystalline
structure of 1.0-CN/BVO phase did not change significantly after four cycles of repeated
experiments, indicating that 1.0-CN/BVO was stable and effective.

3.6. Photocatalytic Mechanism

On the base of the above analysis, the enhancement on photocatalytic efficiency of
x-CN/BVO catalysts for MB degradation can be obtained. According to the experimental
and theoretical results [36], we calculated the conduction band and valence band energies
of the samples. It was found that the LUMO and HOMO of MB are mismatched with
the energy of BOV materials, so the photocatalytic process played a dominant role. In
addition, before the photocatalytic experiment, we set up a 30 min dark reaction to achieve
the balance of physical adsorption and desorption, and try to eliminate any other factors
affecting the photocatalytic experiment. The plausible photocatalytic mechanism was
shown in Scheme 2, in which the Z-scheme photocatalytic system is formed between
CN and BVO. Layered CN is anchored on the facets of BVO through strong interfacial
electrostatic interaction, resulting in a lot of charge accumulation at the contact interface.
When x-CN/BVO heterostructure is used as a photocatalyst, visible light irradiation can
stimulate the migration of CN and BVO electrons from VB to CB, leaving relatively stable
holes in VB, thus forming electron-hole pairs. Attributing to the Z-scheme mechanism [37],
the photogenerated electrons of CB from BVO (+0.32 eV), with little hindrance, migrated
to VB of CN (+1.52 eV). The electrons from CB of CN were reacted again with oxygen to
generate·O−

2 species. Then, the·O−
2 species presents more negative potential than O2/O−

2 ,
the species preferentially reacted with MB [38]. The VB of BVO is 2.77 eV, which was
more positive than CN’s, so H2O/OH− can be oxidized to OH. Then, the OH species
reacted with MB to produce degradation products. As shown in Figure S3 (Supplementary
Materials), the photodegradation rates of MB are apparently depressed from 99.3% to
23%, 77% and 17% when BQ, IPA, and KI are being added into the reaction system,
respectively. The results suggested that all the radicals of O−

2 , OH, and h+ worked in MB
degradation over 1.0-CN/BVO, and the·O−

2 and h+ played the most dominate roles in
photocatalysis reaction.
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Scheme 2. Schematic illustration for x-CN/BVO Z-scheme heterojunction degradation MB.

4. Conclusions

In summary, the x-CN/BVO Z-scheme heterojunction photocatalyst composed of CN
and BVO was successfully synthesized by calcination and hydrothermal methods. The
as-prepared optimal photodegradation performance of 1.0-CN/BVO exhibits a wide photo
response, high charge separation efficiency, and strong redox capacity at the same time [39].
The results displayed that the degradation of MB by1.0-CN/BVO was 4.528 and 2.387 times
higher than that of pristine CN and BVO, respectively. In addition, the 1.0-CN/BVO com-
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posite exhibits extremely catalytic stability and recyclability, indicating that the heteroge-
neous photocatalyst has huge potential for the removal of organic pollutants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/coatings11091027/s1, Figure S1: FT-IR spectra of pristine CN, pristine BVO, and 1.0-CN/BVO,
Figure S2: Under visible light irradiation, the removal rate of MB with different concentrations
of 1.0-CN/BVO; check the photolysis of MB in the absence of the catalyst, Figure S3: Trapping
experiments of active species during the photocatalytic degradation of MB over 1.0-CN/BVO sample
under visible light irradiation, Table S1: The photocatalytic performance and catalytic efficiency were
compared with other C3N4, BiVO4, and C3N4/BiVO4 materials.
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