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Abstract: The bearing capacity for footings is a fundamental scientific problem in civil engineering.
The evaluation of the bearing capacity of footings usually does not take into account the effect of
the intermediate principal stress. In practice, the intermediate principal stress has certain influences
on the strength of geomaterials (e.g., rock and soil) or concrete. In this paper, a series of numerical
solutions are presented to evaluate the bearing capacity of footings in a soft rock foundation via
a two-dimensional finite difference code (FLAC) with a strain hardening/softening constitutive
model based on the unified strength theory (UST). The values of the bearing capacity factor Nc and
Nγ for strip, circular and square footings in a soft rock foundation were evaluated using the strain
hardening/softening constitutive model. The effect of the intermediate principal stress on the bearing
capacity of strip, circular and square footings in a soft rock foundation was analyzed. The results of
the numerical computation show that the intermediate principal stress has a significant influence on
the bearing capacity and failure mechanisms of a soft rock medium. The influence of the intermediate
principal stress on the peak and residual values of the bearing capacity for a strip footing is much
greater than for circular and square footings. Research works for the reasonable estimation of the
bearing capacity of footings in soft rock are facilitated by this study.

Keywords: soft rock; strain hardening/softening; bearing capacity of footing; numerical solution;
effect of intermediate principal stress

1. Introduction

A rock material can be classified as soft rock if the uniaxial compressive strength
(USC) is below 30 MPa [1,2]. The deformation process of soft rock often has a remarkable
strain-softening characteristic with a peak and residual strength [3–6]. Many researchers
investigate the problems of soft rock in geotechnical engineering. For example, the stability
of tunnels constructed in soft rock was analyzed by Zhu and Tokiwa [7,8]. The evaluation
of the bearing capacity for footings is an essential problem in geotechnical engineering. In
recent years, the bearing capacity of footings in clay or sand is often researched by many
investigators using analytical or numerical methods with a linearly elastic-perfectly plastic
constitutive model [9–15]. However, the bearing capacity of footings in strain-softening
materials (e.g., soft rock) is seldom studied [16]. Using the linearly elastic, perfectly plastic
constitutive model, Ma investigated the influence of the intermediate principal stress on
the bearing capacity of strip or circular footings [17]. The intermediate principal stress has
more influence on the bearing capacity of a strip footing than that of circular footing, and
the intermediate principal stress has much more influence on the bearing capacity factor
Nγ than that of factor Nc [17].

Many complex stress tests (e.g., true-triaxial tests, plane strain tests, or torsion shear
tests) have verified that the intermediate principal stress has specific influences on the
mechanical behavior of geomaterials [18–26]. The polyaxial test data of sand obtained by
Sutherland and Mesdary suggest that the intermediate principal stress has a marked effect
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on the strength of sand and that the Mohr–Coulomb theory will therefore underestimate
the strength over most of the stress state range [20]. Mogi found that in true triaxial testing
of many rock samples, the effect of the intermediate principal stress must be considered
for rock [21]. The results of complex stress tests for concrete indicate that the intermediate
principal stress also has a marked effect on the strength of concrete [27,28]. We can conclude
that the intermediate principal stress effect is an inherent mechanical behavior of many
materials. Several strength criteria that take the effect of the intermediate principal stress
and nonlinear yield surface into account were proposed for geomaterials [29]. These criteria
include the Zienkiewicz–Pande criterion, the Lade–Duncan criterion, and the Matsuoka–
Nakai criterion [30,31].

In this study, a numerical solution of the bearing capacity of footings in a soft rock
foundation was proposed taking the strain hardening/softening material behavior and the
intermediate principal stress effect into account. The influence of the intermediate principal
stress on the bearing capacity of strip, circular and square footings in a soft rock foundation
will be analyzed.

2. Materials, Theories and Methods

The unified strength theory (UST), which takes the influence of the intermediate
principal shear stress (or intermediate principal stress) into account, was proposed by
Yu [32]. The expressions of the UST can be written in terms of the principal stresses
as follows: f = bσ2+σ3

(1+b)(1+sin ϕ)/(1−sin ϕ)
− σ1 +

2c√
(1+sin ϕ)/(1−sin ϕ)

, when σ2 ≤ 1+sin ϕ
2 σ1 +

1−sin ϕ
2 σ3

f ′ = σ3
(1+sin ϕ)/(1−sin ϕ)

− σ1+bσ2
1+b + 2c√

(1+sin ϕ)/(1−sin ϕ)
, when σ2 ≥ 1+sin ϕ

2 σ1 +
1−sin ϕ

2 σ3
(1)

where b is a coefficient reflecting the effect of the intermediate principal stress on the
strength of geomaterials, c and ϕ are the cohesion and friction angle of geomaterials,
respectively. The order of the three principal stresses follows σ1 ≥ σ2 ≥ σ3. For the
non-associated flow rule, the plastic potential function g can be written as follows:{

g = bσ2+σ3
(1+b)(1+sin ψ)/(1−sin ψ)

− σ1, when σ2 ≤ 1+sin ϕ
2 σ1 +

1−sin ϕ
2 σ3

g′ = σ3
(1+sin ψ)/(1−sin ψ)

− σ1+bσ2
1+b , when σ2 ≥ 1+sin ϕ

2 σ1 +
1−sin ϕ

2 σ3
(2)

where ψ is the dilation angle for geomaterials (the plastic flow rule is non-associated if
ψ < ϕ, and the plastic flow rule is associated if ψ = ϕ). The limit loci of UST on the deviatoric
plane or principal stress space are shown in Figure 1a,b, where θb is the stress angle for
the junction of two yield surfaces and depends only on the friction angle of the material.
Comparisons between the yield surfaces of the UST and test data for granite, marble, and
sand under a complex stress state are plotted in Figure 2, the intermediate principal stress
has a substantial influence on the strengths of geomaterials under complex stress states.
UST can predict the potential strengths of different geomaterials with various values of
the parameter b. The yield surfaces of the UST cover the entire region of convex theory
from the lower bound (UST b = 0.0) to the upper bound (UST b = 1.0). The Mohr–Coulomb
strength criterion is the special case of the UST when the coefficient b equals zero.
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Figure 1. Limit loci of UST: (a) deviatoric plane, (b) principal stress space.
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In this study, the vertical bearing capacity solutions for strip, circular and square foot-
ings in a soft rock foundation were evaluated using a finite difference code FLAC/FLAC3D
and strain hardening/softening constitutive model based on the UST. FLAC/FLAC3D
(fast Lagrangian analysis of continua) is a two/three-dimensional (2D/3D) finite-difference
code that uses an explicit Lagrangian computation scheme. The behavior of structures
built of soil, rock, or other materials that may undergo plastic flow when their yield limits
are reached can be simulated easily by FLAC/FLAC3D [33,34]. The derivation and ver-
ification of the UST elastoplastic constitutive model in FLAC/FLAC3D were discussed
by Ma [35,36]. In this study, the strain hardening/softening constitutive model based on
the UST is written in C++ as a user-written constitutive model and compiled as a DLL
file (dynamic link library), and it can be loaded into the FLAC/FLAC3D code. The elastic
relations between the elastic principal strain increments and principal stress increments in
FLAC/FLAC3D are as follows:

∆σi = Si(∆εe
n) i = 1, n and n = 1, 3 (3)

where Si is a linear function of the elastic principal strain increments ∆εe
n. The plastic

principal strain increments can be written as follows:

∆ε
p
i = λ∂g/∂σi (4)

where λ is a non-negative multiplier if plastic loading occurs. The expression of the
elastoplastic constitutive model for FLAC/FLAC3D can be formulated as follows:

σN
i = σI

i − λ · Si

(
∂g
∂σn

)
(5)

where Si(∂g/∂σn) is the matrix of the constitutive model composed by the plastic principal
strain component, g is the plastic potential function, σI

i are the stress components obtained
from the elastic Hooke’s law (elastic trial stress), and σN

i are the new stress components
obtained from the plastic flow rule (if the elastic trial stress exceed the Equation (1)). The
expression of the plastic multiplier λ can be written as follows:

λ = f
(

σI
n

)
/
[

f
(

Sn

(
∂g
∂σn

))
− f (0)

]
(6)

Equation (6) is accurate only for an elastic perfectly plastic material, for which the
strength parameters are constant. Theoretically, Equation (6) is non-rigorous for harden-
ing/softening material because it lacks the hardening modulus. In this study, the hardening
parameter eps is used to characterize the hardening/softening behavior via the plastic shear
strain [37], and eps is defined as follows:

eps =

{
1
2

[(
ε

ps
1 − ε

ps
m

)2
+
(

ε
ps
2 − ε

ps
m

)2
+
(

ε
ps
3 − ε

ps
m

)2
]}1/2

(7)

where ε
ps
1 , ε

ps
2 and ε

ps
3 are the three plastic principal strains of the shear strength enve-

lope and ε
ps
m =

(
ε

ps
1 + ε

ps
2 + ε

ps
3

)
/3. It is observed from Equation (7) that the hardening

parameter eps equals the square root of the second invariant of the strain. For the plastic
hardening/softening stage, the plastic potential function g can be written as follows:

g[σn, c(eps), ϕ(eps)] = 0 n = 1, 3 (8)

Liao et al. and Li conducted consolidated-undrained (CU) triaxial shear tests on
saturated diatomaceous soft rock and mudstone, respectively [38,39]. The effective stress
is used to calculate the shear strength parameters using the test data of the CU test for
diatomaceous rock and mudstone. The triaxial test results on the diatomaceous soft rock
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and mudstone show that the effective strength parameter ϕ for the two types of soft rock
has peak and residual values with the value of axial strain ε1 increased (shown in Figure 3a).
The effective strength parameter c (cohesion) of the two types of soft rock remains constant
during the deformation progress of the soft rock sample. In this study, the friction angle
ϕ in the plastic potential function g varies with the values of the hardening parameter
eps. In contrast, cohesion c does not depend on the hardening parameter eps. The hump
curve function is used as the hardening/softening function to simulate the strain-softening
behavior of soft rock in this study. The relationship between the friction angle ϕ and the
hardening parameter eps predicted by the hump curve function is shown in Figure 4, and
the hump curve function is described as follows:

ϕ(eps) =
eps(H + Reps)

(H + Peps)2 (9)

where the parameter H controls the slope of the hump curve, and the parameters P and
R control the peak and residual value of the hump curve. The values of the parameters
H, P, and R in Equation (9) can be determined by the variation in the strength parameter
ϕ yielded by a triaxial test of the soft rock. The UST elastoplastic constitutive model can
be established via the substitution of Equations (4), (6), and (9) into Equation (5). The
plastic shear strain eps are updated by each time step (time increment ∆t) in the numerical
computation, and the values of friction angle ϕ will be changed with the variation of the
plastic shear strain eps after each time step. Thus, the type of hardening rule is isotropic. The
loading surface of the strain hardening/softening model is expanded with the variation of
the values of friction angle ϕ, and the hardening/softening behavior of the soft rock can
be predicted.

A 2D axisymmetric element was used to simulate a test sample of soft rock, and
the consolidated-undrained triaxial test was simulated using FLAC code. The confining
pressure σ3 was applied by the stress boundary condition on all sides of the test sample
element to generate the consolidated stress. For the conventional triaxial test situation
(simple stress state), the three principal stresses follow σ1 ≥ σ2 = σ3, a vertical velocity
load (1 × 10−6 m/step) was applied to the top of the test sample element to simulate
the maximum principal stress σ1. The bottom of the test sample element was fixed in
the vertical direction. The values of the material property parameters for numerical
analysis are presented in Table 1. Because the test sample of soft rock had slight volume
dilation after the consolidated-undrained triaxial test, the dilation angle ψ was set to
zero (non-associated flow rule) throughout the whole calculation process of the triaxial
test simulation. Figure 3a,b show the relationship of stress (σ1–σ3) versus axial strain (ε1)
for diatomaceous soft rock and mudstone, respectively, measured by the consolidated-
undrained triaxial test or simulated by FLAC using the hump curve function (Equation (9)).
The comparison between the model prediction and measured results shows that the stress–
strain relationship of soft rock under the triaxial test state (σ1 ≥ σ2 = σ3) can be simulated
by the elastoplastic model with the hump curve function. Then, the values of the bearing
capacity factor Nc and Nγ for strip, circular and square footings in diatomaceous soft
rock were evaluated by FLAC/FLAC3D using the strain hardening/softening constitutive
model following the UST.
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Figure 3. Test and simulated results for soft rock measured by CU triaxial test [38,39] or computed by FLAC: (a) Variation of
friction angle ϕ, (b) Stress–strain behavior for diatomaceous soft rock, (c) Stress–strain behavior for mudstone, (d) Effective
stress path for diatomaceous soft rock, (e) Effective stress path for mudstone.
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Table 1. Parameters and values for numerical analysis.

Name Density ρ
(kg/m3)

Elastic
Modulus
E (MPa)

Poisson’s
Ratio ν

Cohesion
c (kPa)

Peak
Friction

Angle (◦)

Residual
Friction

Angle (◦)
P H R

Diatomaceous
soft rock 2183 500 0.25 40 15.1 12.8 0.021 0.04 0.0045

Mudstone 2032 500 0.25 1.2 8.0 6.8 0.039 0.09 0.0079

3. Calculations and Results

The 2D problem of the plane strain and axisymmetry is also under the complex
stress state; three principal stress are independent and not equals to each other. Thus, the
intermediate principal stress will have a specific influence on the 2D problem. Strip and
circular footings can be considered as plane strain and axisymmetric problems, respectively.
The square footing must be analyzed as a 3D problem. Vesić suggested an equation of the
ultimate bearing capacity for a strip footing on a soil foundation. The formula is expressed
as follows [40]:

Pu = c · Nc +
γ · B

2
Nγ (10)

Nc = cot ϕ ·
[

1 + sin ϕ

1− sin ϕ
exp(π · tan ϕ)− 1

]
(11)

Nγ = 2
[

1 + sin ϕ

1− sin ϕ
exp(π · tan ϕ) + 1

]
tan ϕ (12)

Pu = c · Nc + qNq + 0.4BNγ (for square foundation) (13)

where Pu is the ultimate bearing capacity of strip footing, Nc is the bearing capacity factor
of cohesion c, γ is the soil unit weight, B is the footing width, and Nγ is the soil self-weight
bearing capacity. Terzaghi also proposed the formulas of factors Nc and Nγ for rough
rigid and strip footings [41]. Circular footings, which belong to the class of axisymmetric
problems, were considered by Eason and Shield and Cox et al. using the characteristic
method [42,43]. The bearing capacity of a square footing has been investigated by some
researchers using numerical and testing methods [44–47].

In this study, the foundation was considered a strain-softening and homogeneous ma-
terial (soft rock) and discretized into several finite-difference element meshes. The footings
are considered to be perfectly rigid and rough. The influence of the intermediate principal
stress on the bearing capacity of strip, circular and square footings was analyzed, taking the
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strain hardening/softening behavior of soft rock into account. The residual strength of soft
rock is practically irrelevant, and it is only of the theoretical value. In this study, the peak
and residual bearing capacity of soft rock foundations are both considered for analysis.
The values of the factors Nc and Nγ for strip, circular and square footings in diatomaceous
soft rock were evaluated by FLAC and FLAC3D code with strain hardening/softening
constitutive model following the UST and dilation angle ψ = 0. Because the problem
domain is symmetric, only half of the problem domain was considered, and the footing
width B was held constant at 20 m. Because the left vertical boundary was the symmetry
plane, the horizontal displacement was fixed, and the vertical displacement was free. The
right vertical boundary was only constrained in the horizontal direction. The displacement
of the bottom boundary was fixed in both the vertical and horizontal directions. The
boundary condition and mesh for numerical analysis are shown in Figure 5. The analyses
were performed by applying a vertical velocity (1 × 10−6 m/step) to simulate the load
from the rigid footing base. The contact stress P beneath the strip footing was calculated as
the sum of the vertical nodal forces beneath the footing divided by the half-width of the
footing [10]. The contact stress P beneath the circular footing was calculated by dividing
the sum of the vertical footing nodal forces by the footing area, the radius of which is equal
to the distance to the center of the first element outside the footing [9]. The horizontal
velocity at the surface nodes beneath the footing was set to zero to simulate the rough
interface between the footing and soft rock foundation. Previous studies observed that the
value of Poisson’s ratio ν and elastic modulus E do not influence the value of the bearing
capacity of footings [11]. The tensile failure at the free surface near the footing base has
little influence on the ultimate bearing capacity of footings [9,10]. Shear failure is placed in
most elements beneath the footing under the limit state, and the ultimate bearing capacity
of footing mainly depends on the shear strength parameters (c and ϕ) of soft rock.



Coatings 2021, 11, 1019 9 of 16
Coatings 2021, 11, x FOR PEER REVIEW 9 of 15 
 

 

 

(a) 

 

(b) 

Figure 5. Finite difference meshes with boundary conditions used for analysis: (a) Strip or circular 

footing (symmetrical model), (b) Square footing (quarter model). 

The two bearing capacity factors (Nc and Nγ) can be obtained individually using the 

numerical method [10,11] and can be expressed by the following equations: 

,   when  0

2 ,   when  0

cN P c

N P B c





 


   

(14) 

where, P is the contact stress beneath the footing base, B is the width of the footing. The 

initial soil stress state must be established before the numerical computation of the bearing 

capacity factor Nγ. The initial geostress state for foundation soil is calculated with gravity, 

and a load of footing base is not applied to the surface of the foundation. Secondly, the 

vertical load is applied to the nodes underneath the footing base after the initial geostress 

of the foundation is established. The peak and residual values of bearing capacity factor 

Figure 5. Finite difference meshes with boundary conditions used for analysis: (a) Strip or circular
footing (symmetrical model), (b) Square footing (quarter model).

The two bearing capacity factors (Nc and Nγ) can be obtained individually using the
numerical method [10,11] and can be expressed by the following equations:{

Nc = P/c, when γ = 0
Nγ = 2P/γB, when c = 0

(14)

where, P is the contact stress beneath the footing base, B is the width of the footing. The
initial soil stress state must be established before the numerical computation of the bearing
capacity factor Nγ. The initial geostress state for foundation soil is calculated with gravity,
and a load of footing base is not applied to the surface of the foundation. Secondly, the
vertical load is applied to the nodes underneath the footing base after the initial geostress
of the foundation is established. The peak and residual values of bearing capacity factor Nc
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and Nγ yield by FLAC and UST are shown in Tables 2 and 3, respectively. Two parameters
ξc and ξγ are given to estimate the influence of the intermediate principal stress and are
described as follows:

ξc =
Nc(UST, b ≥ 0)

Nc(Mohr−Coulomb)
, ξγ =

Nγ(UST, b ≥ 0)
Nγ(Mohr−Coulomb)

(15)

where ξc and ξγ are the efficiency factors of the intermediate principal stress effect for
the bearing capacity factors Nc and Nγ, respectively. Figure 6 shows the relationship of
Nc = P/c and Nγ = 2P/γB versus vertical displacement s/w for strip, circular and square
footings in diatomaceous soft rock as calculated by the finite-difference code FLAC. The
relationship of the peak and residual values of the bearing capacity factors Nc and Nγ for
strip, circular and square footings versus the parameter b of UST are shown in Figure 7.
The results from Figure 6 indicate that the strain-softening characteristic for Nγ is more
remarkable than that of Nc. The results from Figure 7 suggest that the peak and residual
values of the factors Nc and Nγ for strip, circular and square footings are increased with
increasing values of the parameter b in UST. Figure 8 shows the relationship of the efficiency
factors ξc and ξγ versus the values of parameter b of UST. The results from Figure 8 indicate
that the values of the efficiency factor ξγ for Nγ are generally higher than the efficiency
factor ξc with the values of the parameter b increased. The influence of the intermediate
principal stress on the peak and residual values of Nγ is more apparent than that of Nc.
The influence of the intermediate principal stress on the peak and residual values of the
bearing capacity for a strip footing is much more significant than for circular and square
footings. The intermediate principal stress has a similar influence on the peak and residual
values of the bearing capacity of circular and square footings. The difference between the
influence of the intermediate principal stress on the peak and residual values of the bearing
capacity of a soft rock foundation appears relatively small. Figure 9 shows the maximum
shear strain rate contours for a rough strip footing when the soft rock foundation’s peak or
residual bearing capacity has been reached.
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Table 2. Peak and residual values of bearing capacity factor Nc yield by FLAC and UST.

Geometry Strip Circular Square
UST b = 0.0 b = 0.25 b = 0.5 b = 0.75 b = 1.0 b = 0.75 b = 1.0 b = 0.5 b = 0.75 b = 1.0 b = 0.0 b = 0.25 b = 0.5 b = 0.75 b = 1.0

Peak values 10.27 12.27 14.22 15.77 17.20 14.56 14.88 15.57 16.69 18.28 13.68 14.45 15.43 16.55 18.05
Residual values 8.72 10.30 11.90 13.10 14.16 11.94 12.46 13.32 14.17 15.60 11.34 12.21 13.17 14.31 15.65

Table 3. Peak and residual values of bearing capacity factor Nγ yield by FLAC and UST.

Geometry Strip Circular Square
UST b = 0.0 b = 0.25 b = 0.5 b = 0.75 b = 1.0 b = 0.0 b = 0.25 b = 0.5 b = 0.75 b = 1.0 b = 0.0 b = 0.25 b = 0.5 b = 0.75 b = 1.0

Peak values 1.17 1.51 1.83 2.09 2.35 1.05 1.11 1.18 1.30 1.49 1.33 1.44 1.57 1.73 1.90
Residual values 0.67 0.86 0.99 1.14 1.28 0.58 0.63 0.68 0.75 0.84 0.79 0.85 0.94 1.03 1.15
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4. Discussion

The results of numerical computation show that the influence of the intermediate
principal stress on the peak and residual values of Nγ is more apparent than on the bearing
capacity factor Nc. The influence of the intermediate principal stress on the peak and
residual values of the bearing capacity for a strip footing is much greater than for circular
and square footings. The strain-softening behavior of soft rock foundations beneath strip,
circular and square footings for factor Nγ evaluations are more apparent than that of the
Nc evaluations. The influence of the intermediate principal stress on the peak and residual
values of Nγ is more apparent than on the bearing capacity factor Nc. The influence of the
intermediate principal stress on the peak and residual values of the bearing capacity for a
strip footing is much greater than for circular and square footings. The difference between
the influence of the intermediate principal stress on the peak and residual values of the
bearing capacity of a soft rock foundation is relatively small. The size of the shear zone in
the soft rock foundation increases as the value of the UST parameter b increases. The shear
zone of the soft rock foundation under peak values of the bearing capacity is larger than
that of the residual values of the bearing capacity.

The results obtained from FLAC/FLAC3D code using the UST indicate that a clear
difference exists between the failure mechanisms of the foundation when the influence of
the intermediate principal stress is taken into account versus when it is not. The size of the
shear zone increases as the value of parameter b increases, and more soft rock beneath the
footing contributes to the bearing capacity of the foundation. The size of the shear zone in
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the peak bearing capacity of soft rock foundations is larger than that of the residual bearing
capacity, and the size of the shear zone for Nc evaluation is larger than that of the Nγ.

5. Conclusions

This paper presents a series of numerical solutions for the bearing capacity of strip,
circular, and square footings in a soft rock foundation. Based on the results of this study,
the following conclusions can be drawn:

(1) A strain hardening/softening constitutive model which takes the influence of the
intermediate principal stress into account was established in this study. The mechan-
ical behavior of the strain-softening material under the complex stress state can be
analyzed using this model.

(2) The intermediate principal stress significantly influences a soft rock foundation’s
bearing capacity and failure mechanisms. The intermediate principal stress has less
influence on the bearing capacity of footing when gravity is neglected. The influence
of the intermediate principal stress on the bearing capacity for strip footing is much
more significant than that of circular and square footings. The size of the failure area
in the soft rock foundation increases with the increased effect of the intermediate
principal stress.

(3) The research works of our study would benefit the reasonable estimation of the
bearing capacity of footings in a soft rock medium. In our future research, taking the
nonlinear failure envelope on the meridian plane into account, the influence of the
intermediate principal stress effect on soft rock material will be investigated.
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