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Abstract: The aim of the present study was to explore the effect of a non-uniform heat source/sink
on the unsteady stagnation point flow of Carreau fluid past a permeable stretching/shrinking sheet.
The novelty of the flow model was enhanced with additional effects of magnetohydrodynamics, joule
heating, and viscous dissipation. The nonlinear partial differential equations were converted into
ordinary differential equations with the assistance of appropriate similarity relations and were then
tackled by employing the Runge-Kutta-Fehlberg technique with the shooting method. The impacts of
pertinent parameters on the dimensionless velocity and temperature profiles along with the friction
factor and local Nusselt number were extensively discussed by means of graphical depictions and
tables. The current results were compared to the previous findings under certain conditions to
determine the precision and validity of the present study. The fluid flow velocity of Carreau fluid
increased with the value of the magnetic parameter in the case of the first solution, and the opposite
behavior was noticed for the second solution. It was seen that temperature of the Carreau fluid
expanded with the higher values of unsteadiness and magnetic parameters. It was visualized from
multiple branches that the local Nusselt number declined with the Eckert number parameter for both
the upper and lower branch.

Keywords: viscous dissipation; Carreau fluid; MHD; stretching /shrinking sheet; stagnation point flow

1. Introduction

The numerous application of non-Newtonian fluids in industry and commerce has
prompted researchers to do study in this area. Important applications of these types of
fluids include the chemical industry, such as paint manufacture, palm oil production, and
shampoo production, as well as the food sector, such as mayonnaise production. The highly
driven authors are therefore interested in the study of the rheology of non-Newtonian
liquids. As the complicated numerical and analytical relationship between the shear rate
and stress is represented by the non-Newtonian liquid substance, they are graded into
dilatant, shear thinning, and shear thickening properties. While different fluid simulations
are used in this respect to analyze the inherent advantages from the above components,
there is no single scheme in this respect. Finally, the organized effort by Carreau (1972) [1]
moved into motion and suggested the Carreau fluid scheme. He identified that the Carreau
fluid scheme is a combination of the Newtonian and power law scheme that can express
shear thinning characteristics at a reduced shear rate and thickening characteristics at a
large shear rate. Good numbers of research articles are reported in literature which deals the
characteristics of Carreau fluid flow induced by different stretched surfaces. Some of these
are as follows. Olajuwan [2] stated that by enhancing the deformation rate, the constitutive
expression of Carreau fluid decreased to the non-Newtonian fluid. Carreau’s scheme was
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described by Pan-tokratoras [3], utilizing the control parameter n. He explained that the
characteristics of a shear thinning substance for 0 < n < 1 are expressed by a Carreau fluid,
and a shear thickening for n > 1. Shadid and Eckert [4] investigated the dampers impact
of a stretching cylinder on Carreau fluid. Khellaf and Lauriat [5] provided thermophysical
characteristics of Carreau fluid in an inertial space between two concentric cylinders. Raju
and Sandeep [6] were questioned about the effect of the nonlinear exposure on the flow
of Carreau fluid. Khan and Hashim [7] illustrated the MHD boundary layer flow of the
Carreau fluid owing to a stretched sheet. Some recent development in the heat transfer is
found in Refs. [8-19].

MHD is the study of electrically conducting fluids that combine electromagnetism
and fluid dynamics principles. The field is illustrated by the process of mixing nuclear
reactor cooling and metals in an electrical boiler by introducing a magnetic field. Magnetic
fields are used to track the heat transfers and momenta of various fluids in the boundary
layer flow as they pass through a stretched surface. Some of the uses of MHD include
crude oil purification, MHD generators, the petroleum sector, polymer technology, thermal
protection, space vehicle propulsion, and MHD pumps. Such recent studies are as follows.
Mukhopadhyay et al. [20] studied the slip mechanism of MHD flow of viscous fluid along
a stretching cylinder. The MHD flow across the stretched surface with the condition of
a convective boundary was examined by Ibrahim [21]. An experimental and numerical
analysis was carried out by Hashizume [22] to determine the MHD flow in the liquid
metal sheet process by identifying Li as a liquid metal that works. Currently, various
researchers [23-28] have examined the MHD flow behavior of the lithium material in
various duct structure applications.

Many researchers have looked at boundary layer flows caused by stretching /shrinking
surfaces because of their ubiquitous use. Stretching/shrinking surfaces have flow and
heat transfer characteristics that are commonly used in engineering processes, including
lamination and melt-spinning, polymer industries, and continuous casting. In view of
this, Zaimi et al. [29] obtained the dual branch solutions of the 2D flow of a nanofluid
along a permeable shrinking surface. Freidoonimehr et al. [30] analytically discussed
the combined effects of heat generation and chemical reaction on a MHD flow past a
stretching /shrinking surface. In another article, Uddin et al. [31] numerically studied the
aspects of solar radiation on a nanofluid flow past a shrinking sheet in the presence of a slip
effect. The impact of a heat source and chemical reactive species on a stagnation point flow
of MHD fluid due to the shrinking surface was considered by Dash et al. [32]. Merkin and
Pop discussed the exothermic surface reaction on a stagnation point flow over a shrinking
surface. Further, Mahabaleshwar et al. [33] discussed the mechanisms of the heat and mass
transport of a Casson fluid along a stretching/shrinking sheet. The stagnation point flow
of a nanofluid past a quadratically shrinking surface in the presence of nanoparticles was
investigated by Anuar et al. [34]. Recently, Khan et al. [35] analyzed the heat transport
features of Carreau fluid through a shrinking sheet in the presence of Soret and Dufour
effects. Mousavi et al. [36] theoretically and experimentally analyzed the behavior of a
Casson fluid flow over a shrinking sheet in the presence of nanoparticles.

The effect of joule heating, viscous dissipation, and a nonuniform heat source/sink
on magneto-Carreau fluid past a permeable stretching was of fundamental importance
in our study, which was motivated by the aforementioned reference work and numerous
prospective industrial applications of the problem. As a result, the goal of this research
was to apply the findings of Akbar et al. [37] to a broader problem that incorporates the
effects of viscous dissipation and Ohmic heating. Dual branch solutions were captured
numerically [38] in this study to evaluate the impact of various flow factors appearing
in the governing equations, which were also illustrated with the help of graphs. The
proposed physical issue was numerically solved utilizing the shooting scheme, which is
more computationally efficient. It was found that the solutions of the similarity equations
have a dual branch of solutions in a certain range of shrinking parameters.
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2. Mathematical Formulation

Let us consider the 2D boundary layer flow of magneto-Carreau fluid near a stagnation
point driven by a permeable stretching /shrinking sheet, as shown in Figure 1. The effects of
viscous and Joule dissipation, as well as a non-uniform heat source/sink, are considered in
the energy equation. It is presumed that the velocity of shrinking /stretching is 1, = Auy,
while A is a constant which represents the stretching or shrinking surface. The stretching
of the stretching/shrinking sheet is vertical to the y-axis. The velocity of the shrinking
sheet is 1y, = Auy, where A is a constant with (0 < A > 0), referring to the stretched /shrunk
surface, respectively, and u, (x, t) is the stagnation point velocity. It is presumed that T,
Too, Uw (x, t), and By represent the surface temperature, ambient temperature of fluid, mass
transport velocity, and transverse magnetic field, respectively.

B(t)

JV
A
Boundary Layer
—
—
HH
<3:I u
(a) Stretching Surface

yy B0
A

= u"l.t’ —/>

Boundary Layer

£ 4 41 )X,U
vy b
|::>- u=u,, :,':|

(b) Shrinking Surface
Figure 1. Physical model and coordinate system for (a) stretching case and (b) shrinking case.

Under the above assumptions, including the viscous dissipation and boundary layer
concept, the governing equations of the proposed problem can be stated as (Pop et al. [28];
Bhattacharrya [39]):

ou dv
=42 = 1
ox + oy 0 @
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The associated boundary condition is:
u=Auy(x, t), v=uvyp(x,t), T="Te(x, t), at y=0, @
u—ue(x, t), T—Te, as y— oo,
We imagine that vy, Uy, te, Tw, B2 (t), and g™ (x, t) have the subsequent forms:
B2
uw(x, ) = 1%, we(x, 1) = 1%, vo(x, £) = =S\/ 175, BX(t) = =, ®)

7" = (K )[A(Ty = To) f' = B(T = To)]

where parameter c represents the unsteadiness of the problem; a is a positive constant;
S denotes the mass transport parameter with (0< S >0), for suction and injection, re-
spectively; A and B are parameters of space-dependent and temperature-dependent heat
generation/absorption. It is to be illustrated that both A and B are positive to internal heat
source and negative to internal heat sink.

Considering Equation (5), we assume that it is possible to consider the following
similarity factors:

T—Te
= ym, P(x, y, t) = (fi’fd) xf(n), 6(n) = Ty — Too ©)

where 1 is the stream function and can be defined as:

v=— g—f, u= 3—15. Replacing (6) with Equations (2) and (3), we obtain the following ODEs

6271—
fra - (74 S e - ) g1+ L =0 0

1 /" 2 "
50" — [Af'+ B0 + Ee[M2(1 - f)2+ (f)%] - 9’(/5% ~f) =0 ®)
with associated boundary conditions,

f=S, ff=A 60=1, at n=0 ©)
=1, 60, at § — o

In the above equation, 8, S, A, n, B, We, Pr, M, and Ec represent the unsteadiness
parameter, suction parameter, space-dependent parameter, power law index, temperature-
dependent local Weissenberg number, Prandtl number, Hartman number, and Eckert
number, respectively. These parameters are defined as follows:

2
Wero Dt g € OB Y g Mh g W
vfx a oa o Cp(Tw — Teo) Vva

The physical properties of importance including Cy, and Nuy are characterized by
local skin friction and the local Nusselt number, respectively.

(10)

Xqw

~ o N T KT - 1) n
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where 1, and g, represent the shear stress of wall and heat flux, respectively, via
ou ou\°12(n—1) oT
Tw_ax+<8y> — qw—K(ay> at y=20 (12)

In dimensionless form:

_ 2
VReCs, = |1+ S ], T = Nk V2=~ 3)

where Rey = Z—}”x is the local Reynolds number.

Solution Method

The set of self-similar Equations (7) and (8) along with assisting boundary conditions
(9) has been tackled numerically through the Runge-Kutta—Fehlberg method. The final
system is reduced into a set of first-order ordinary differential equations and is altered into
the initial value problem as:

f = Yl/ fl = YZ/ "= Y3/ 0= Y4/ 9, = YS' (14)
/ YZ
Yl/ Y;
Y, —Y1 Y3+ Y2+B(Yo— 14+ 1 Y3)+ M2 (1-Y,)—1
v |- [RET , ()
Y‘% Ys
Y5

Pr[AY, + BY,] — Ec [M2(1 —Y,)%+ yg] +Ya(BY - 1)

with initial conditions:

Y1 (0) S
Y,(0) A
Yo(0) [ =] 1 (16)
Y4(0) 1
Y4(OO) 0

3. Results and Discussion

The simulation results of Equations (7) and (8) conducted at the boundary condition (9)
were analyzed for numerous values of the pertinent parameters 8, We, S, n, A, Pr, B, M,
Ec, and A and the developmental condition in which the dual (first and second branch)
solution can occur in the unsteady flow across a shrunk surface. In Figure 2, dual nature of
solutions are observed for local skin friction Re!/2C ¢ for distinct values of n. The values
n = 2.5, 2, 1.5 represent the shear thickening behavior of Carreau fluid found in dispersions
of highly condensed colloid particles. Its viscosity increases the shear loading, making it
useful in protective and impact resistance applications. As the critical values of A changes
from A, = (—5.1323, —5.4061, —5.942), it is observed that surface drag force increases
for first solution and opposite pattern is seen for second solution for higher values of #.
Figure 3 displays the impact of Re'/2C £ with A for S when the dual solution A < A <0,
where critical values of A are A, = (—4.5731, —4.9906, —5.4061). From Figure 3, it can be
illustrated that first solution is significantly increasing, whereas second solution diminishes
for the higher values of S. Similar phenomena are noted, although we examined Figure 4,
with Figure 3 for We. The influence of Re~'/2Nu compared to A for various values of Pr is
described in Figure 5. In this figure, we have computed that the A. is —4.99. In the heat
transfer mechanism, the Prandtl number controls the relative thickness of the momentum
and thermal boundary layers. It is noticed that when the values of Pr are small, the heat
diffuses quickly in the case of the second solution. Thus, the heat transfer rate at the surface
enhances with higher values of Pr in the case of the first solution. As can be shown in
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Figure 6 for both solutions, the rising Ec results are reduced in the heat transport rate
Re™'/2Nu. Further, the Eckert number indicates if the transition of momentum energy
to heat energy has a major impact on the fluid flow and heat transfer. Therefore, higher
values of Ec reduce the heat transfer rate for both solutions. The variation of velocity profile
f' () for different values of B is revealed in Figure 7. From this Figure, it is noted that
the velocity profile reduces for both branches for improving the values of . The impact
of M on velocity profile f’ () is distributed in Figure 8. From this plot, it is stated that
higher values of M reduces the velocity profile. This is due to the fact that M provides the
Lorentz force, which slows down the movement of fluid, thereby decaying the thickness
of the boundary layer. Figure 9 illustrates that the temperature of the non-dimensional
characteristic, thus the rate of heat transport, also improves for the first branch and decays
for the second branch with the enhancement of B. On the other hand, an inverse behavior
of A on the heat transport is detected, as can be noticed from Figure 10. The variation in
8(n) is displayed in Figures 11 and 12 for higher values of  and M. These figures illustrate
that the heat transport improves for both branches for large values of f and M. These
outcomes are well developed and have not been replicated here, for simplicity.

30F First Solution

——————— Second Solution

20

~=10F

-10F

20F

30

Figure 2. Influence of Re~1/2 Cywith A for various values of n and p = We =0.3,5 =5 M= Ec=0.5,
A=B=0.1,and Pr=23.

30F
First Solution
———— Second Solution

20

Figure 3. Influence of Re~1/2 Cf with A for various values of Sand f=We=03,n=2, M=Ec=0.5,
A=B=0.1,and Pr=3.
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Figure 4. Influence of Re~1/2 Cf with A for various values of Weand S=5,=03,n=2, M=Ec=0.5,
A=B=0.1,and Pr =3.
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Figure 5. Impact of Re~1/2 Ny with A for various values of Prand n =2, S = 4.5, We = =03, M=05,
and A =B =Ec=0.01.
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Figure 6. Impact of Re~1/2 Nu with A for various values of Ecand n=Pr=2,S = 45 We=5=0.3,
M=0.5,and A=B=0.01.
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Figure 7. Impact of f'(17) with several values of fand We=0.3,n=2, M =Ec=0.5,Pr=3,5=4,and
A=B=01.
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Figure 8. Impact of f'(17) with several values of M and We = 0.3, n = 2, Ec = 0.5, Pr = 3, and
A=B=p=01.
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Figure 9. Influence of temperature with different values of Band M = 0.1, We = =03, S =4,
Ec=A=0.01,and Pr=n=2.
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Figure 10. Effect of temperature with several values of Aand We==0.3,M=0.1,5=4,Ec =B =0.01,

and Pr=n=2.
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Figure 11. Influence of temperature with different values of f and M = 0.1, We = 0.3, S = 4,
Ec=A=B=0.01,and Pr=n=2.
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Figure 12. Impact of temperature with several values of M and We==0.3,5=4, Ec=A=B=0.01,

and Pr=n=2.

4. Numerical Results

Table 1 displays the scheme of changing parameters on Re'/?C r- Now, the Rel/2C Y
for the first solutions improve with the increase in S and decays for the second solution; in
addition, Re'/2C ¢ for both solutions improve with the increases in We and n. Table 2 depicts
the characteristics of numerous parameters on Re~!/2Nu. The Nusselt number decreases
for both solutions with the improvement of Ec and also increases with Pr. It is observed
that increasing S, We and n have positive and incremental effect on skin friction coefficient.

Table 1. Numerical results of local skin friction coefficient for various values of A =0.1, Ec = 1, and

Pr=1.
Skin Fraction
S We n Second Solution
First Solution
4 0.2 1.5 8.651331 —6.954896
4.3 - - 9.218749 —8.683733
45 - - 9.598867 —9.911829
4 0.2 1.5 8.651331 —6.954896
- 0.3 - 8.687392 —6.608448
- 0.4 - 8.726198 —6.277252
4 0.2 1.5 8.651331 —6.954896
- - 2 8.68093 —6.667403
- - 2.5 8.705214 —6.451781

Table 2. Numerical results of heat transfer rate for various values of A =0.1, Ec =1, and Pr=1.

Nusselt Number
Ec Pr Second Solution
First Solution

0.01 2 6.5912 6.5411
0.02 - 5.6194 5.5416
0.03 - 4.6476 4.5422
0.01 2 6.5912 6.5411
- 2.3 7.8287 7.7778
- 2.5 8.6513 8.5994
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5. Conclusions

We investigated the 2D boundary layer flow of a MHD Carreau fluid along a perme-
able shrinking sheet in the presence of Joule heating, Ohmic dissipation, and non-uniform
heat source/sink effects. Dual branch solutions were achieved numerically using the
Runge-Kutta—Fehlberg method. The impacts of physical parameters on the dimensionless
velocity, temperature, skin friction coefficient, and heat transfer rate were demonstrated
via plots. The following assumptions can be collected from the current study:

1. It was noticed that the local skin friction coefficient increased with the power law
index and mass transfer parameter for both solutions.

2. The local Weissenberg number was an increasing function of the skin friction factor.

3. It was revealed that higher values of the Eckert number diminished the heat transfer
rate at the surface for both solutions.

4. It was investigated that the velocity profile of the Carreau fluid reduced for higher
unsteadiness parameter values, while a reverse pattern was seen for the magnetic
parameter in the case of the first solution.

5. The temperature of the Carreau fluid and thermal boundary layer thickness increased
significantly with the unsteadiness parameter and magnetic field parameter values
for both solutions.
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Nomenclature

u, v Velocity components Pr Prandtl number

x,y  Cartesian coordinates C Y Skin friction coefficient

Ec Eckert number Nu Local Nusselt number

T Fluid temperature Re Local Reynolds number

Tw Surface temperature r Relaxation time

Too  Ambient temperature 4 Fluid density

S Mass flux parameter U Generalized Newtonian viscosity

B Unsteadiness parameter Mo Zero shear viscosity

n Power law index Ueo Infinite shear viscosity

Uw Mass flux velocity ¥ Magnitude of deformation rate

a,c Constants v Kinematic viscosity

uyp  Stretching velocity P Stream function

k Thermal conductivity Tw Surface shear stress

By Magnetic parameter 0 Dimensionless temperature

f dimensionless stream function 7 Dimensionless similarity variable
U  Free stream velocity (pc) p Effective heat capacity of a nanoparticle
ay  Thermal diffusivity (pc);  Heat capacity of the base fluid

Cp Specific heat T Parameter defined by the ratio Ezz;;

We  Local Weissenberg number
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