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Abstract: In this study, a femtosecond laser was used to pretreat the surface of the Al–Li alloy, the
surface micromorphology, roughness, contact angle, and surface wettability of which were adjusted
by changing the laser scanning speed, and the sample was bonded into a single joint with polyether
ether ketone (PEEK) adhesive. The mechanism of the laser surface treatment affecting the bonding
strength of the Al–Li alloy was explored through tensile and shear experiments. The results indicated
that optimizing the laser surface treatment parameters could change the surface roughness and
surface micromorphology of the Al–Li alloy, so as to change its surface free energy and bonding
strength. Compared with the untreated sample, the bonding strength of the Al–Li alloy increased by
81%, 95%, 107%, 91%, and 78% under the treatment of laser scanning at 25, 20, 15, 10, and 5 mm/s,
respectively. As a whole, femtosecond laser etching of the Al–Li alloy surface had an important
influence on its wettability and bonding performance.

Keywords: Al–Li alloy; femtosecond laser; surface characteristics; wettability; bonding performance

1. Introduction

The Al alloy has excellent physical and chemical properties and is widely used in the
aerospace and automotive industries. When manufacturing Al alloy parts, the connection
between Al alloys is inevitable, especially when manufacturing parts with complex geome-
tries or large dimensions [1]. At present, mechanical connection, welding, and bonding are
the main methods for Al alloys connection. The mechanical connection method generally
connects materials together through bolts or rivets and other fasteners, adding extra weight
and causing concentrated stress within connectors. The welding operation easily produces
deformation and cracks, which seriously affect properties of the material. On account of
overcoming these shortcomings, the bonding technology is now being used more and more
widely due to its excellent characteristics [2,3].

Surface treatment technology is usually adopted to improve the bonding strength and
bonding performance of the Al alloy. Traditional surface treatment is usually carried out
by mechanical sandblasting, sanding, chemical etching, and anodizing methods [4–8]. In
these processes, mechanical sandblasting and polishing have limited effects. Anodizing
and chemical etching are rather effective in changing the surface properties of Al alloys
and improving the bonding strength, although this technology is expensive, complex,
and accompanied by pollution. Compared with traditional surface treatment technology,
laser surface treatment is a green and noncontact method that does not use solutions or
introduce secondary pollution, which can provide a uniform surface with high reliability
and repeatability [9,10], and has become a research focus in recent years.

Wan et al. [11] studied the effect of laser spot overlap rate on the surface properties
and bonding strength of the AA6022–T4 Al alloy. Li et al. [12] pretreated the surfaces of
the Al alloy and the carbon fiber reinforced polymer (CFRP) joint with an ultrafast picosec-
ond infrared (IR) laser and a nanosecond ultraviolet (UV) laser and the shear strength
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of the treated Al alloy/CFRP joint increased from 5.6 to 24.8 and 21.9 MPa, respectively.
Spadaro et al. [13] used beams of different diameters and energy to perform laser processing
on Al alloy 2024 substrates and studied the effects of irradiation conditions on the morphol-
ogy of the adherend and the fracture energy of the adhesive joint. Wu et al. [14] explored
the effect of laser ablation surface treatment with different energy on the performance of
adhesive-bonded AA6022–T4 joints through a series of experiments. Romoli et al. [15]
studied the effect of the microgrooves produced by the laser on the strength of Al alloy
joints under different laser energy densities.

Although a large number of studies have begun to explore the use of laser surface treat-
ment as a preprocess of Al alloy bonding, the research has mainly focused on picosecond
and nanosecond lasers. When the pulse width is a nanosecond or longer, the subtle phase
transitions and structural changes caused by photophysical and photochemical processes
will be directly removed due to thermal effects such as melting and redecomposition. These
shortcomings can be overcome by a femtosecond laser [16,17]; so the femtosecond laser
has unique advantages and broad application prospects. However, the research on the
related processes, technologies, and mechanisms of the femtosecond laser as a surface
treatment technology in the bonding process is still in its infancy. In order to further
study the mechanism of improving bonding strength by femtosecond laser etching, in this
paper, we investigated the effect of femtosecond laser pretreatment with different laser
scanning speeds on the surface morphology of the Al–Li alloy and the consequent adhesive
properties between the polyether ether ketone (PEEK) adhesive and the Al–Li alloy.

2. Materials and Methods
2.1. Materials

The 2 mm thick bare Al–Li alloy (Al–Li–S–4, Alcoa, Pittsburgh, PA, USA) used in this
study was sheared into pieces sized 100 mm × 25 mm; the chemical properties of the alloy
are presented in Table 1. The PEEK films, with a glass transition temperature of 143 ◦C
and a melting point of 343 ◦C [18], were supplied by the GEHR Company, Los Angeles,
CA, USA. The mechanical properties of the PEEK and Al–Li alloy are shown in Table 2.

Table 1. Chemical compositions of the Al–Li alloy (wt.%) [19].

Fe Si Cu Mn Mg Ag Zn Li Zr Ti Al

0.03 0.01 3.64 0.29 0.71 0.32 0.36 0.68 0.12 0.03 Bal

Table 2. Properties of the Al–Li alloy and the PEEK.

Property Al–Li Alloy [20] PEEK

Tensile strength σb (MPa) 532 116 a

Elastic modulus (GPa) 75.9 3.73 a

Poisson’s ratio 0.33 0.28 [18]
Elongation (%) 12.5 -

a tested.

2.2. Procedures
2.2.1. Sample Preparation

The femtosecond laser that was used to pretreat the surface of the Al–Li alloy had been
cleaned with ethanol to modify the surface. After pretreatment, the sample was cleaned
again to avoid being oxidized by air or absorbing impurity particles in the air, and then
subsequent treatment (wetting measurements, bonding, and so on) was carried out.

The femtosecond laser is a titanium-doped sapphire solid state femtosecond laser
amplifier system produced by Spectra Physics, Milpitas, CA, USA. The laser beam spot
was circular, and the focal point was 5 µm in diameter with a wavelength of 800 nm. The
laser scanning path shown in Figure 1a was selected. In this experiment, different surfaces
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were obtained mainly by adjusting the scanning speed, as shown in Table 3. The other
parameters of laser processing are shown in Table 4.
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Figure 1. Laser scanning path: (a) perpendicular to stretching direction, (b) parallel to stretching direction.

Table 3. Al–Li alloy sample numbers and corresponding treatment methods.

Parameters P-0 P-1 P-2 P-3 P-4 P-5

Scanning
speed/(mm/s) untreated 25 20 15 10 5

Table 4. Laser processing parameters.

Parameter Value

Mean power/W 0.35 a

Repetition frequency/kHz 1 b

Pulse width/fs 120 b

Beam diameter/µm 5 b

Hatch spacing/µm 100
a tested; b manufacturer’s data.

2.2.2. Bonding Test

After the femtosecond laser pretreatment, the Al–Li alloy adhesive-bonded joints were
cured using a PEEK film adhesive, according to the processing process shown in Figure 2.
First, a prepressure of 0.8 MPa was applied to the adhesive-bonded joint, and the purpose
was to extrude the excess air in the joint structure. At the same time, heating was started
until the temperature reached 390 ◦C, and the heat and pressure were kept for 40 min
to sufficiently melt the PEEK. Then, the pressure was increased to 1.5 MPa and kept for
30 min to fully infiltrate the PEEK on the surface of the adherend. Finally, the joint was
cooled down to room temperature and the pressure was released.
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Figure 2. The schematic of the curing process for the joint.

2.3. Experimental Characterization
2.3.1. Surface Characteristics

A scanning electron microscope (SEM, TESCAN, MIRA3, Brno, Czech Republic) was
used to observe the surface. To examine the surface topography, a white light profilometer
(WYKO NT9100, Veeco Metrology Inc., Plainview, NY, USA) was employed.

2.3.2. Surface Wettability

Surface contact angles of different samples with liquids were detected using a Theta–
Biolin contact angle meter (Biolin Scientific, Gothenburg, Sweden) to evaluate the modifica-
tion of the wettability of the surface; good wettability is beneficial to the spreadability of
the adhesive.

2.3.3. Shear Strength Test

Figure 3 provides the single lap shear specimen configuration, and the substrates are
Al–Li alloys pretreated by the femtosecond laser. According to the testing standard of
ASTM D1002-72 [21], shear strength tests were accomplished using an Instron 3369 machine.
Five samples were prepared to acquire average value.
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3. Results and Discussion
3.1. Surface Characteristics

A white light profilometer was used to observe the surface topography after the
femtosecond laser pretreatment. The Ra (surface roughness parameter) of the samples
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was measured, and the valid data were recorded; then the results were averaged. As
the contrast, the untreated samples were also tested. It can be seen from Figure 4 that
the surface laser pretreatment significantly improved the surface roughness of the Al–Li
alloy plate. The energy of the laser processing the surface of the Al alloy increased at the
same position, and the surface roughness of the Al–Li alloy plate also increased as the
processing speed decreased. The surface roughness of the untreated Al alloy was 0.334 µm.
After laser pretreatment, the surface roughness became 0.501 µm (25 mm/s), 0.527 µm
(20 mm/s), 0.821 µm (15 mm/s), 1.043 µm (10 mm/s), and 1.493 µm (5 mm/s), exhibiting an
increase of 50%, 57.8%, 145.8%, 212.3%, and 347.0%, respectively. In addition, low-energy
(faster scanning speed) laser pretreatment had a limited effect on the surface roughness
of the Al–Li alloy, which was greatly affected by the original surface (Figure 4b,c), and
no significant laser scanning traces could be seen. After high-energy (slow scanning
speed) laser pretreatment (Figure 4d–f), the laser scanning traces were significant, and the
surface roughness of the Al–Li alloy was mainly affected by the impact of dents left by the
laser scanning.
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After further analyzing the surface profile of the Al–Li alloy plate sample (Figure 5),
it was discovered that after the femtosecond laser scanning, the surface topography was
not uniformly changed, but significant dents were formed, and the concave left by the
laser scanning showed a more significant impact on the contour of the sample surface
as the scanning speed decreased (greater scanning energy). The untreated Al–Li alloy
surface (Figure 5a) had a relatively smooth profile, and the laser-treated Al–Li alloy surface
profile was mainly affected by the groove marks and splashes left by the laser scanning.
The surface profile of the Al–Li alloy fluctuated significantly, and the overall profile was
relatively messy, but the dents were not significant when treated by the laser with a
scanning speed of 25 mm/s (Figure 5b), 20 mm/s (Figure 5c). When the laser scanning
speed was 15 (Figure 5d), 10 (Figure 5e), and 5 mm/s (Figure 5f), the outline of the Al–Li
alloy after laser scanning was clear with significant regularity. At these speeds, the surface
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profile of the sample was mainly affected by the groove after laser processing, and the
groove depth reached 3.5, 3.9, and 4.9 µm, respectively.
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The surface morphology and topography of the pristine and laser-treated samples
characterized by SEM are shown in Figure 6. The surface of the original Al–Li alloy
(Figure 6a) was relatively flat with scratches left by rolling. The surface damage of the
Al–Li alloy after laser scanning (Figure 6b–f) was significant. Compared with the untreated
sample, it was observed that there were laser scanning grooves on the surface of the Al–
Li alloy and splashes around the grooves. The deeper groove and more splashes were
produced as the scanning speed became slower, and hence the surface roughness was
greater. This is consistent with the roughness measurement results in Figure 4. A large
number of nanosubstructures covering the entire microgroove surface appeared on the
surface of the microscale groove due to the induction mechanism of the femtosecond
laser ultrashort pulse [22,23]. It could be seen from the microscopic image inside the
groove that the nanosubstructure was nanoparticles with particle sizes ranging from tens
to hundreds of nanometers, which consisted mainly of the nano-oxide particles produced
in the etching process. Further analysis showed that when the laser scanning speed was
25 mm/s (Figure 6b), 20 mm/s (Figure 6c), and 15 mm/s (Figure 5d), more nanoparticles
were formed inside the groove significantly with the increase in the scanning speed. When
the laser scanning speed was 15 mm/s (Figure 6d), 10 mm/s (Figure 6e), and 5 mm/s
(Figure 6f), the nanosubstructure of the groove after laser scanning was weakened, and the
color transferred to pale white. This is mainly because the excessively high laser scanning
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energy caused the Al–Li alloy around the active area to be vaporized or melted, which
caused thermal damage to the surrounding tissues.
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3.2. Contact Angle and Surface Free Energy

Samples with high surface free energy are beneficial to the spreadability of the ad-
hesive [24,25]. In this study, the contact angles of water (polar) and glycol (dispersive)
were measured to evaluate the variation of the wettability of the counterparts, and Table 5
provides the surface tension components of the probe liquids (distilled water and glycol).

Table 5. Surface tension components of probe liquids (mJ/m2) [24].

Wetting Liquids γL γd
L γ

p
L

Distilled water 72.8 21.8 51.0
Glycol 48.3 29.3 19.0

The adhesion of liquid to the examined solid can be represented using the adhesion
work Wa (Equation (1)), which represents the work required for the separation of the unit
area of the interface between the tested liquid (L) and solid (S) [26,27].

Wa = γS + γL − γSL (1)

where γS and γL represent the solid surface free energy and the liquid surface tension and
γSL is the solid–liquid surface tension.
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By combining with Young’s equation represented by Equation (2), Equation (1) can be
expressed as Equation (3) [26–28].

γS = γSL + γL cos θ (2)

Wa = γL(1 + cos θ) (3)

where θ represents the contact angle of the probe liquid.
Wa can also be represented as Equation (4). Consequently, surface free energy and its

components can be worked out by Equations (5) and (6) [26,29,30].

Wa = 2
√

γd
Sγ

d
L + 2

√
γ

p
Sγ

p
L (4)

γL(1 + cos θ) = 2
√

γd
Sγ

d
L + 2

√
γ

p
Sγ

p
L (5)

γS = γ
p
S + γd

S (6)

where γd
S and γ

p
S represent the dispersive and polar components of the examined solid,

and γd
L and γ

p
L represent the dispersive and polar components of the tested liquid.

By solving Equations (5) and (6), the two components of surface free energy of the
measured solid can be written separately as Equations (7) and (8).

γd
S =

γw

√
γ

p
d(1 + cos θw)− γd

√
γd

w(1 + cos θd)

2
√

γd
wγ

p
d − 2

√
γd

dγ
p
w

2

(7)

γ
p
S =

γw(1 + cos θw)− 2
√

γd
Sγ

d
w

2
√

γ
p
w

2

(8)

The averaged contact angle values of distilled water and glycol are provided in Table 6
as well as the calculated results of surface free energy. It can be seen that the surface free
energy of the Al alloy sample was greatly improved after laser treatment, in which the
polar component was significantly increased, while the dispersion component was reduced.
The difference in wettability of the Al–Li alloy surface was affected by the polar component
and the dispersion component of the surface free energy. Specifically, at the laser scanning
speeds of 25, 20, 15, 10, and 5 mm/s, the surface free energy of the samples increased by
133%, 170%, 192%, 169%, and 95%, respectively.

Table 6. Value of contact angles and surface free energy of the samples.

Samples
Contact Angle (◦) Polar

Component
(mJ/m2)

Dispersive
Component

(mJ/m2)

Surface Free
Energy
(mJ/m2)

Distilled
Water Glycol

P-0 82.32 58.51 7.79 20.86 28.65
P-1 31.18 9.37 59.84 6.94 66.78
P-2 20.30 5. 66 73.44 4.00 77.44
P-3 12.07 4.04 80.74 2.81 83.55
P-4 20.92 6.94 72.99 4.04 77.03
P-5 41.79 11.12 43.37 12.60 55.97

The wettability of the solid surface was mainly determined by the microstructure and
the chemical composition of the solid surface. The main reasons for the laser scanning of
the Al alloy sample surface increasing the surface free energy are as follows: (1) During
the laser processing, part of the energy diffused to the microtextured layer of the Al–Li
alloy, which induced an increase in surface free energy, and then the Ra of the plate was
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improved after laser pretreatment etching, which also induced an increase in surface free
energy. According to the principle of similar compatibility [31], the microtextures with
higher surface free energy are extremely compatible with water molecules that also have
higher free energy, thus inducing the diffusion and spreading of water molecules; (2) As
shown in Figure 6, after laser scanning, microstructures were formed in the dents with
an uneven surface, which led to the increase in the capillary adsorption force [32]. The
Van der Waals force between the microstructure and water molecules was enhanced [33],
inducing the adsorption and spreading of the water molecule; (3) The laser excited the
ionization of the Al alloy and the surrounding air, resulting in many functional groups
of Al3+, -OH with better hydrophilicity, and hence the surface free energy of the samples
increased [14,34]. The measurement results of the sample surfaces’ chemical composition
(atomic ratio) is shown in Table 7.

Table 7. The measurement results of the sample surfaces’ chemical composition.

Parameters P-0 P-1 P-2 P-3 P-4 P-5

Al/at.% 93.45 86.03 86.07 85.92 85.71 84.82
O/at.% 5.42 12.07 12.64 12.75 13.40 13.77

Others/at.% 1.13 1.90 1.29 1.33 0.89 1.41

3.3. Adhesion Property

The values of adhesion strength are presented in Figure 7. As demonstrated in Figure 7,
the strength of the bonded joints was largely influenced by laser surface pretreatment. The
maximum shear strength of the joint was 27.64 MPa, appearing on the laser pretreatment
sample with a scanning speed of 15 mm/s. The joint strength of the untreated sample
was 13.37 MPa, at 25 mm/s. Under the scanning speeds of 20, 15, 10, and 5 mm/s, the
bonding strength of the Al–Li alloy samples increased by 81%, 95%, 107%, 91%, and 78%,
respectively. The fracture morphologies of joints pretreated by laser are shown in Figure 8
with the primitive joints as the contrast. As described in Figure 8, the failure mode of
untreated Al–Li alloy adhesive joints was mainly apparent interfacial failure, and the
PEEK adhesive layer was broken along the interface of the Al–Li alloy mainly, while the
failure mode of the adhesive joints after laser scanning was mainly based on cohesive
failure. Interfacial failure indicates that the surface adhesion of bonding joints is poor,
while cohesive failure shows the surface adhesion of bonding joints is extraordinarily
strong [28,35,36].
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3.4. Relationships between Laser Scanning Speed, Surface Free Energy, and Shear Strength

In thermosetting composites, covalent chemical bonds are generally thought to take
place and are considered the main adhesion mechanisms, whereas in thermoplastic com-
posites mechanical interlocks are thought to be the dominating mechanisms [37]. The
adhesive PEEK used in this research was a thermoplastic material, and the change of
chemical composition on the surface of aluminum alloy by laser scanning was very small
(as shown in Table 7), so we mainly explored the effect of surface treatment on the bonding
performance from mechanical interlocks. The scanning speed of the femtosecond laser
was adjusted to obtain different scanning energy on unit areas, thus adjusting the surface
roughness and surface micromorphology of the Al–Li alloy. The microstructures were
beneficial to the spreadability of the adhesive, improving the surface wettability, which was
a nonnegligible factor that determined the bonding quality. However, the lower scanning
speeds (higher scanning energy) did not equate to greater free energy of the sample surface
and greater strength of the bonded joint. The lower the scanning speed, the greater the Ra.
As the roughness increased, both the surface free energy and the shear strength increased
rapidly at first and then decreased. The relationships between Ra, surface free energy, and
shear strength are shown in Figure 9.
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It is clear that the Ra value of 0.821 µm was an inflection point. Both surface free energy
and shear strength increased with Ra before the Ra value of 0.821 µm, while they decreased
with increasing roughness after 0.821 µm. Generally, the Pearson correlation coefficient
is used to represent dependencies [38]. The correlation coefficient ρX, Y, between two
random variables X and Y with expected values µX and µY and standard deviations σX
and σY can be described as:

ρX, Y =
E[(X − µX)(Y − µY)]

σXσY
(9)

where E is the expected value operator.
The closer the absolute value of ρX, Y is to 1, the stronger the relativity between the

two random variables X and Y. Before the Ra value of 0.821 µm, the value ρX, Y of Ra and
surface free energy was 0.835, and that of Ra and shear strength was 0.837, whereas the
values are −0.995 and −0.988, respectively, after the Ra value of 0.821 µm. Obviously, the
correlation between Ra and surface free energy and Ra and shear strength was stronger after
0.821 µm than before. This may indicate that the surface free energy and shear strength
were influenced by both surface roughness and surface chemical composition at first, while
surface roughness played a major role when the Ra was greater than 0.821 µm.

The increase in the groove depth increased the surface roughness, and the adhesive
penetrated into the uniform groove, thereby increasing the actual contact area between
the adhesive and the substrate. Due to the effect of the mechanical interlocks, the bonding
performance can be improved [39]. However, excessive roughness or deep grooves may
have a negative impact on the adhesion properties, especially if the grooves left by laser
scanning are deep and narrow. Because these grooves may allow air to remain, making
the adhesive unable to penetrate sufficiently into the grooves, the effect of mechanical
interlocks between the agent and the substrate plate becomes weaker. Therefore the
adhesive properties decrease [24]. Deep grooves are likely to form stress concentration
inside the adhesive joint, which affects the quality of the bonding [15,40,41]. Therefore,
when the scanning speed is over-low and the grooves left by laser scanning are over-deep,
the surface free energy of the Al–Li alloy and the shear strength after bonding decrease
instead. In addition, over-high scanning energy (scanning speed is over-low) will cause
thermal damage to the surrounding tissues (as shown in Figure 6), which may negatively
affect the material in depth, thereby affecting the free energy of the sample surface and the
bonding strength. The relationships between the shear strength and surface free energy are
shown in Figure 10, which shows that the value of shear strength increased as the surface
free energy increased. These results suggest that samples with higher surface free energy
may have higher shear strengths. Therefore, a surface with good wettability produced by
pretreatment is crucial for obtaining high joint bonding strength.

In order to further explore the mechanism of the effect of femtosecond laser pretreat-
ment on the bonding strength of Al–Li alloys, the scanning path of the laser was changed,
and the previous perpendicular to stretch direction (Figure 1a) was changed to parallel
to stretching direction (Figure 1b). Then, the subsequent bonding tensile experiment was
conducted, and the results are shown in Figure 11. At the laser scanning speeds of 25, 20,
15, 10, and 5 mm/s, the strength of the Al alloy adhesive joint after pretreatment was 23.30,
25.13, 26.55, 24.51, and 22.92 MPa when scanning parallel to the tensile direction, reduced
by 3.93%, 4.15%, 3.94%, 3.38%, and 3.48%, respectively, relative to scanning perpendicular
to the tensile direction. It can be seen that the scanning path had a certain influence on the
bonding strength of the Al–Li alloy, yet the effect was rather small. This indicates that the
effect of femtosecond laser scanning of the Al–Li alloy surface on the bonding strength of
the Al–Li alloy was mainly due to the laser pretreatment changing the wettability of the
sample’s surface, rather than from the mechanical interlock of macroscopic groove formed
by the laser scanning on the bonding agent.
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4. Conclusions

In this work, an ultrafast femtosecond laser was introduced to increase surface wetta-
bility and strengthen the bonding joints; the conclusions are summarized as follows:

(1) Femtosecond laser etching of the Al–Li alloy surface had an important influence
on its wettability. The surface wettability of samples could be changed by chang-
ing the laser scanning speed, and the surface free energy of the samples increased
by 133%, 170%, 192%, 169%, and 95%, at the scanning speeds of 25, 20, 15, 10,
and 5 mm/s, respectively.

(2) Femtosecond laser etching of the Al–Li alloy surface had an important influence
on its bonding performance. The bonding strength of the Al–Li alloy samples in-
creased by 81%, 95%, 107%, 91%, and 78%, at the scanning speeds of 25, 20, 15, 10,
and 5 mm/s, respectively.

(3) Femtosecond laser etching of the Al–Li alloy surface mainly changed the surface
roughness and surface micromorphology of the Al–Li alloy, thereby changing the
surface free energy and bonding strength. Over-high (over-low scanning energy) and
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over-low (over-high scanning energy) scanning speed reduced the surface free energy
and bonding strength of the samples.

(4) Femtosecond laser etching improved the bonding performance of the Al–Li alloy
mainly by improving the surface free energy of the samples, and its scanning path
had a slight effect on the bonding strength (<5%).
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