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Abstract: Traffic accidents occur frequently every year. Skid-resistance performance is an important
indicator in evaluating road safety. In this paper, the road surface texture information is obtained by a
line laser scanner. The original two-dimensional (2D) signal is decomposed into eight intrinsic mode
functions by complementary ensemble empirical mode decomposition (CEEMD). Eight intrinsic
mode functions compose an 800 × 8 data matrix. The matrix is decomposed by singular value
decomposition (SVD), and singular value vectors are obtained. The singular values are summed
and linearly fitted to the friction value measured by the British pendulum friction meter. The study
finds that the singular value sum of one to five has a good linear correlation with the friction value
with the goodness of fit greater than 0.8. At the same time, contour arithmetic mean deviation Ra is
applied for verification. The results show that the singular value sum has a strong correlation with
Ra. When the number of Intrinsic Mode Function (IMF) decomposition is greater than eight, there is
a good correlation between the number of IMF and the friction value from IMF2 to IMF6. When the
number of IMF decomposition is less than eight, the singular value sum numbers with R2 more than
0.8 gradually decrease. It is suggested that the road surface friction performance can be estimated by
solving the singular value of the 2D signal. It provides new technical support for the detection and
evaluation of anti-skid performance.

Keywords: pavement texture; CEEMD singular value decomposition; skid-resistance performance

1. Introduction

Traffic accidents happen frequently, and subsequently, road safety has become an
urgent problem in the world. Skid-resistance is an important indicator in evaluating road
safety performance. Although there are different factors involved in driving that affect
safety, such as vehicle performance and climate conditions, effective skid-resistance of
pavement is the basic condition and essential guarantee for safe driving. In traffic accidents
that are significantly affected by braking, the skid-resistance of the road surface could, to a
certain extent, reduce the severity of the accident, or even avoid the occurrence of the traffic
accident altogether. According to the British survey data [1], the proportion of accidents
caused by smooth road surface is 24% of the total number of accidents in the year, while the
sample survey in Japan indicates that the proportion of accidents caused by a smooth road
surface is about 25% of the total number of accidents in the year. Therefore, skid-resistance
detection of pavement has become one of the most important tasks to ensure road safety. It
would be useful to provide a methodology for averaging the value of the slip resistance
indicator for the purpose of taking it into account in the investigation of road accidents.

The measurement for skid-resistance is mainly concerned with contact method. The
British Road Transport Institute invented the pendulum friction coefficient tester, or the
British Pendulum Tester (BPT). It is one of the earliest established methods and standards
for evaluating the skid-resistance performance of the road. Fwa et al. [2] used the Abaqus
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simulated pendulum friction tester to find that the numerical simulation can better simulate
the length of the friction block slip and the value of the pendulum during the actual
measurement process, which is consistent with the actual test results.

In recent years, non-contact detection technology has gradually developed. For
example, laser technology and camera photography technology have been applied to the
road surface characteristic measurement. Zahouani et al. [3] applied the laser tracking
focusing method to test the texture of the asphalt pavement by extracting the microscopic
texture of the pavement. However, this method was only used for the measurement of
2D contours. Through the principle of laser triangulation, the surface topography can be
reconstructed for rut depth, flatness, and macrotexture [4]. In 2016, Fang et al. [5] used the
matrix laboratory algorithm to process a single aggregate image, and conducted a Fourier
analysis. The results of the matrix laboratory algorithm based on the Fourier function were
accurate, and could be used to characterize the surface morphology of aggregates.

At present, the commonly used evaluation indexes of road skid-resistance performance
are mainly based on the friction coefficient index (e.g., BPN, lateral force coefficient),
the texture index fractal dimension, Mean Texture Depth (MTD), Mean Profile Depth
(MPD), etc. So far, a large number of scholars and engineers have investigated predictive
models by examining the correlation between different texture indexes and road friction
coefficients [6,7]. Chou [8] proposed a new laser-based evaluation index—MDE (mean
difference of elevation)—based on the existing MPD and MTD. The MDE is the sum of the
fixed height differences of every two adjacent points in the measurement length divided
by the number of points on the measured length. Meegoda [9] studied the relationship
between the friction coefficient and the MPD value. The study found that the distribution
of MPD values had both positive and negative correlations with the friction coefficient.
On this basis, the relationships between texture, structure, depth, tire contact area, water
film thickness, and friction coefficient were studied. Zhou et al. [10] studied the fractal
characteristics of pavement texture under different polishing conditions by fractal theory,
and proposed the concept of the cutoff wavelength as an index for evaluating ordinary
polishing and differential polishing. The horizontal cutoff wavelength indicates the average
microprotrusion size. The cutoff wavelength indicates the average height of the aggregate.
A three-dimensional (3D) laser scanner was used to extract different polished texture
information. Yang et al. [11] used the multi-function road condition rapid detection system
(CiCS) to collect the pavement texture depth information, to calculate the road surface wear
rate, to compare and analyze the MTD and MPD values of the road wear surface, and to
establish the average of road wear and road texture. The evaluation model between the
depth was constructed. The model was applied to the texture evaluation index standard.
Rado and Cho et al. [12,13] proposed to process the 2D texture signal by Hilbert–Huang
transform (HHT). They obtained the instantaneous envelope and instantaneous amplitude
of the joint intrinsic mode function BIMF by Hilbert–Huang (HHT) transform to extract
the peak envelope. A good linear correlation was found between the mean value and the
friction coefficient.

It is noted that the evaluation of pavement texture by laser scanning technology is
mainly focused on MTD and MPD. Due to the limitations in the accuracy of the texture
detection device, it can only collect macrotexture at traffic speed in the field. Microtexture
collection can only be done in the laboratory. Even within the macrotexture data, the quality
is poor due to vehicle vibration and speed. In this study, a multi-function inspection vehicle
texture sensor or module is used. The vehicle adopts a non-inertial system, which is not
affected by the driving speed and the vibration of the vehicle. The 3D texture information
can be quickly collected at a high speed. The accuracy of the texture module is up to
0.01mm. The wavelength can cover all of the macrotexture and some of the microtexture.
At the same time, this paper puts forward a new index to evaluate the anti-slip performance
by processing the collected data in an innovative manner. Compared with other evaluation
indexes, this index has a better correlation with anti-slip performance.
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This study aims to improve the modeling capacity between texture and skid. A
different novel modeling approach was employed to analyze the texture data in order to
correlate with roadway skid.

2. Data Collection Technology

To better study the friction performance of the road surface, a laser line-scanning tex-
ture device attached on a multi-function inspection vehicle was employed in this research
(Figure 1). The skid-resistance of the surface was measured by the British Pendulum Tester.
The advantage of this device/module is that it is not affected by the driving speed and the
vehicle vibration. The elevation resolution reaches 10 µm. When the line laser is installed
along the travel direction above the wheel paths, the 2D texture on the center line of the
wheel paths can be measured while traveling. Alternatively, while the line laser is installed
perpendicular to the travel direction, the 3D texture can be obtained by combining multiple
2D data.

Coatings 2021, 11, x FOR PEER REVIEW 3 of 10 
 

 

ture. At the same time, this paper puts forward a new index to evaluate the anti-slip per-
formance by processing the collected data in an innovative manner. Compared with other 
evaluation indexes, this index has a better correlation with anti-slip performance. 

This study aims to improve the modeling capacity between texture and skid. A dif-
ferent novel modeling approach was employed to analyze the texture data in order to 
correlate with roadway skid. 

2. Data Collection Technology 
To better study the friction performance of the road surface, a laser line-scanning 

texture device attached on a multi-function inspection vehicle was employed in this re-
search (Figure 1). The skid-resistance of the surface was measured by the British Pendu-
lum Tester. The advantage of this device/module is that it is not affected by the driving 
speed and the vehicle vibration. The elevation resolution reaches 10 μm. When the line 
laser is installed along the travel direction above the wheel paths, the 2D texture on the 
center line of the wheel paths can be measured while traveling. Alternatively, while the 
line laser is installed perpendicular to the travel direction, the 3D texture can be obtained 
by combining multiple 2D data. 

 
Figure 1. Schematic diagram of 3D profilometer. 

In this test, a total of 8 sets of 300 mm × 300 mm testing areas were selected on the 
Hot Mix Asphalt (HMA) surface. The 3D texture of the testing surfaces was collected at a 
uniform speed using the laser line. Figure 2 shows that the texture information of the test-
ing area was collected by the sensor. The 2D signal on the top of Figure 2 is one line of 
elevation information of the surface. The bottom of Figure 2 displays a 3D texture surface 
image generated by aggregating 512 2D lines from the laser scanning. 

 

Figure 1. Schematic diagram of 3D profilometer.

In this test, a total of 8 sets of 300 mm × 300 mm testing areas were selected on the
Hot Mix Asphalt (HMA) surface. The 3D texture of the testing surfaces was collected at
a uniform speed using the laser line. Figure 2 shows that the texture information of the
testing area was collected by the sensor. The 2D signal on the top of Figure 2 is one line of
elevation information of the surface. The bottom of Figure 2 displays a 3D texture surface
image generated by aggregating 512 2D lines from the laser scanning.
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To be similar to the testing area of the British Pendulum Tester, the center area of the
testing area was taken as 100 mm× 100 mm (Figure 3), and the corresponding data collected
by the laser sensor was 800 × 300 data matrix. The data of five pendulum measurements
and their average was recorded. The pendulum size was corrected according to the change
of temperature.
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3. Principle in Data Processing
3.1. CEEMD Principle

The 3D texture data collected by the laser scanner contains a wealth of surface elevation
information. They are composed of 300 columns of 2D nonlinear, non-stationary signals,
including various noise interferences and multi-frequency mixed signals. For this type of
data processing, Huang et al. [14,15] proposed an empirical mode decomposition (EMD)
algorithm to decompose the original signal s(t) into more intrinsic mode functions IMF and
a remainder. EMD can decompose complex signals into single mode signals with different
frequencies. The signals of different frequency segments have different physical meanings.
By analyzing the IMF’s physical meanings, we can reveal the texture characteristics. For
example, for any time series signal s(t), it can be decomposed into n intrinsic mode functions
IMF and a remainder.

s(t) =
n

∑
i=1

IMFi(t) + rn(t) (1)

where IMFi(t) is the intrinsic mode function and rn(t) is the remainder.
Due to the severe modal aliasing of the EMD algorithm, the original signal recon-

struction is poor. Therefore, WU et al. [16] proposed an improved EMD algorithm named
ensemble empirical mode decomposition (EEMD). EEMD eliminates the modal aliasing of
EMD by continuously adding Gaussian white noise to the original signal.

IMFi =
1
N

N

∑
i=1

Cij(t) (2)

where N is the number of added white noise, and Cij(t) represents the i-th IMF after the
j-th white noise processing is added. Due to the addition of white noise, EEMD cannot be
completely eliminated during signal processing, which affects the purity of the signal.

Furthermore, complementary ensemble empirical mode decomposition (CEEMD) is
an optimization based on EEMD, which can effectively overcome modal aliasing and white
noise interference and accurately reconstruct signals [17,18]. By adding N positive and
negative auxiliary white noise to the original signal, 2N signals are obtained and EMD
decomposition is performed for each signal. Finally, the calculation result is combined. The
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CEEMD process is the same as EEMD, except that more noise is added after adding a noise,
and the IMFs are decomposed according to EMD.

3.2. Singular Value Decomposition Principle

The eigenvalue decomposition commonly can only be applied to square matrices.
In reality, most matrices are not square matrices, and singular value decomposition can
be applied to any matrix decomposition method. Singular value decomposition is the
main step of principal component analysis. Singular value decomposition can reduce
the complex big data matrix to a low-dimensional data matrix by extracting principal
components. Suppose C is an m × n order matrix,

C = U ∑ VT (3)

where U is an m ×m-order matrix, Σ is a semi-positive m × n-order diagonal matrix, and
VT is a transposed matrix of V, which is an n × n-order matrix. This decomposition C is
called the singular value decomposition. The element δi on the diagonal is the singular
value. The singular values are usually arranged in descending order, e.g., δ1 > δ2 > δ3 > . . .
> δi (1 < i ≤min(m, n)).

4. Data Analysis and Results

The 2D original signal is subjected to CEEMD decomposition, and the number of IMFs
is set to eight. In (Figure 4), nine IMFs and one residual Rs10 are obtained after decom-
posing, wherein IMF1 is the original signal. IMF2 to IMF9 are single mode decomposition
functions of the original signal. They are arranged according to the frequency from large to
small. The high frequency part contains a portion of the microtexture and macrotexture
information. IMF6 and beyond are low frequency signals, representing mega-texture in-
formation. The residual Rs10 is the degree of signal change and the degree of stability of
signal decomposition. The IMF1 and the Rs10 are removed, and the 800 × 8 data matrix
is composed of IMF2-9. Then, the matrix is subjected to singular value decomposition by
Equation (3) to Equation (5) to obtain a singular value matrix ∑800×8. A non-zero singular
value vector of each column is then extracted. CEEMD decomposition and singular value
decomposition are performed on 300 columns of original data, respectively. The singular
values of each column in 300 columns are summed in Equation (4), where σij represents
the i-th column row singular value of the 300 columns of the original data; σi represents
the sum of the singular values of the ith row of 300 columns of data.

σi =
j=300

∑
j=1

σiji ∈ [1, 8] (4)

∑
800×8

=



σ1j 0 0 0 0 0 0 0
0 σ2j 0 0 0 0 0 0
0 0 σ3j 0 0 0 0 0
0 0 0 σ4j 0 0 0 0
0 0 0 0 σ5j 0 0 0
0 0 0 0 0 σ6j 0 0
0 0 0 0 0 0 σ7j 0
0 0 0 0 0 0 0 σ8j
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0


(5)
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In the test, CEEMD decomposition is performed for every specimen 300 column of
two-dimensional signals. An 800 × 8 data matrix is composed of eight IMFs for singular
value decomposition. The singular values are extracted and accumulated after each de-
composition. Then, the skid-resistance index σi is obtained. Table 1 shows the regression
analysis based on the data on the eight sets of testing areas. The linear fittings are obtained
between the σi and the pendulum, measured by the British Pendulum Tester. The results
show that the R2 of σ1–σ5 and the friction coefficient is greater than 0.8. The σ6–σ8 fitting
is so poor that the R2 is less than 0.6. In Figure 5, the horizontal axis represents the third
group of eight singular values in σ3, and the vertical axis represents the measured values
of BPN. The R2 of σ3 and the pendulum value is up to 0.877, and the fitting straight line is
shown in Figure 5. The fitting Equation (6) is:

y = 0.0078x + 0.3439 (6)

Table 1. R2 goodness of fit.

Type
(IMF = 8) σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

5
∑
i=1

σi
5
∑
i=1

σi

R2 (BPN) 0.828 0.856 0.877 0.857 0.812 0.52 0.251 0.329 0.859 0.858
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There is a certain correlation between σi (i ≤ 5) and the friction coefficient. When all

the σi are summed, there is also a good correlation between the summation of
8
∑

i=1
σi and

the friction coefficient. Since the fit of σ6–σ8 is poor, we can accept that the correlation

between the summation of
5
∑

i=1
σi and the friction coefficient is 0.859, which is only 0.001

different from the sum of all σi. In terms of numerical magnitude, it is mainly because σij is
arranged from large to small. The value of the σ6–σ8 is relatively small compared to the
former. In terms of frequency, σ6–σ8 correspond to the IMFs’ low frequency signal. Low
frequency of the texture corresponds to the mega-texture, which has little impact on the
skid-resistance performance of the pavement.

To further verify the reliability of the indicators, the contour arithmetic mean deviation
Ra is calculated. Ra is the arithmetic means of the absolute value of contour deviation within
the sampling range. From a statistical perspective, Ra takes the amplitude distribution of
the surface texture morphology of the road surface as its average. It also represents the
absolute first-order origin distance of the set of data points, reflecting the dispersion degree
of the contour amplitude of the topography relative to the reference line. It is widely used
to evaluate the roughness of the surface morphology features. The Ra is calculated using
Equation (7), with the use of 3D texture data.

Ra =
1

M×N

N

∑
i=1

M

∑
j=1
|Z(xi − yi)| (7)

where Z (x, y) is the elevation information of topography based on datum line; M and N
are the sampling points in two perpendicular directions.

In Table 2, the correlation of σi and BPN with Ra were calculated. It can be seen that
σ1 to σ5 have a good correlation with Ra while σ6 to σ8 have a poor correlation. Finally, the
goodness of fit of Ra and BPN is 0.772. The best correlation in Table 2 is σ1 where R2 is up
to 0.944. In Figure 6, the linear fitting equations of σ1 and BPN with Ra were calculated.
Ra as a widely used index of texture evaluation has a strong correlation with σi. Thus, it
proves that σi can well-reflect the skid-resistance performance of the pavement surface.

Table 2. The correlation of σi and BPN with Ra.

Type
(IMF = 8) σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

5
∑
i=1

σi
5
∑
i=1

σi
BPN

R2 (Ra) 0.944 0.922 0.919 0.901 0.905 0.529 0.358 0.377 0.941 0.935 0.772

At first, the number of decompositions by CEEMD is set at eight. When the decom-
position of the numbers is more than eight, the changing trend and the shape of IMF9
and IMF10 are consistent, and only the decomposition frequencies are reduced. When the
number of decompositions is less than eight, the decomposition of the original signal is
not sufficient, and the feature information of the original signal cannot be fully extracted.
When the decomposition number of the IMF is changed—that is, when the number of IMF
decomposition is greater than eight—there is a good correlation between the number of
IMF and the friction value from IMF2 to IMF6. Evidently, they are the same as the one with
IMF equal to eight.

When the number of IMF decomposition is greater than eight, the correlation of σx
(x ≤ i − 2) and the pendulum value is greater than 0.8. This shows that there is a good
correlation between the number of IMF and the friction value from IMF2 to IMF6. When
the number of IMF decomposition is less than eight, the σi numbers that R2 more than 0.8
gradually decrease (Figure 7). Therefore, when the number of CEEMD decomposition is
set at eight, texture signals can be effectively decomposed and each modal signal can be
fully decomposed.
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In summary, it is evident that texture signal is featured as a complex signal. The
texture information collected by the sensor is the direct information obtained from the
spatial domain. In this study, the original texture signals are decomposed by CEEMD and
SVD. Complex signals are decomposed into single modal functions and are representative
of eigenvectors. By summation of the singular value, the texture skid-resistance parameter
σi is obtained. It is found that σi is well correlated with the pavement friction value. The
underlying non-contact texture testing module collects abundant 3D pavement texture
information. By analyzing texture information, the skid-resistance performance index can
be obtained quickly by calculating σi.

5. Conclusions

This study presents a non-contact texture data collection device based on online
scanning laser sensor technology. The 3D pavement texture information is obtained by
the device. In-depth research was conducted with a focus on the texture of the HMA
surface. It mainly includes the following data analysis process: (1) obtain 2D and 3D
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texture information of HMA specimens by 3D laser constructor and decompose the 2D
original signal by CEEMD algorithm to obtain 800 × 10 data matrix, and (2) remove IMF1
and RS10, where the eight value vectors σij are obtained by performing singular value
decomposition on 800 × 8 data matrix and the skid-resistance performance parameter σi
is obtained.

The key findings are that (1) when the number of IMF decomposition is greater than
eight, there is a good correlation between the number of IMF and the friction value of
texture from IMF2 to IMF6, and (2) when the number of IMF decomposition is less than
eight, the σi numbers that R2 more than 0.8 gradually decrease.

With the increasing requirements in road maintenance and management, rapid de-
tection and evaluation technology is becoming more and more important. Through the
correlation analysis between σi and the friction coefficient, it is shown that this approach
can provide data support for the transportation infrastructure management platform
quickly and efficiently. It will also expectantly benefit decision-making network-level
pavement management.
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