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Abstract: Thin films of CuGa2O4 were deposited using an RF magnetron-sputtering technique for
the first time. The sputtered CuGa2O4 thin films were post-deposition annealed at temperatures
varying from 100 to 900 ◦C in a constant O2 ambience for 1.5 h. Structural and morphological studies
were performed on the films using X-ray diffraction analysis (XRD) and a Field Emission Scanning
Electron Microscope (FESEM). The presence of CuGa2O4 phases along with the CuO phases was
confirmed from the XRD analysis. The minimum critical temperature required to promote the crystal
growth in the films was identified to be 500 ◦C using XRD analysis. The FESEM images showed
an increase in the grain size with an increase in the annealing temperature. The resistivity values
of the films were calculated to range between 6.47 × 103 and 2.5 × 108 Ωcm. Optical studies were
performed on all of the films using a UV-Vis spectrophotometer. The optical transmission in the
200–800 nm wavelength region was noted to decrease with an increase in the annealing temperature.
The optical bandgap value was recorded to range between 3.59 and 4.5 eV and showed an increasing
trend with an increase in the annealing temperature.

Keywords: CuGa2O4; cubic spinel; annealing studies; optical characteristics; XRD; electrical charac-
teristics

1. Introduction

Wide-bandgap semiconductors such as Ga2O3, ZnO, indium tin oxide, HfO2, Y2O3,
ZrO2, AlGa2O3, IGZO exhibit many attractive properties beyond the capabilities of Si, and
hence find applications in electronics, optical, optoelectronics, photonics and magneto-
electronic devices [1–7]. As a result, the research and development of metal oxides with
versatile properties are imperative. Among the various metal-oxide materials, cubic spinels
have attracted great attention due to their chemical structure consisting of tetrahedral
and octahedral sites [8]. Cubic spinels with the formula AB2O4 have cations distributed
randomly among one octahedral site and two tetrahedral sites. B3+ ions occupy half of the
octahedral holes, and A2+ ions occupy one eighth of the tetrahedral holes [9]. One such
cubic spinel material exhibiting a wide bandgap like Ga2O3 is CuGa2O4. The copper and
gallium ions in CuGa2O4 are distributed randomly in the A and B sublattices. This pseudo-
binary system consisting of CuO-Ga2O3 phases displays a high potential for optoelectronic
applications. Furthermore, CuGa2O4 has distinguished physical and chemical stability
and exhibits a catalytic property. The fundamental requirement to promote catalytic
and photocatalytic properties demands control over the thin films regarding the particle
size, surface area and crystallinity. Due to its high sensitivity and rapid response to
reducing/oxidizing, CuGa2O4 is a noteworthy candidate material for gas sensing towards
H2, liquefied petroleum and NH3 [10].

Due to its unique structure, CuGa2O4 finds applications in supercapacitors [11], and
as an active catalyst for a hydrogen gas source [12], a photocatalyst for solar hydrogen
production [13], anode materials for sodium-ion batteries [14], and in organic photovoltaic
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devices [15]. Previous studies have synthesized CuGa2O4 using techniques such as chem-
ical vapor deposition (CVD), aerosol-assisted CVD [9], solid-state reaction [16], thermal
decomposition [17], laser molecular beam epitaxy (L-MBE) [18] and hydrothermal tech-
niques [19]. Synthesizing spinels requires multiple steps, high processing temperatures and
a longer synthesis time [12,20]. Additionally, conventional CVD techniques involve volatile
precursors, and the processes can be limited due to the formation of toxic byproducts.
Among all of the thin-film deposition techniques, the magnetron sputtering technique is
an established method of depositing thin films with high uniformity and homogeneity [1].
The magnetron sputtering techniques provide the flexibility to choose target materials with
a wide range of melting points. This feature provides the capability to regulate the film
thickness and deposition rate. Moreover, the magnetron sputtering technique does not
demand the use of toxic or specialized precursors, which are required for CVD, and it
offers great adhesion over a large surface area.

There have been no reported attempts to deposit CuGa2O4 thin films using the RF
magnetron sputtering technique. This work addresses this inadequacy and focuses on the
investigation of the properties of CuGa2O4 thin films synthesized using RF magnetron
sputtering. Thin films of CuGa2O4 were deposited using a stoichiometric target mixture of
Cu2O and Ga2O3 in the presence of argon gas. The influence of annealing the films in the
presence of oxygen gas at different temperatures was evaluated. The chemical structure,
morphological properties, optical properties and electrical properties of CuGa2O4 thin
films were investigated.

2. Experimental
2.1. Deposition of the CuGa2O4 Thin Films

CuGa2O4 films were deposited using an ultra-high vacuum 3 gun sputtering sys-
tem (AJA international, Scituate, MA, USA). Fused quartz substrates were used for the
annealing of the films at temperatures above 500 ◦C, and regular glass substrates were
used for the annealing of the films at temperatures lower than 500 ◦C. The substrates were
cleaned using acetone, methanol and DI water, followed by drying using nitrogen gas.
The CuGa2O4 films were deposited using a 3-inch powder pressed sputtering target with
stochiometric proportions of Cu2O and Ga2O3 (99.99% purity). A base pressure of 3 × 10−7

Torr was achieved before every deposition. The sputter depositions were performed at the
RF frequency (13.56 MHz) and a constant power of 200 W, using ultra-pure grade Ar as
the sputtering gas. The Ar flow was kept constant at 10 sccm, and the deposition pressure
was maintained constant at 10 mTorr for all of the depositions. All of the CuGa2O4 films
reported in this research had a uniform thickness of 2000 Å. The substrate holder was
rotated at a speed of 20 rpm in order to obtain a uniform thin-film thickness. All of the
film depositions were performed at room temperature. The films were then annealed, post
deposition, for 1.5 h at temperatures varying from 100 to 900 ◦C in O2 ambience. The O2
flow into the annealing furnace was maintained at 100 sccm for all of the film annealing.

2.2. Film Characterization

A Veeco Dektak 150 profilometer (Veeco, NY, USA) was used to measure the thickness
of the films. The XRD measurements were performed using a PANalytical Empyrean XRD
system (Malvern Panalytical, Westborough, MA USA), using radiation from a Cu source at
45 kV and 40 mA. The diffraction patterns were recorded between 2θ angles of 25–70◦, and
the phase information was analyzed using HighScore Plus software (Malvern Panalytical,
Westborough, MA USA). The surface morphology of the film was identified using field
emission scanning electron microscope Zeiss ULTRA-55 FEG SEM, (Zeiss Microscopy,
White Plains, NY, USA). The optical transmission studies were performed using a Cary
100 UV-Vis spectrophotometer (Varian Analytical Instruments, Walnut creek, CA, USA).
In order to perform the optical transmission studies, a wavelength range of 200–800 nm
was used for the film deposited on the quartz substrates, and the wavelength range of
300–800 nm was used for the films deposited on the glass substrates. The resistivity of the
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film was measured by patterning parallel Al contact pads on the annealed CuGa2O4 films.
In order to pattern the Al contact pads, a liftoff process was used. Once the contact pad
windows were patterned, Al metal was deposited by adopting thermal evaporation. A
schematic representation of the configuration used for the electrical measurements, along
with the dimensions of the contact pads, is shown in Figure 1. A Keithley 2450 source meter
(Tektronix Inc, Beaverton, OR, USA) unit was used to measure the I-V characteristics. From
the measured I-V characteristics data, the resistance R was calculated. From the calculated
R value, the resistivity (ρ) of the film was identified using the formula mentioned below:

ρ = R
A
L

(1)

where R is the resistance, L is the length and A is the area of cross section.
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3. Results and Discussions
3.1. XRD Analysis

Thin-film XRD diffractograms of the as-deposited CuGa2O4 thin films, as well as
films annealed at temperatures varying from 500–900 ◦C, are shown in Figure 2. The XRD
pattern did not display any distinguished peaks for the as-deposited CuGa2O4 thin films
or the thin films annealed at temperatures lower than 500 ◦C. However, the CuGa2O4 thin
films annealed at temperatures of 500–900 ◦C displayed distinguishable peaks. The films
annealed at 500 ◦C showed only two distinct peaks with comparatively lower intensity.
They are the (311) peak related to the CuGa2O4 and (111) related to CuO. This suggests that
the as-deposited films and the films annealed at temperatures less than 500 ◦C were majorly
amorphous; therefore, for the sake of comparison, the XRD patterns of films annealed at
300 ◦C and 400 ◦C are not shown in Figure 2. It is likely that the films require a minimum
annealing temperature of 500 ◦C in order to crystallize. The diffraction peaks identified
from the XRD pattern were indexed well with the peaks pertaining to CuGa2O4 (JCPDS
PDF # 44-0183). The peaks pertaining to CuO were also identified, suggesting the presence
of mixed phases in the deposited thin films. Such a similar presence of CuO peaks along
with CuGa2O4 has been previously reported in earlier research [9,20]. The major peaks
identified at 2θ of 35.73, 37.68 and 63.59 were indexed to the (311), (222) and (440) phases
of CuGa2O4. No peaks pertaining to Ga2O3 were identified. From Figure 2, a steady
improvement in the peak intensity and peak sharpness can be noticed with the increase in
the annealing temperature, thereby denoting a gradual improvement in the crystallinity.
The peak intensity of the strongest peak (311) of CuGa2O4 was plotted as a function of the
annealing temperature in Figure 3. A steady increase in the (311) peak intensity with an
increase in the annealing temperature is evident from Figure 3.
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3.2. Morphology Studies

Figure 4 shows the FESEM images of the CuGa2O4 films. The morphological changes
in both the as-deposited CuGa2O4 film (Figure 4a) and the CuGa2O4 films annealed at
300–900 ◦C (Figure 4b–h) can be seen clearly. Although the as-deposited film and films
annealed at 300 ◦C and 400 ◦C displayed a tiny grain/particle presence in Figure 4a–c,
they remained majorly amorphous and did not reveal any evidence of a peak presence in
the XRD analysis. However, the film annealed at 500 ◦C displayed higher evidence of a
grain presence and grain boundaries compared to the films annealed at 300 ◦C and 400 ◦C.
This corroborates with the results from the XRD analysis in which the first appearance
of diffraction peaks was observed in the film annealed at 500 ◦C. Deriving from the SEM
findings and the appearance of diffraction peaks in the XRD analysis, it can be concluded
that 500 ◦C is the minimum critical temperature required to promote nanocrystalline
growth. The increase in the grain size with the increase in the annealing temperature can be
evidently noted from Figure 4b–h. The small grains coalesce together and produce bigger
grains when there is an increase in the annealing temperature [21]. This implies that the
increment in the annealing temperature has an incremental influence on the CuGa2O4 film
grain size. The film annealed at 900 ◦C was noted to have the largest-sized grains of 89 nm
when compared to the other films. Figure 5 reiterates the steady increase in the grain size
with the increase in the annealing temperature. The elemental analysis of all of the samples
was performed using the EDAX incorporated in the FESEM. Table 1 shows the composition
present in all of the films.
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(d) 500 ◦C, (e) 600 ◦C, (f) 700 ◦C, (g) 800 ◦C and (h) 900 ◦C (SEM magnification were constant at 50 KX. All scales in the
image are in nm range).
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Table 1. CuGa2O4 film composition as a function of the annealing temperature, measured us-
ing EDAX.

Film Cu atm% Ga atm% O atm%

As deposited film 13.64 25.88 60.48

Annealed at 300 ◦C 14.92 24.90 60.18

Annealed at 400 ◦C 14.78 24.07 61.15

Annealed at 500 ◦C 13.93 20.21 65.86

Annealed at 600 ◦C 14.10 20.79 65.11

Annealed at 700 ◦C 14.56 20.43 65.01

Annealed at 800 ◦C 13.88 19.92 66.19

Annealed at 900 ◦C 13.12 19.71 67.16

3.3. Optical Studies
3.3.1. Optical Transmission

The optical studies were performed on CuGa2O4 thin films deposited on quartz and
glass substrates. Figure 6 shows the % transmission values recorded using a UV–Visible
spectrophotometer in the wavelength range of 200–800 nm. The as-deposited CuGa2O4 thin
films exhibited an optical transmission of ~60% at 500 nm. The increase in the annealing
temperature resulted in the reduction of the optical transmission. The films annealed at
300 ◦C, 400 ◦C and 500 ◦C showed reduced transmission values between 30 and 40% at
500 nm. However, the higher annealing temperature further reduced the transmission from
60% for the as-deposited film to 30% for the film annealed at 600 ◦C, at the wavelength of
500 nm. This reduction in the optical transmission of CuGa2O4 thin films was attributed to
a change in the grain size, as seen from the XRD analysis and FESEM images. The films
with a low grain size were more transparent, while the optical transmission reduces with
the annealing temperatures, as there is an increase in the grain size and crystallinity [22,23].
A further increase in the annealing temperature from 600 ◦C to 900 ◦C did not show much
variation in the optical transmission of the CuGa2O4 thin films.
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3.3.2. Optical Bandgap

The optical transmission data was used to calculate the optical bandgap of the CuGa2O4
thin films. The absorption coefficient (α) was calculated using the following equation:

α =

(
−2.303

t

)
log10(%T) (2)

where t is the thickness of the CuGa2O4 thin films, and T is the transmission. The optical
bandgap (Eg) was estimated [24] using the following equation:

(αhν)
1
n = B

(
hν− Eg

)
(3)

where hν is the photon energy, B is a constant and Eg is the optical bandgap.
Figure 7 shows the Tauc plot generated using Equations (2) and (3). The linear

region of the curves was extrapolated to the x-axis in order to achieve the Eg value. The
optical bandgap values displayed an increasing trend with an increase in the annealing
temperature. The bandgap of as-deposited film was 3.59 eV, which increased to 4.5 eV for
the CuGa2O4 thin film annealed at 900 ◦C. The bandgap values obtained in this study are
comparable to the bandgap values reported for CuGa2O4 thin films deposited using the
laser MBE technique [18]. Table 2 shows the variation in the optical bandgap as a function
of the annealing temperature. The unique structure and wide bandgap make CuGa2O4 a
potential candidate material for ultraviolet optoelectronic device applications [18].

3.4. Electrical Studies

Figure 8 shows the electrical resistivity of the CuGa2O4 films. The electrical resistivities
were calculated using the electrical resistance values obtained from the I–V curves. From
Figure 8, it is evident that the resistivity showed a decreasing trend with increase in the
annealing temperature up until 700 ◦C (6.4 × 103 Ωcm). This reduction in resistivity could
be ascribed to the crystallization of the films. However, the resistivity increased in the
films annealed at higher temperatures, with the film annealed at 900 ◦C showing a higher
resistivity of 3.89 × 105 Ωcm. Such similar trends of decreasing resistivity up until a
particular annealing temperature, followed by a subsequent increase in the resistivity at
higher temperatures have been reported for other compounds belonging to the cubic spinel
family [25]. Because there are no observed changes in the structural diffraction phases
of the annealed films, the effect of annealing on the resistivity is primarily related to the
grain density and grain boundaries. A similar increase in resistivity at very high annealing
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temperatures, despite with steady increase in the diffraction peak intensity (XRD peaks),
has been previously reported in compounds belonging to the cubic spinel family [26,27].
One of the two plausible reasonings behind the increase in resistivity at higher temperatures
is the decrease in the actual number of grains per volume, as noted from the FESEM image,
thereby resulting in reduced carrier transitions [21,28]. This would potentially result in
a resistivity increase. The other reason could be the presence of CuO phases in the film.
Research conducted by Valladares et al. showed a sudden increase of resistivity in CuO
films annealed at a temperature of 800 ◦C and above [29]. The authors attribute the increase
in resistivity to the potential defects in the film. Similarly, the CuGa2O4 films sputtered in
this research also showed an increase in resistivity in the films annealed at temperatures
800 ◦C and 900 ◦C.
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belonging to the cubic spinel family [26,27]. One of the two plausible reasonings behind 
the increase in resistivity at higher temperatures is the decrease in the actual number of 
grains per volume, as noted from the FESEM image, thereby resulting in reduced carrier 

Figure 7. Tauc plot of the CuGa2O4 thin films annealed at different temperatures.

Table 2. Optical bandgap values obtained for CuGa2O4 thin films.

Annealing Temperature Eg, Bandgap (eV)

As deposited 3.59

100 ◦C 3.72

200 ◦C 3.76

300 ◦C 3.8

400 ◦C 3.84

500 ◦C 4.12

600 ◦C 4.36

700 ◦C 4.4

800 ◦C 4.44

900 ◦C 4.5
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4. Conclusions

In this study, thin films of copper gallium oxide spinel, CuGa2O4, were successfully
deposited using a sputtering target with a stochiometric composition of Cu2O and Ga2O3
by an RF sputtering technique. The structural, morphological, optical and electrical effects
due to post-deposition annealing of the CuGa2O4 thin films at temperatures varying
from 100 to 900 ◦C in constant O2 ambience were examined using XRD, FESEM, UV-Vis
spectrophotometer and I–V curves. The XRD peaks pertaining to both CuGa2O4 and CuO
were identified from the XRD studies. It was found that a minimum critical temperature
of 500 ◦C was required to promote the crystallization of the films. The crystallinity of the
films was noted to improve with increase in the annealing temperature. The average grain
size was recognized to increase from 30 nm to 89 nm when the annealing temperature
was increased from 500 ◦C to 900 ◦C. The optical bandgap recorded an increments from
3.59 eV to 4.5 eV in the non-annealed films and the films annealed at 900 ◦C, respectively.
The tunability of the electrical resistivity of the CuGa2O4 thin films as a function of the
annealing temperature was demonstrated. The CuGa2O4 films showed a stark decrease in
resistivity from the highest value of 2.5 × 108 Ωcm in the as-sputtered films to the lowest
resistivity of 6.47 × 103 Ωcm in the films annealed at 700 ◦C. Due to its high bandgap
and cubic structure, CuGa2O4 could potentially be used extensively in UV optoelectronic
device applications.
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