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Abstract: In general, the mechanical properties of hard thin coatings are investigated using inden-
tation methods. Material characteristics of hard coatings, such as elastic modulus and hardness,
are evaluated by means of nanoindentation and an appropriate evaluation methodology. The most
popular method used to obtain the coating properties required using nanoindentation is the evalua-
tion based on the Oliver and Pharr methodology. Adhesion and wear properties can be calculated
using these data. In this study, we used a novel method to evaluate the wear and adhesion of
coatings. A special measuring device combined with static indentation and acoustic emission signal
detection was developed to evaluate the adhesion of coatings. The device consists of a macrohardness
instrumental indentation device equipped with an acoustic emission measuring gauge. It was used to
investigate crack formation and adhesion of coatings deposited on different substrates using acoustic
emissions data. The results using both the existing and novel methods were compared and evaluated.

Keywords: adhesion; coatings; thin films; testing; mechanical properties; indentation; acoustic emis-
sion

1. Introduction

The quality of coated mechanical components mainly depends on the quality of the
coating–substrate system. If the coating fails, the functions of the mechanical components
can be significantly impaired. This is particularly important for deposited coatings used
to increase the mechanical resistance of machine tools. The most important parameter
influencing the coating lifetime under load is the quality of the bonding or adhesion
between the substrate and coating. Adhesion is defined as a state when two surfaces are
bonded together by an inter-layer [1]. The adhesion of coatings to substrates is one of the
most important parameters used for thin layer quality evaluation.

The connection between the coating and its substrate is improved when the mutual
solubility of the coating and substrate components in the solid state allows the formation
of a thin diffusion layer at the coating–substrate interface. Adhesion is a critical component
of the coating–substrate system. The adhesion of coatings depends on the purity of the
substrate, surface finishing (less roughness leads to better adhesion), and the difference in
ductility of the substrate and the layer. Satisfactory values of adhesion significantly affect
the interfacial strength, since it prevents cracking, spalling, and delamination of the layer.
Therefore, knowledge of the type of damage and cracking of the thin film is an important
consideration when evaluating the mechanical properties of the coating–substrate system [2].

However, one of the most popular methods for analyzing the coating–substrate system
adhesion is indentation. Indentation enables the usage of an easy loading configuration
and the possibility to directly observe crack formation and film delamination. During the
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loading stage, both the coating and substrate accomplish the deformation imposed by the
indenter. However, during unloading, the coating is usually harder, and thus the elastic
recovery is higher, which means adhesion forces between the substrate and coating are not
strong enough to avoid delamination [3].

The adhesion of hard coatings depends on mechanical properties such as elastic
modulus, E; hardness, H; and fracture toughness , KIc [4]. These mechanical parameters
are calculated from data obtained by nanoindentation tests.

The formation of fractures and their propagation in hard coatings is commonly inves-
tigated using indentation tests. Cracking patterns are formed as a function of the R/t ratio
(where R is the radius of the tip and t is the coating thickness) [5]. Three main types of
crack can be identified during indentation of hard coatings deposited on ductile substrates
(Figure 1):

• Circumferential cracks appear at the periphery of plastic zone;
• Channel cracks are initiated under heavy stress caused by direct contact between the

indenter and coating;
• And radial cracks originate from the middle of the indentation imprint and propagate

outwards in the form of beams [6,7].
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Figure 1. Coating cracks after indentation: (a) Circumferential cracks; (b) channel cracks and radial cracks.

If the loading force of the indenter is high enough and the substrate is plastically
deformed, coatings begin to lose adhesion and delamination or spalling can occur. Cracking
and spalling of hard coatings release dissipated energy [8] which propagates through the
material in the form of elastic waves. Their formation can be detected by an acoustic
emission (AE) measuring device.

The AE event caused by indentation is often explained by one of the following mecha-
nisms as a function of the analysed specimen (ceramic, metal, semiconductor, monolayer,
multilayer sample, etc.) and experimental conditions (time, temperature, geometry of the
indenter, etc.):

• Dislocations nucleation (sudden yielding of a material under load);
• Rupture of a hard-brittle film on an elastic-plastic substrate [9];
• Strain transfer across grain boundaries in metals [10,11];
• Crack formation;
• Phase transformation;
• Amorphization and densification [12].
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It is known that a failure mechanism has an influence on the detectability of AE. AE
events start to occur when the stress caused by indentation exceeds certain limits, beyond
which the energy is released.

The ISO 14577-1 standard [13] defines the terms nanoindentation, microindentation,
and macroindentation according to the depth of the imprint and applied loads as follows:

• Nanoindentation: h ≤ 0.2 µm;
• Microindentation: F < 2 N, h > 0.2 µm;
• Macroindentation: 2 N ≤ F ≤ 30 kN.

ISO 14577-4 [14] was especially addressed for coatings and thin films, since ISO
14577-1 was not developed with its focus on coatings and thin films. However, the be-
havior of viscoelastic materials tested by indentation was not covered yet by any of these
documents [15].

However, it is possible to investigate crack formation and delamination of hard
coatings after the indentation test by comparing the imprints observed using scanning
electron microscopy with the failure chart according to VDI 3198 standard [16] (Figure 2).
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A visual comparison can provide information about final failure of the coating–
substrate system. However, no further information about the failure can be obtained
during the indentation. The acoustic emission measurement system is able to continuously
monitor and record acoustic data, which can be used for analysis after the test.

In this study, we performed a detailed investigation of material parameters of two
different types of coating deposited on two different substrates. Material parameters mea-
sured and calculated using nanoindentation tests were compared with acoustic emission
data measured during macroindentation tests.

2. Materials and Methods
2.1. Materials Selection

Two types of coating were investigated in the experiment. Both types were deposited
onto the discs 12.5 mm in diameter and synthesized in company LISS (Rožnov pod Rad-
hoštěm, Czech Republic) All samples were deposited by LARC (Lateral rotating cathodes)
in a PLATIT π80 + DLC (PLATIT AG, Selzach, Switzerland) deposition unit on the follow-
ing two different substrates: High-speed steel HSS 6-5-2-5 (1.3243) (HSS), and WC-6Co
sintered carbide (SC).

2.1.1. nACo3 Coating Characterization

Two samples with nanocomposite nACo3 coating were used; the first was deposited on
the HSS substrate and the second on the SC substrate. nACo3 coating can be characterized
by the following architecture: TiN-AlTiN-AlTiN/SiN [17]. The color of the coating is
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violet-blue and hardness ranged from 25 to 28 GPa. The entire thickness of the coating was
around 3 µm.

nACo3 coating has a nanocomposite structure. The Si content is influenced by the
deposition rate. Generally, in the case of a Ti-Si-Al-N coating, the Si and Al ions substitute
Ti in the crystal lattice of c-TiN, reducing the coating’s lattice parameters. Nucleation
and segregation of the amorphous Si3N4 phase present in the coating at a particular Si
content causes suppression of the nc-(Ti, Al)N grain growth. This effect is accomplished by
embedding nanocrystalline AlTiN grains into an amorphous Si3N4 matrix [18,19].

2.1.2. TiXCo3 Coating Characterization

The second coating, TiXCo3, was deposited only on a high-speed steel (HS6-5-2-5,
1.3243) substrate. TiXCo3 is a nanocomposite coating with high silicon content and the
following architecture of individual layers: TiN-nACo3-TiN/SiN. The addition of Si leads
to phase segregation of an amorphous SiNx matrix that surrounds (nano)crystalline grains
of the TiAlN phase [20]. These crystalline grains are embedded in an amorphous matrix and
form a nanocomposite structure, generally designated as nc-MeAlN/a-SiNx. Compared
to the previously mentioned coating, TiXCo is characterized by higher hardness (38 GPa),
while its thickness is 3 µm. The incorporation of Si and Al atoms leads to a concurrent
decrease in lattice parameters and internal stresses. Solid solution strengthening, which is
associated with an increase in hardness, toughness, elastic modulus, and wear resistance
can occur. The formation of a protective SiO2 layer improves the oxidation resistance. The
addition of Si leads to the formation of nc-TiAlN and ornc-CrAlN grains in an amorphous
SiNx matrix [17,21].

Both coatings we used here can be characterized by high hardness, excellent abrasive
wear resistance, high reliability in dry machining, and low thermal conductivity.

The triple structure of the coatings enables thicker coatings to be deposited, which is
extremely useful for cutting tools [22]. Figure 3 illustrates the cross-section of the nACo3

coating deposited on sintered carbide.
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2.2. Measuring Methods

Coating properties were investigated using two indentation methods. The mechanical
properties of the coatings were first determined by the nanoindentation method and then by
the Daimler–Mercedes macroindentation method combined with the detection of acoustic
emission signals.
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Surface spalling and cracking of coatings after the indentation test were examined
by the JEOL JSM 7600 F high resolution scanning electron microscope (HRSEM, JEOL,
Tokio, Japan).

2.2.1. Nanoindentation

Nanoindentation tests were performed using a Nanoindenter Agilent G200 (Santa Clara,
CA, USA) equipped with an indenter XP head Berkovich tip with a maximum indentation
depth of 2 µm. A grid of 6 × 6 measurements were made at room temperature at an
acquisition frequency of 10 Hz, with a strain rate of 0.05 s–1 for each specimen. We adopted
the methodology and calculations from Oliver and Pharr [23,24], while the experimental
method used was continuous stiffness measurement (CSM) mode at a frequency of 75 Hz
and an amplitude of 0:5 nm. Load, displacement, and elastic contact stiffness were continu-
ously recorded during indentation. The area function of the contact depth was carefully
calibrated from measurements performed on a fused silica sample. The Young’s modulus of
each sample was determined using equations from the procedure given by Oliver and Pharr,
by taking a Poisson’s ratio of 0.3 for each sample and removing the elastic contribution
of the indenter, which was made of diamond. The nanoindentation test parameters are
summarized in Table 1.

Table 1. Nanoindentation test parameters.

Strain Rate (N/s) Matrix Maximum Indentation
Depth (µm)

0.05 6 × 6 indents spaced by 50 µm 2

The plasticity index (H/E) provides more information about wear properties and
overall tribological behaviors of coatings [25,26]. A high H/E∗ value refers to a reduced
contact pressure, since the applied load is distributed over a larger area [27]. According
to Musil, hard coatings with H/E∗ > 0.1 are particularly desirable for many tribological
applications [28]. Another interesting index used in the elastic-plastic approach is the
plastic deformation resistance (H3/E2). This parameter is proportional to the resistance of
the coating to plastic deformation [25]. This means that the higher the resistance to plastic
deformation, the higher the H3/E2ratio. In general, a low E is desirable, as it allows the
given load to be distributed over a wider area [28,29]. The following mechanical properties
were calculated:

• Elastic modulus (E) and hardness (H). Mean values of E and H were obtained at
indentation depths 100 and 200 nm;

• Plasticity index (H/E) and plastic deformation resistance (H3/E2).

2.2.2. Macroindentation and AE Measuring

The popular Daimler–Mercedes indentation test, which is described in the VDI 3198
standard [30], serves as a basic destructive quality test for the evaluation of coated com-
pound adhesion [16,31]. The loading force applied to the indenter generates an elastic and
then a plastic deformation of the sample surface. When a coating breaks, crack initiation
and propagation as well as spalling release energy, which propagates through the material
in form of waves and they can be captured by AE sensor [32]. The AE signal is generated by
fracture phenomena and can be measured and quantified with an acoustic emission gauge
(ZD Rpety-DAKEL, Prague, Czech Republic). The analysis of these acoustic emission
signals provides information about the adhesion and ductility of the coatings.

The advantages of this indentation method are the fast execution of tests using it,
minimal demands on the measurement device, and the ability to monitor coating behavior
with an acoustic emission device that can be attached directly to the tested specimens
without damaging the sample.
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A special measuring device for the acoustic emission signal detection and evaluation
of coatings adhesion has been developed. This consists of a UMZ-3K (Micro-Epsilon,
Bechyne, Czech Republic) device for the measurement of materials’ properties. The device
is equipped with a Rockwell C indenter with a top angle of 120◦. The movement of the
indenter is stopped automatically when the adjusted force is reached.

Acoustic emission signals generated during the test were measured by a DAKEL-ZEDO
device (ZD Rpety-DAKEL, Prague, Czech Republic), which is an advanced and powerful
modular system for detecting and evaluating acoustic emission signals. In this case, a
sophisticated, yet very simple AE sensor type Holder was used, which enables the testing of
samples without a special fixing mechanism. This sensor facilitates the detection of coating
cracks, spalling, and delamination. The coated sample mounted on the AE sensor is shown in
Figure 4.
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Two tests were performed using maximum forces of 50 and 1500 N. Wear and tribo-
logical properties of the substrate–coating system were evaluated.

The first test included a loading with constantly increasing force of 50 N. The second
test used the maximum force of 1500 N. The indentation parameters of this test are sum-
marized in Table 2. When the loading force reached 500 N, a 10 s dwell time was applied.
The force was then increased to the maximum load of 1500 N (so-called “instrumented
indentation”). First, the applied loads generated an elastic and then plastic deformation.

Table 2. Parameters of the indentation test (Fmax = 1500 N).

Maximum Force (N) Holding Force (N) Dwell Time (s) Speed of Indenter
(mm/min)

1500 500 10 0.2

The most commonly used AE parameters for the evaluation of coating adhesion are
as follows [32]:

• Hit: a signal that exceeds the threshold and causes a system channel to accumulate
data. It is frequently used to show the AE activity with counted number for a period
or accumulated numbers. In general, one waveform corresponds to one “hit”. It
represents the number of cracks and other structural instabilities that arose and grew
in a specimen.

• Hits energy is an integral of squared (or absolute) amplitude over time of signal
duration. There are different approximations for AE signal energy (with units of
V2·s), most frequently it is expressed in energy units (eu). According to previous
studies there is relationship between fracture energy and AE signal energy, it gives
information about the energy released into the material because of crack initiation
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and propagation [30]. More intense crack initiation causes more energy to be released.
Usually, more energy is released when spalling or delamination in hard coatings
occurs.

It is possible to set more thresholds and record more AE signals of different amplitudes
within the AE system.

3. Results
3.1. Nanoindentation

The nanoindentation tests were performed to determine the main material parameters,
hardness H, and Young’s modulus. Both hardness and elastic modulus were calculated
using the Oliver and Pharr method, which considers the projected area of the Berkovich
indenter and the indentation contact depth.

Figure 5 shows the load-displacement curve of specimens deposited with nACo3 and
TiXCo3 coatings, indicating the difference in behavior of the coatings.
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The elastic module curves show different behavior (Figure 6b). There is a difference in
the Young’s modulus for the same coating, nACo3, which is caused by the use of different
substrates. A decrease in elastic modulus means that the coating exhibits better elastic
properties and higher resistance to cracking. The TiXCo3 coating deposited on the high-
speed steel (HSS) substrate had approximately the same values of elastic modulus as the
nACo3 coating at higher indentation depths. The elastic modulus value was higher at low
indentation depths and then began to decrease with the indentation depth. This could be
caused by the increase in Si content, which usually leads to a decrease in the mean value of
the elastic modulus.

Figure 7a,b shows the curves of the plasticity index, represented by the H/E ratio,
while plastic deformation resistance is represented by the H3/E2 ratio; the latter expresses
the resistance of a material to plastic deformation and the probability of plastic deformation
of hard coatings. Materials defined by high hardness and low elastic modulus have a high
plastic deformation resistance.
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3.2. Macroindentation and AE Measuring

The macroindentation test was performed to determine the resistance of the coatings
to cracking, spalling, and delamination. However, to investigate the adhesion and wear
parameters of the coatings, a high loading force is needed. Following this test, data from all
substrate–coating systems must be compared. We assumed that the coatings’ tribological
behavior depends on the substrate’s properties, as the substrate is plastically deformed by
high loads, which significantly influences the results of coatings’ wear behavior.

3.2.1. Number of Hits

The thresholds were adjusted to detect all of the AE events that occurred during the
test. Thresholds were adjusted to slightly above ambient noise and then the measuring
gauge was able to detect small energy dissipations into the measured material. Acoustic
events represented by hits could be caused by different mechanisms mentioned in Section 1.
However, they are mostly caused by the formation of cracks. The adjusted threshold level
and chosen amplification are given in Table 3.

Table 3. AE detection thresholds.

Maximum Force (N) Threshold (dB) Amplification (dB)

50 20 96
1500 20 66
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Figure 8 documents the results from the macroindentation test with the data recorded
using AE.
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Figure 8a shows the hits curves recorded during the macroindentation tests of all
coating–substrate systems at a maximum load of 50 N. The hit parameter was adjusted to
count every event which arose in the material during the indentation test. The threshold
was set according to Table 3. Figure 8b illustrates the same hits curves. However, they
were captured at a maximum load of 1500 N. We obtained different results from acoustic
data recorded at different loads. A smaller number of hits was found in the nACo3 coating
deposited on sintered carbide in both tests. This is related to the material properties of the
substrate. As previously confirmed by nanoindentation, this coating had better resistance
to plastic deformation than the other coating we tested (Figure 7). The nACo3 coating
deposited on HSS substrate had most hits.

A higher loading force also influences the number of AE events. We suggest that
this is caused by the substrate type, because sintered carbide is more resistant to plastic
deformation. The area around the indentation imprint is not widely influenced by the
indentation. The coating undergoes elastic deformation up to the brittle failure as a result
of contact pressure caused by the indentation. Compared to HSS, the sintered carbide is
deformed plastically at relatively high loads.
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3.2.2. Hits Energy

The hits energy parameter is usually involved when the amount of energy dissipated
into the material is under investigation. As mentioned before, when more energy is
dissipated into the material it leads to higher amplitudes and longer durations of the
events that are detected. This means that if larger cracks appear, or spalling of the coating
occurs, more energy is dissipated. The creation of cracks and occurrence of spalling can
commence at different loading forces. When the loading force exceeds the critical value
then cracks and spalling start and can be detected by a hits energy curve. A hits energy
curve can therefore be used to detect the loading force at which cracking and spalling
occur. These material defects depend on the coating material behavior and properties of
the coating–substrate system [33].

However, by using the hits energy parameter, it is possible to analyze every step
of loading and estimate the volume of coating–substrate system damage from energy
dissipation caused during indentation. The hits energy curves of all samples are given in
Figure 9. Further observation revealed that the nACo3 coating deposited on HSS started to
increase dissipated energy at relatively low loads compared to the other specimens. This
coating also reached the highest total energy of all AE events. Figure 9b shows the hits
energy curves of all coatings captured at the maximal force of 1500 N.
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The values of the hits energy curve for the nACo3 coating deposited on sintered
carbide (Figure 9b) were the lowest. The hits energy curve of the nACo3 coating deposited
on HSS exhibited almost intermediate values. The TiXCo3 coating had the maximum value
of hits energy of cracks identified by acoustic emission and most of this acoustic event
caused by indentation was related to the creation of cracks which dissipated more energy.
This is because when larger cracks are created, more energy is dissipated into the material.

3.2.3. High-Resolution Analysis of Indentation Imprints

Figures 10 and 11 depict micrographs of the indentation imprints taken with an
electron microscope (HRSEM). Figure 10 shows micrographs of imprints after the test
at a loading force of 50 N. The imprint on the surface of the nACo3 coating deposited
on HSS substrate is shown in Figure 10a. Spalling areas can be seen at the edges of the
imprint. In the case of the TiXCo3 coating (Figure 11a), a higher number of circumferential
cracks are obvious. Less cracks can be observed around the imprint of the nACo3 coating
deposited on HSS substrate, but spalling was documented. The nACo3 coating deposited
on sintered carbide substrate is characterized by less cracks and insignificant spalling near
the circumferential crack.
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Figure 11. Indentation imprints at Fmax = 1500 N: (a) TiXCo3/HSS, (b) nACo3/HSS, and (c) nACo3/SC.

The results from the microscopic examination accord with the data captured using
AE (Figure 9a,b). The TiXCo3 coating is characterized by the highest values of hits en-
ergy, which were caused by plastic deformation of the substrate at the periphery of the
indentation imprint. The TiXCo3 coating, according to the material parameters calculated
from nanoindentation data (Figure 6), had the highest plasticity index and deformation
resistance. Therefore, it must also have the best tribological behavior out of all the speci-
mens. This statement was confirmed mainly after using small loads where the influence of
substrates is negligible. However, this coating was not the best solution in the case of high
loads where plastic deformation of the substrate occurs. This behavior is explained by the
high hardness and small elastic modulus of the coating. This conclusion can be confirmed
based on results with the nACo3 coating deposited on the same substrate. As can be seen
in Figure 9, the specimen with an nACo3 coating deposited on different substrates reached
different values of hits energy. The nACo3 coating deposited on the SC reached a slightly
lower value, which may have been caused by the hard substrate resistant to deformation.

4. Discussion

The mechanical and tribological behavior of two coatings were investigated by two
different indentation methods. The nanoindentation method was used to determine the
material properties of coatings. Then, supplemental parameters from the indentation data
were calculated and their wear was estimated.

The second method was indentation of the same coatings systems, but with acoustic
emission signals recorded, which enabled an investigation of crack formation and spalling
of coatings at higher loading forces.
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A comparison of results using both methods results was performed and evaluated.

4.1. Nanoindentation

According to the material parameters obtained from the nanoindentation tests, we
obtained the following findings:

• The TiXCo3 coating deposited on HSS has the highest hardness of all measured
specimens at low indentation depths. However, as depths increase the hardness
reduces. The elastic modulus curve followed a similar pattern.

• The nACo3 coating deposited on both substrates had the same hardness at low depths.
The hardness of both nACo3 coatings also increased with an increase of indentation
depths. The opposite phenomenon was observed for the elastic modulus. The nACo3

coating deposited on SC had higher values over the whole range of depths.
• All hardness changes of coatings due to an increase of indentation depths were

probably caused by differences in the substrates.
• The plasticity index and plastic deformation resistance reached the highest values for

the TiXCo3 coating deposited on HSS.
• The nACo3 coating showed different values of plasticity index and plastic deforma-

tion resistance parameters. nACo3 deposited on SC had the lowest values of both
calculated parameters.

According to the measured and calculated parameters, we can assume that the most
durable coating is TiXCo3. This coating is very hard and resistant to high loadings.

We also confirmed our findings that there is a difference in measured material param-
eters between both nACo3 coatings deposited on different substrates. nACo3 deposited on
SC reached higher values of elastic modulus but also had the lowest values of plasticity
index and plastic deformation resistance.

4.2. Macroindentation and AE Measuring

The acoustic emission signals captured during macroindentation tests at maximum
loading forces of 50 and 1500 N were evaluated and confirmed by microscopic examination
of indentation imprints. We made the following findings:

Low load tests Fmax = 50 N

• The coating-substrate systems with the lowest number of cracks was nACo3 deposited
on sintered carbide and TiXCo3 on HSS.

• Hits energy parameters showed that the nACo3 coating deposited on high-speed steel
is susceptible to spalling at low indentation loading force.

High load tests Fmax = 1500 N

• From the number of hits parameter, we found that the most susceptible coatings to
cracking are both the TiXCo3 and nACo3 coatings deposited on high speed steel.

• Based on the hits energy parameter, we were able to determine that the TiXCo3 coating
on HSS was more susceptible to a loss of adhesion and spalling of the coating at high
loads, while nACo3 deposited on high-speed steel was less susceptible at high loads,
but the least susceptible was nACo3 deposited on sintered carbide.

All of our findings were confirmed by micrographs of indentation imprints according
to the VD3198 standard [30]. All coatings were acceptable but the TiXCo3 coating was
characterized by the most serious failures. The best results during the high load indentation
test were obtained with the nACo3 coating deposited on sintered carbide. This was
confirmed with the curves shown in Figure 12. The number of hits of all measured
specimens, captured during the tests at maximum loading force of 1500 N, exceeded all
three thresholds adjusted accordingly based on Table 3. Less hits were captured during the
test with the nACo3 coating deposited on sintered carbide and their occurrence started at
higher loading forces compared to the other specimens. The wear resistance of the nACo3

coating was higher when deposited on sintered carbide substrate than HSS. This difference
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may have been caused by differences in the elasto-plastic properties between the substrates.
However, the TiXCo3 coating deposited on HSS was similarly susceptible to cracking as
nACo3 deposited on the same substrate.
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We believe the hit parameter is related to crack formation and other material instabili-
ties caused by high tensile stress in the plastic deformation zone around the imprint, and
by high compression stress in the imprint area.

The hits energy parameter can be used for quantification of cracks size and spalling
area of the coating layer.

Figure 13 shows the hits energy recorded during the tests at maximum loading force
of 1500 N for every tested coating–substrate combination. It can be seen that less energy
was released during the test of nACo3 coating deposited on sintered carbide, confirming
our previous findings. Most energy was released during indentation for the combination
of the TiXCo3 coating deposited on HSS.
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Comparing the results in Figures 12 and 13, it is possible to see how the coatings are
susceptible to cracking and spalling. The nACo3 coating deposited on sintered carbide
released least energy during indentation and therefore we can assume that it is the best
solution for high loading applications based on its good elastic properties of the coating.
The substrate is also highly resistant to plastic deformation.

Contrary to parameters calculated from nanoindentation tests, where only the coating
was investigated, the most durable coating–substrate system at high loads was nACo3

deposited on sintered carbide (Figure 14).
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5. Conclusions

In this study, samples with nACo3 and TiXCo3 coatings deposited on high-speed steel
HS6-5-2-5 (1.3243) and sintered carbide substrates were investigated in terms of coating
wear and adhesion properties using two different methods. Nanoindentation is the most
popular method currently used to characterize a coating’s parameters. In this paper, we
used the coating hardness and elastic modulus calculations developed by Oliver and
Pharr [23,24] and used the results to calculate other parameters including the plasticity
index, H/E, and deformation resistance, H3/E2. These parameters were used to evaluate
the tribological and wear resistance of coatings by high loading test performance data.

The second indentation method used to determine wear resistance at high loads was
the instrumented Daimler–Mercedes test, while acoustic emission was used to detect crack
formation and spalling of coatings. A special measuring device have been developed for
this purpose.

The coatings were deposited on different substrates, which resulted in different me-
chanical properties being obtained for the same coating. The results of nanoindentation
were compared with the results of recorded AE data analysis captured during macroinden-
tation tests. According to the acoustic emission analysis we conclude the following:

• Comparing the acoustic emission events represented by the number of hits parameter,
we conclude that for high loading applications the substrate has a major influence on
the mechanical properties. We found around the same number of hits for different
coatings deposited on HSS substrate and approximately the half number of hits
for coatings deposited on sintered carbide. If the substrate is resistant to plastic
deformation, then the coating is also more resistant to cracking and spalling.
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We have demonstrated that the use of acoustic emission measuring technology is
more appropriate when the adhesion and wear properties of coatings must be investigated.
This method is easy to use and is significantly faster, as there is no need to make a large
number of indentations. There is also no need to use precise measuring technology. We
can see crack creations in real time and quickly evaluate a hard coating’s susceptibility to
loss of adhesion when a large strain is applied.

The acoustic emission signal detection and evaluation makes it possible to evaluate:

• The susceptibility of the coating to untimely cracking;
• Spalling of coatings;
• The loading force when spalling starts to occur.

The aim of this paper was to find a more effective and accurate method to determine
overall tribological properties of hard coatings deposited on hard substrates. One of
the most outstanding advantages of the acoustic emission method is its fast and precise
detection of cracking and spalling in a coating. It is also possible to determine the critical
forces when cracking and spalling occurs.
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