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Abstract: Mo and Mo-based alloys are important aerospace materials with excellent high temperature
mechanical properties. However, their oxidation resistance is very poor at high temperature, and
the formation of volatile MoO3 will lead to catastrophic oxidation failure of molybdenum alloy
components. Extensive research on the poor oxidation problem has indicated that the halide activated
pack cementation (HAPC) technology is an ideal method to solve the problem. In this work, the
microstructure, oxide growth mechanism, oxidation characteristics, and oxidation mechanism of
the HAPC coatings were summarized and analyzed. In addition, the merits and demerits of HPAC
techniques are critically examined and the future scope of research in the domain is outlined.
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1. Introduction

Mo and its alloys have high melting point, excellent high-temperature mechanical
properties, low thermal expansion coefficient and high conductivity and thermal conduc-
tivity, which have been widely used in high-temperature structural components in national
defense industry, aerospace, and other fields, such as nozzle throat, high temperature elec-
trode, high-temperature heating element, ray shielding material, etc. [1–4]. However, the
oxidation resistance of Mo and Mo-based alloys is very poor, and they are easily oxidized
to MoO3 at a temperature of (400–800 ◦C) [5,6]. With the formation of MoO3, the volume
of molybdenum alloy increases rapidly, and leads to the occurrence of low temperature
pulverization phenomenon, namely “Pesting oxidation”. In addition, the formation of a
large amount of volatile MoO3 will lead to the catastrophic decomposition of molybdenum
and its alloys when the oxidation temperature is greater than 1000 ◦C [7–10]. At present,
alloying and surface coating can be used to improve the oxidation resistance of Mo and its
alloys. Alloying is regarded as the preferred method to improve the properties of pure Mo,
and Mo-based alloys have better mechanical properties than pure Mo when used at a high
temperature above 1000 ◦C [11–14]. The classification, preparation method, properties, and
application fields of molybdenum-based alloys are shown in Table 1 [15,16]. Because of
limitations of alloying capability of Mo, its high temperature oxidation resistance cannot
be fundamentally improved by alloying. Therefore, surface coating technology is regarded
as an ideal method to improve the high-temperature oxidation resistance of molybdenum
and its alloys [17–19]. Among them, the HAPC technology is the most widely used. At
present, there are many reports about the oxidation behavior of HAPC coatings on Mo
and its alloys. However, almost no reviewing of the progress in development of oxidation
resistance of Mo has been documented [20].
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Table 1. Classification and application of Mo-based alloys.

Alloy Type Preparation Method Brand
Number Performance Application Field Refs.

Mo-Cu alloy
Co-deposition method;

Metal oxide
co-reduction, etc.

Mo-Cu

Good conductivity,
thermal conductivity,

ablation resistance, high
hardness and strength

Electrician and electronics,
instrumentation, national

defense and military
industry, aerospace, etc.

[15]

Mo-Ti-Zr alloy Powder metallurgy;
Smelting process TZM, TZC

Excellent high
temperature strength,
high recrystallization

temperature, good heat
conduction and

corrosion resistance

It is widely used in
aerospace fields, such as

rocket nozzles, nozzle
throat liners, valve bodies,

gas pipelines, etc.

[16]

Mo-Re alloy Powder metallurgy;
Vacuum smelting

Mo-5Re,
Mo-41Re,
Mo-50Re

Excellent radiation
resistance and high

tensile strength, good
manufacturability and
high temperature creep

resistance

Aerospace, nuclear energy,
chemical, electronics,
military and so on.

[17]

Rare earth
Mo alloy Powder metallurgy Mo-0.5Ti-Y,

Mo-La, etc.

Good toughness, high
temperature resistance,

good bending resistance
and tensile strength

High temperature furnace
heating elements, nuclear
materials, glass melting

electrodes, etc.

[18]

In this work, the advantages and disadvantages of the HAPC coatings are summarized
and analyzed. The composition, exposure time, exposure temperature and mass change
per unit area of the coatings have been given in relevant tables [21,22]. Their oxide growth
mechanism and oxidation behavior are emphatically analyzed and summarized. Finally,
the oxidation resistance and failure mechanism of the coatings are also summarized, aiming
to provide some useful references for researchers in this field [23].

2. Microstructure and Growth Mechanism of HAPC Coatings

Halide activated pack cementation (HAPC) method is to embed the substrate into a
mixture (Si powder, B powder, Al powder, NH4Cl/F, Y, NaF, Al2O3 powder, etc.) with a
certain particle size and proportion, and carry out thermal diffusion in vacuum or argon
atmosphere to prepare diffusion coating. Figure 1 shows a schematic diagram of the HAPC
reaction model. It can be seen that the Al2O3 crucible is usually used as the reaction device,
and the plate on the top of the crucible plays the role of isolating air during the reaction
process. The device is placed in a furnace and held at a set temperature for a certain period
of time to obtain a coating on the substrate surface [24–29].
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Table 2 provides a summary of the process parameters, composition, and properties of
HAPC coating on molybdenum-based alloys [29–42]. It can be seen that the composition of
the mixture and the process conditions have an important influence on the microstructure,
phase composition, grain size, and mechanical properties of the coating. Wang et al. [32]
successfully prepared MoSi2-MoB coatings with an average hardness of 5.84 GPa on Mo
surface, and the hardness of MoB layer is as high as 9.54 GPa. By contrast, the surface
hardness of pure MoSi2 coating is only 2.58 GPa [34]. This is attributed to the addition of
appropriate amount of B element in the mixed packing, which improves the fluidity of Si
and makes the coating structure more dense and uniform [43]. The growth mechanism of
HAPC coatings is shown in Figure 2. A MoSi2 layer forms on molybdenum-based alloy, due
to the interdiffusion reaction between Si powder and the substrate at high temperature. In
the preparation process of coating, adding an appropriate amount of beneficial components
(Al, B, YSZ, ZrO2, Al2O3, SiC, MoB, etc.) can significantly improve the oxidation resistance
and mechanical properties of the silicide coatings [44–49]. The main reaction equations
involved in the above process are shown in Figure 2g.

Table 2. Summary of process, composition, and surface properties of HAPC coatings on molybdenum and its alloy.

Substrate

Composition and Particle
Size of HAPC Material Process Conditions Composition and

Thickness (µm) Surface
Hardness

(GPa)

Grain Size
of Coating

Surface
(µm)

Refs.
Composition

(wt.%)

Particle
Size
(µm)

Atmosphere
Treatment
Time and

Temperature

Outer
Layer

Interface
Layer

Mo

C,Si,NaF - Air 1200 ◦C, 2 h
SiO2-

MoSi2
(55)

Mo5Si3 (5) - - [29]

10Si-10NH4F-
80Al2O3

32.77 Ar 1300 ◦C, 10 h
Al2O3-
MoSi2

(60)

Mo5Si3
(1–2) - -

[30]

10Si-10NH4F-
80SiO2

17.09 Ar 1300 ◦C, 10 h
SiO2-
MoSi2

(60)

Mo5Si3
(8–10) - 10–20

10Si-10NH4F-
80SiC 4.87 Ar 1300 ◦C, 10 h SiC-MoSi2

(100) - - 8–10

16Si-4B-4NaF–
76Al2O3

- Ar 1200 ◦C, 5 h MoSi2
(55–59)

Mo5Si3-
MoB-Mo2B

(15–20)
- - [31]

20Si-0.8B-5NaF-
74.2Al2O3

- Ar 1000 ◦C, 10 h MoSi2
(27.2) MoB (31) 5.84 - [32]

16Si-4B-4NaF-2Y-
76Al2O3

- Ar 1300 ◦C, 5 h MoSi2 (190)
Mo5Si3-

MoB-Mo2B
(14)

- - [33]

TZM

7Si-87Al2O3-
6NH4Cl - Vacuum 1000 ◦C, 12 h MoSi2 (100) Mo5Si3

(2–3) 2.58 - [34]

7Al-7Si-10NH4F-
76Al2O3

≤75 Ar 1100 ◦C, 17.5 h MoSi2 (100) Mo(Si,Al)2
(10) - - [35]

12Si-3B-6Al-
2Y2O3-5NaF-

72Al2O3

- Ar 1250 ◦C, 8 h Mo(Si,Al)2
(92)

MoB-Mo2B
(2–5) - - [36]

7Al-7Si-10NH4F-
76Al2O3

1–2 Ar 1300 ◦C, 10 h Mo(Si,Al)2
(38)

Mo3(Al,Si)-
Mo5(Si,

Al)3 (5–7)
- 0.27 [37]

70Al2O3-20Al-
10NH4Cl - Ar 1000 ◦C, 12 h

Al2
(MoO4)3

(20)

Al5Mo-
Al7Mo4

(30)
2.58 - [38]

25Si-5NaF-
70Al2O3

- Ar 1100 ◦C, 6 h MoSi2 (35) Mo5Si3 (2) - - [39]
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Table 2. Cont.

Substrate

Composition and Particle
Size of HAPC Material Process Conditions Composition and

Thickness (µm) Surface
Hardness

(GPa)

Grain Size
of Coating

Surface
(µm)

Refs.
Composition

(wt.%)

Particle
Size
(µm)

Atmosphere
Treatment
Time and

Temperature

Outer
Layer

Interface
Layer

81Al2O3-7Si-7Al-
5NH4F ≤75 Ar 800–1000 ◦C,

8–36 h
Mo(Si,Al)2

(20)

MoSi2-
Mo5Si3

(35)
- - [40]

Mo-30W 7Al-7Si-5NH4F-
81Al2O3

≤75 Ar 1000 ◦C, 16 h Al-rich (12) (Mo,W)Si2
(46) - - [41]

Mo-9Si-
8B

34.03Si-0.97B-
2.5Na-62.5Al2O3

- Ar 1450 ◦C, 8 h
MoSi2-
Mo5Si3

(70)

Mo5SiB2-
MoB

(10–15)
- - [42]
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Figure 2. Growth mechanism diagram of HAPC coating on molybdenum and its alloys. (a) pre-
sedimentation, (b) Oxygen consumption in the system, (c) The initial phase of the reaction, (d) The
growth stage of the coating, (e) The final structure of the coating, (f) Amplification of individual
coating grains, (g) The reactions involved in the above process.

The typical surface and cross-sectional morphology of the HAPC coatings are shown
in Figure 3 [30]. It can be seen that some large particles are accumulated at the folds on the
coating surface, which is mainly due to the large particle size of the mixture and uneven
mixing, as shown in Figure 3a,c. The formation of micro-cracks is attributed to the thermal
expansion mismatch between the coating and the substrate, as shown in Figure 3b,c. In
addition, the addition of Al2O3, SiO2, and SiC has great influence on the thickness of
coating and interface layer. It is shown in Figure 3e that the SiO2-MoSi2 coating has a thick
interface layer with a thickness of 8 to 10 µm. On the contrary, the thickness of interface
layer of Al2O3-MoSi2 coating is very thin and is only 1 to 2 µm. It is worth noting that the
SiC-MoSi2 coating has the thickest coating thickness, and the interface layer is not observed,
as shown in Figure 3f. It can be seen that the addition of SiC significantly improves the
deposition efficiency of the coating, which is mainly due to the physical deposition of SiC
being faster than thermal diffusion deposition.
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3. Oxidation Behavior and Failure Mechanism of HAPC Coatings

The oxidation process parameters and oxidation properties of HAPC coatings on
molybdenum and its alloy are shown in Table 3. It can be seen that the ingredients of
the oxide layer mainly depend on the phase composition of the original coating. The
oxide layer of pure MoSi2 coatings is mainly composed of SiO2 and Mo5Si3, however,
composite coatings are mainly composed of SiO2, Al2O3, and B2O3. The thickness of the
outer coating decreases gradually with the increase of oxidation time. On the contrary, the
thickness of the oxide layer and interface coating increases gradually, which is mainly due
to the diffusion of oxygen and the internal diffusion reaction of silicon [29–42]. Figure 4
shows the typical surface and cross-section BSE images of oxidized coatings on TZM alloy.
A large number of micro-cracks and MoO3 particles are observed on the surface of the
oxidized MoSi2 coating, which is mainly due to the volume expansion of MoO3, as shown
in Figure 4a. However, the surface structure of Mo(Si,Al)2 coating is complete without
obvious cracks and pores after oxidation. This is due to the formation of Al2O3 with small
thermal expansion coefficient during oxidation, which inhibits the pulverization of MoSi2,
as shown in Figure 5b [39]. The surface of the oxidized Mo(Si,Al)2-MoB coating is very
smooth and the oxide layer is clearly visible. This is attributed to the fact that SiO2-Al2O3
generated in the oxidation process inhibits the volatilization of MoO3, and MoB particles
are dispersed and distributed inside the MoSi2 coating, which makes the coating have a
denser microstructure and better oxidation resistance, as shown in Figure 4c [38].



Coatings 2021, 11, 883 6 of 11

Table 3. Oxidation process parameters and oxidation properties of HAPC coatings on molybdenum and its alloys.

Substrate

Composition and Thickness of
Coatings (µm)

Exposure

Composition and Thickness of Oxidized
Coatings (µm) Mass Gain

(mg·cm−2,
wt.%)

Refs.
Outer Layer Interface

Layer Oxide Layer Intermediate
Layer Interface Layer

Mo

SiO2-MoSi2 (55) Mo5Si3 (5) 1600 ◦C, 1 h SiO2-Mo5Si3 MoSi2 Mo5Si3 9.86 [29]

Al2O3-MoSi2 (60) Mo5Si3 (1–2) 1200 ◦C, 110 h Al2O3 (16) MoSi2 (56) Mo5Si3 (42) 0.15%
[30]SiO2-MoSi2 (60) Mo5Si3

(8–10) 1200 ◦C, 110 SiO2 (8–10) MoSi2 (32) Mo5Si3 (45) 0.05%

SiC-MoSi2 (100) - 1200 ◦C, 110 h SiO2 (25–30) MoSi2 (64) Mo5Si3 (40) 0.28%

MoSi2 (55–59)
Mo5Si3-MoB-

Mo2B
(15–20)

1250 ◦C, 100 h
SiO2-B2O3-

MoO3
(100)

Mo5SiB2 (20)
Mo5Si3-MoB-

Mo2B
(50)

3.25 [31]

MoSi2 (27.2) MoB (31) 1300 ◦C, 80 h SiO2 (6-8)
MoSi2-
Mo5Si3

(50)
MoB-Mo2B (38) 0.34 [32]

MoSi2 (190) Mo5Si3-MoB-
Mo2B (14)

1000 ◦C, 100 h,
1 h cycles SiO2 (16) MoSi2 (80)

Mo5Si3-MoB-
Mo2B
(32)

1.33 × 10−3 [33]

TZM

MoSi2 (100) Mo5Si3 (2–3) 1200 ◦C, 55 h - - - 0.15 [34]

MoSi2 (100) Mo(Si, Al)2
(10)

1100 ◦C, 250 h,
0.5 h cycles

SiO2-Al2O3
(5–8) MoSi2 (45) Mo(Si,Al)2(20) 0.08 [35]

Mo(Si, Al)2 (92) MoB-Mo2B
(2–5) 1400 ◦C, 25 h SiO2-Al2O3

(15–20)
MoSi2-MoB

(88)
Mo5Si3-Mo2B

(28) 2.38 [36]

Mo(Si, Al)2 (38)
Mo3(Al,Si)-

Mo5(Si, Al)3
(5–7)

1100 ◦C, 10 h SiO2-Al2O3
(2.5)

Mo(Si,Al)2
(50)

Mo3(Al,Si)-
Mo5(Si,Al)3 (20) 12.92 [37]

Al2 (MoO4)3 (20)
Al5Mo-
Al7Mo4

(30)
1200 ◦C,50 h - - - 0.15 [38]

MoSi2 (35) Mo5Si3 (2) 1350 ◦C, 20 h SiO2 (1–2) MoSi2 (20) Mo5Si3 (50) 0.16 [39]

Mo(Si, Al)2 (20)
MoSi2-
Mo5Si3

(35)
1300 ◦C, 72 h SiO2-Al2O3

(5–10) - - 0.694 [40]

Mo-30W Al-rich (12) (Mo,W)Si2
(46) 1100 ◦C, 15 h - - - - [41]

Mo-9Si-
8B

MoSi2-Mo5Si3
(70)

Mo5SiB2-
MoB

(10–15)
1300 ◦C, 100 h SiO2-B2O3

(25)
MoSi2-Mo

(40)

Mo5Si3-MoB-
Mo5SiB2

(75)
3.82 [42]

In addition, Sun et al. compared the oxidation kinetics curves of the pure Mo and
the MoSi2 coatings prepared with Al2O3, SiO2, and SiC filler in the pack, respectively, at
different temperatures, as shown in Figure 5 [30]. It can be seen that after oxidizing at
500 ◦C for 110h, the quality of the deposited coating only changes from −0.18%–0.09%.
Among them, the quality of the deposited SiC coating has little change before and after
oxidation. However, the mass variation of Mo substrate under this condition is as high as
3%, as shown in Figure 5a,b. Furthermore, in the oxidation experiments at 1200 ◦C, the Mo
substrate rapidly failed in the initial stage of oxidation, and the quality of the deposited
Al2O3, SiO2 coatings are Increases of varying degrees, respectively. However, the mass of
deposited SiC coating increases first and then decreases under the oxidation conditions.
This is caused by the formation and evaporation of oxidized carbon (CO, CO2) during
oxidation, as shown in Figure 5c.
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(a,d) MoSi2 coating, (b,e) Mo(Si, Al)2 coating. Reprinted with permission from [39]; Reproduced from
(Paul et al., 2014). (c,f) Mo(Si,Al)2-MoB coating. Reprinted with permission from [38]; Reproduced
from (Chakraborty et al., 2008).
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The microstructure evolution and oxidation mechanism of the coating are shown in
Figure 6. Generally, the oxidation of the coating can be divided into transient oxidation and
steady oxidation [50]. At the initial stage of oxidation, Mo, Si, B, Al, and other elements
are oxidized at the same time. The quality loss of the coating is faster with the formation
and volatilization of MoO3, and the SiO2 layer is discontinuous at this stage. At the same
time, a large number of pores were observed on the coating surface after the evaporation of
MoO3. With the progress of oxidation reaction, continuous and dense oxide films (Al2O3,
SiO2, B2O3-SiO2, etc.) gradually form on the coating surface. At last, a large number of
pores are closed by SiO2 with a low oxidation rate, and the oxidation process changes to a
steady state [51,52].
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4. Conclusions and Prospects

In this work, the growth mechanism, oxidation behavior, and mechanism of HAPC
coatings are analyzed and discussed. The process conditions and properties of the coatings
are provided. During the process, due to the relatively low process temperature of HAPC
methods, the deposition efficiency of the coating is low, and the preparation time is long.
However, the application of the processes is not limited by the shape of the substrate, and
the coatings prepared have a uniform composition and good adhesion to the substrate.
Figure 7 provides a summary of the composition and oxidation characteristics of protective
coatings prepared by many researchers on the surface of molybdenum and its alloys by
HAPC method.
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Figure 7. Overview of the composition and oxidation characteristics of HAPC coatings on the surface
of Mo and its alloys.

In addition, the addition of beneficial elements and the second phases can not only
significantly improve the mechanical properties and high temperature oxidation resistance
of the coating, but also can delay the diffusion of silicon to the substrate, inhibit the
formation of Mo5Si3 with poor oxidation resistance, reduce the formation of volatile MoO3,
and promote the rapid formation of continuous and dense anti-oxidation film on the
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coating surface. The addition of Al element can significantly inhibit the formation of
the pulverization MoO3 and the occurrence of pulverization, which is mainly due to the
formation of Al2O3 with low thermal expansion coefficient. The addition of B element can
improve the oxidation resistance of the coating mainly in the following two aspects. On
the one hand, in the process of high temperature oxidation (above 1400 ◦C), an appropriate
amount of B dissolved into the oxide layer can further improve the fluidity of SiO2, which
promotes the healing of pores and cracks. On the other hand, MoB reacts with Si to produce
Mo5SiB2 with low diffusion coefficient, which delays the diffusion of Si to the substrate
and improves the oxidation life of the coating. In addition, Cr and W elements can also
improve the oxidation resistance of the coating, which is mainly due to the formation of
Cr2O3 with high oxidation resistance, and the formation of (Mo,W) Si2 phase inhibits the
internal diffusion of silicon into the substrate.

In order to improve the mechanical properties and antioxidant properties of the
coating, the microstructure and phase composition of the coating must be optimized,
and the addition of the second reinforcing phase also plays a positive role. Moreover,
the multi-step coating preparation process can organically combine the single coating
preparation technology with each other, overcome the limitations of its single application,
and effectively extend the oxidation service life of the coating. This will be the direction of
future research and development in this field.
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