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Abstract: The spherical pump is a totally new hydraulic concept, with spherical piston and hy-
drostatic bearing, in order to eliminate the direct contact between the piston and cylinder cover.
In this paper, the governing Reynolds equation under spherical coordinates has been solved and
the hydrostatic bearing characteristics are systematically investigated. The operating sensitivities of
the proposed spherical hydrostatic bearing, with respect to the piston radius, film beginning angle,
film ending angle, film thickness, and temperature, are studied. The load carrying capacity, pressure
drop coefficient, stiffness variation of the lubricating films, leakage properties, and leakage flow rates
are comprehensively discussed. The related findings provide a fundamental basis for designing the
high-efficient spherical pump under multiple operating conditions. Besides, these related results
and mechanisms can also be utilized to design and improve other kinds of annular orifice damper
spherical hydraulic bearing systems.

Keywords: spherical pump; hydrostatic bearing; annular orifice damper; bearing properties;
leakage analysis

1. Introduction

The hydrostatic bearing consists of a fluid layer between two surfaces, whose purpose
is to avoid direct surface-to-surface contact [1–6]. Generally, hydrostatic bearings are
utilized in heavy equipment, to carry large loads between two surfaces that are moving
relative to each other at a low speed [4].

The spherical pump is a totally new hydraulic concept and consists of a pump with a
spherical piston. As demonstrated in the previous work [7–14], the rotation speed of the
spherical piston is only half the rotational speed of its shaft. It is, therefore, characterized
by its relatively low rotation speed. Additionally, the spherical piston has a large load
carrying capacity, because of the pump’s spatial structure and special working mechanism.
Hence, it is proper to utilize a hydrostatic bearing to support the spherical piston and to
mitigate direct contact between the spherical piston and cylinder block.

Extensive studies have been conducted to investigate hydrostatic bearing perfor-
mance [4,5,15]. The operating sensitivity of hydrostatic bearings, with respect to pressure-
induced deformation, were studied by Manring [4]. The latter have described the pressure
distributions, flow rates, and load carrying capacities of the bearings, by using lubrication
equations for low Reynolds’ number flow. Expressions were developed to consider defor-
mations of both concave and convex shapes, and the impact of both shapes were compared.
However, the bearing they studied is a flat thrust bearing, rather than a spherical bearing.
In another paper, Nie [5] has proposed a hydrostatic slipper bearing, with an annular orifice
damper in a water hydraulic axial piston motor, and the reaction forces, including friction
forces, centrifugal forces, and the piston dynamics, are considered. They established a
characteristic equation for hydrostatic slipper bearings and the influences of different struc-
tural parameters, such as clearance, supporting length, and damping length, are included
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in their studies. However, they did not consider the leakage and flow rate properties of
the hydrostatic bearing. Pang et al. [15] studied the hydrostatic lubrication of the slipper,
in a high-pressure plunger pump, by considering the pressure-viscosity effects of the
lubricating surface. These authors also investigated the dynamic stiffness properties of
the oil film. However, they did not cover the effect of temperature on hydrostatic bear-
ing performance. In addition, the slipper is also supported by a flat hydrostatic bearing.
Yamaguchi [16–21] conducted abundant research on hydrostatic bearings. They estab-
lished a mixed lubrication model [16,17,19], which consists of the Greenwood–Williamson
model [22] for non-lubricated rough surfaces in contact, as well as the Patir and Cheng
mean flow model [23,24]. The effects of surface roughness, eccentric, loading pressure and
rotation speed on the bearing’s friction, as well as flow rate and power losses, were studied
theoretically in [16,17]. A test rig was established to investigate the mixed lubrication char-
acteristics of hydrostatic bearings [19]. The experimental results show good agreement with
the proposed theoretical model. The properties of disk-type hydrostatic thrust bearings
supporting concentric loads, simulating the major bearing/seal parts of water hydraulic
motors and pumps, are studied in [20]. Both theoretical and experimental approaches are
utilized, to investigate the relationships between film thickness, flow rate leakage, working
pressure, and load carrying capacity. Later, a theoretical model was used to investigate
bearings that are loaded eccentrically. The power loss properties, stiffness, and load carry-
ing capacities of the disk-type hydrostatic thrust bearings are analyzed theoretically in [21].
Another related research was conducted by Hooke et al. [25–28]. However, all their studies
cover disk-type hydrostatic thrust bearings, rather than spherical bearings.

Static and dynamic analyses on spherical bearings were investigated by Goeka and
Booker, using finite element methods [29]. Xu and Jiang [30,31] have proposed a self-
compensation hydrostatic spherical hinge, which can provide a large load carrying capacity.
The effects of centripetal force and surface roughness on the bearing performance of
spherical fitted bearings were studied by Yacout [32]. However, all these publications are
generally focused on traditional hydrostatic bearings. It should be noted that the structure
and working mechanism are different for the hydrostatic bearings that are utilized in
spherical pumps.

In this study, the operating sensitivity of the proposed spherical hydrostatic bear-
ing, with respect to the piston radius R, film beginning angle θ1, film ending angle θ2,
film thickness h, and temperature t, are also studied. By using the continuity equation
of incompressible, lubricating fluid, related expressions are derived for describing the
load carrying capacity, pressure drop coefficient, stiffness variation of the lubricating film,
leakage properties, the effect of temperature on leakage, and the flow rate of the leakage.

2. Hydrostatic Bearing Model for Spherical Cylinder–Piston Pair
2.1. Theoretical Analysis

As shown in Figure 1, any point can be expressed as M(x, y, z) in Cartesian coordinates
as follows: 

xM = r sin θcosϕ
yM = r sin θ sin ϕ
zM = r cos θ

(1)
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where ρ and p represent the density and pressure of the lubricating fluid, ur, uθ and 
uφ are the velocities in the three coordinate directions, and μ indicates the dynamic vis-
cosity. The body force components are denoted by fr, fθ and fφ, and the Laplacian operator 
is as follows: 
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and also in the spherical coordinates (r, θ, ϕ). The latter are related to Cartesian coordinates
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where r represents the distance (radius) from a point M to the origin O, θ indicates the
polar angle from the positive z-axis, with 0 ≤ θ ≤ π, and ϕ is the azimuthal angle in the x–y
plane from the x-axis, with 0 ≤ ϕ ≤ 2π.

Therefore, we can express the Navier-Stokes equations for the incompressible lubricat-
ing fluid with uniform viscosity in a spherical coordinates system, (r, θ, ϕ), as follows:
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(3)

where ρ and p represent the density and pressure of the lubricating fluid, ur, uθ and uϕ

are the velocities in the three coordinate directions, and µ indicates the dynamic viscosity.
The body force components are denoted by fr, fθ and fϕ, and the Laplacian operator is
as follows:

∇2 =
1
r2

∂

∂r
(r2 ∂

∂r
) +

1
r2 sin θ

∂

∂θ
(sinθ

∂

∂θ
) +

1
r2 sin2 θ

∂2

∂2 ϕ
(4)

and the operator D/Dt is denoted by the following:

D
Dt

=
∂

∂t
+ ur

∂

∂r
+

uθ

r
∂

∂θ
+

uϕ

r sin θ

∂

∂ϕ
(5)

2.2. Modeling of the Piston–Cylinder Hydrostatic Bearing

In this section, the model of the piston–cylinder bearing pair is established based on
the theory mentioned in Section 2.1.

Figure 2 depicts the piston and cylinder, with the dashed line representing the inner
surface of the cylinder body. The lubricating system consists of high-pressure lubricat-
ing fluid, Pr, being injected into the piston’s top gap, at which time the bearing film
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is established on the piston’s surface and cylinder body, which is an annulus structure.
This annulus structure is also defined as the revolute joint, which is the joint of the piston
and cylinder body (Video S1). Therefore, in spherical coordinates, (r, θ, ϕ), the continuity
equation of the lubricating fluid is as follows [33]:

1
r2

∂

∂r

(
r2ur

)
+

1
r sin θ

∂

∂θ
(uθ sin θ) +

1
r sin θ

∂uϕ

∂ϕ
= 0 (6)
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As the fluid flows uniformly from the piston pin, it can be concluded that the velocity
uϕ is 0, which is perpendicular to the inlet direction. Furthermore, because the lubricating
film thickness is at the micrometer scale, we can assume that the flow in the r direction also
vanishes and ur = 0. Therefore, Equation (7) can be transformed to the following:

∂uθ

∂θ
= − cot θuθ (7)

Supposing the lubricating fluid is steadily flowing, the acceleration of the three differ-
ent directions are ∂ur

∂t = 0, ∂uθ
∂θ = 0 and ∂uϕ

∂ϕ = 0, respectively. The eliminating lubricating

fluid inertia yields
u2

θ+u2
ϕ

r = 0. Additionally, ∂
∂ϕ = 0 and uϕ = 0, since the piston is

symmetrical along the ϕ direction. Therefore, Equation (3) simplifies to the following:

∂p
∂r + µ

(
2
r2

∂uθ
∂θ + 2uθ cot θ

r2

)
= 0 (8a)

ρuθ
r

∂uθ
∂θ = − 1

r
∂p
∂θ + µ

[
2
r

∂uθ
∂r + ∂2uθ

∂r2 + cot θ
r2

∂uθ
∂θ + 1

r2
∂2uθ
∂θ2 − uθ

r2 sin2 θ

]
(8b)

∂p
∂ϕ = 0 (8c)

(8)

Substituting Equation (7) into Equation (8a), we arrive at the following:

∂p
∂r

= 0 (9)

indicating that the lubricating oil pressure, p, only varies with θ. Therefore, the pressure
distribution along the θ direction can be obtained based on the flow theory between the
parallel surfaces and Equation (8b).

dp
dθ

= µr
(

2
r

∂uθ

∂r
+

∂2uθ

∂r2

)
(10)



Coatings 2021, 11, 1007 5 of 18

The velocity uθ can be obtained by integrating r into the following:

uθ =
r

2µ

dp
dθ
− a

r
+ b (11)

where a and b are two different integral constants. Substituting the boundary conditions
as follows:

uθ |r=R = 0 (12)

and the following:
uθ |r=R+h = 0 (13)

into Equation (11), the velocity distribution at different θ can be expressed as follows:

uθ =

[
r2 − r(2R + h) + R(R + h)

]
2µr

dp
dθ

(14)

where h is the clearance between the piston surface and the internal surface of the cylinder
body. Consequently, the lubricating fluid flow can be obtained from the following:

Q =
∫ R+h

R 2πr sin θuθdr

= −πh3 sin θ
6µ

dp
dθ

(15)

Substituting h = ecosθ into Equation (15), and evaluating the integral by using the
separation of the variables approach, yields the following:∫ p

ps
dp =

∫ θ

θ1

6µQ
πe3 cos3 θ sin θ

dθ (16)

where the eccentricity e indicates the distance between the piston center and the center of
the cylinder body. The symbol ps denotes the inlet lubricating fluid pressure of the spherical
piston, and θ1 represents the initial angle of the lubricating film. Therefore, the pressure
distribution of the lubricating fluid can be expressed as follows:

p = ps −
3µQ
πe3

[
2 ln

tan θ

tan θ1
+ tan2 θ − tan2 θ1

]
(17)

As shown in Figure 2, the fluid pressure p = 0 when θ = θ2, where θ2 is the lubricating
film ending angle. By substituting this boundary condition into Equation (17), the leaking
lubricating fluid at the piston surface can be obtained as follows:

Q =
psπe3

3µ
[
2 ln tan θ2

tan θ1
+ tan2 θ2 − tan2 θ1

] (18)

The substitution of Equation (18) into Equation (17) yields a pressure distribution
as follows:

p = ps

[
1−

2 ln tan θ
tan θ1

+ tan2 θ − tan2 θ1

2 ln tan θ2
tan θ1

+ tan2 θ2 − tan2 θ1

]
(19)

When eliminating the bearing force between the clearance of d2 – d1, the bearing force
of the spherical piston can be obtained as follows:

F =
∫ θ2

θ1
(2πR sin θ)× (p cos θ)× Rdθ

=
πR2 ps

[
cos2 θ1(tan2 θ2−tan2 θ1)−2 sin2 θ1 ln tan θ2

tan θ1

]
2 ln tan θ2

tan θ1
+tan2 θ2−tan2 θ1

(20)
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and Equation (20) can be simplified as follows:

F = psSe (21)

where Se =
πR2

[
cos2 θ1(tan2 θ2−tan2 θ1)−2 sin2 θ1 ln tan θ2

tan θ1

]
2 ln tan θ2

tan θ1
+tan2 θ2−tan2 θ1

represents the spherical piston effective

bearing area. We can observe that it only varies with the lubricating angles θ1 and θ2.
Generally, the initial angle of the lubricating film, θ1, is related to the piston pin diameter,
d1. The bigger the piston pin, the larger the beginning angle, which can be expressed
as follows:

θ1 = arcsin
d1

2R
(22)

The final angle of the lubricating film, θ2, is predominantly related to the pump
working capability, i.e., the pump displacement.

3. Bearing Properties Analysis

In this section, the properties of the hydrostatic pair, under different structural param-
eters, will be analyzed, based on the above established theory.

Firstly, the effective bearing area, Se is affected by both the angles θ1 and θ2, and the
piston bearing capacity is subsequently dependent on Se. The initial angle θ1 is specified by
the piston pin diameter d1. Therefore, both d1 and θ2 may impact the hydrostatic bearing
working capacity directly. Generally, θ2 is less than 90◦, due to the fact that the lubricating
film thickness, h, is equal to ecosθ and h > 0.

3.1. Variation in Hydrostatic Pressure

The effects of the piston radius and the piston pin diameter on the bearing pressure
are studied in this section.

The variation tendency of the hydrostatic pressure with the piston radius are sketched
in Figure 3. The bearing force is 5000 N and the lubricating film final angle θ2 is set to 60◦,
as this is the most utilized angle for spherical pistons.

From Figure 3, we can observe that when the angle θ2 and the bearing force are
constants, the hydrostatic pressure of the bearing pair, ps, decreases with the piston radius.
The larger the piston radius, the smaller the needed hydrostatic pressure is. This is due to
the fact that the bearing area increases with the piston radius. However, the hydrostatic
pressure changes significantly differently, with d1/R reaching a minimum value when d1/R
is equal to 0.5.

To study this phenomenon further, Figure 4 is presented. The plot horizontal axis is
the ratio between the piston pin diameter and the piston radius. The final angle ranges from
60◦ to 80◦, with an interval of 5◦. Generally, a larger angle θ2 requires a lower hydrostatic
pressure when the bearing force is fixed. The lowest hydrostatic pressure occurs when θ2
is 80◦, while the highest hydrostatic pressure occurs when θ2 is 60◦, as demonstrated in
Figure 4. However, for a specific angle θ2, multiple variation tendencies appeared. When
the angle is 80◦, the hydrostatic pressure increases almost linearly with d1/R. In other words,
if we do not consider the effect of structural strength, a smaller d1/R is desired for the
best piston lubricating conditions. As the angle θ2 gradually decreases, this circumstance
changes. When θ2 is 75◦, 70◦, 65◦, and 60◦, the lowest hydrostatic pressure occurs when
d1/R is 0.38, 0.44, 0.48, and 0.5, respectively. A minimum hydrostatic pressure occurs when
d1/R is between 0.2 and 1. Furthermore, the smallest hydrostatic pressure occurs at a
higher d1/R ratio, when the angle θ2 decreases from 80◦ to 60◦.
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Therefore, the optimum d1/R ratio that corresponds to the lowest hydrostatic pressure
can be found in Figure 2, for each specific angle θ2. This is particularly helpful to know
when designing new spherical pumps.

3.2. Variation in Bearing Force

The bearing force change with the ending angles is illustrated in Figure 5. The piston
radius is 20 mm, with a hydrostatic pressure of the lubricating film of 15 MPa.
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From Figure 5, we can observe that the bearing force increases at different growth rates
with the piston final angle. Take d1/R = 0.6 as an example, its bearing force grows almost
linearly when the final angle is between 60◦ and 85◦. However, the growth rate decreases
when θ2 is higher than 85◦. Furthermore, the d1/R ratio will also affect the piston bearing
force. A smaller ratio, d1/R, leads to a higher increment of the bearing force, when θ2 varies
from 60◦ to 90◦. This leads to the conclusion that the smaller the d1/R is, the higher the
bearing force is, under the same conditions.

3.3. Variation in Pressure Drop Coefficient

An equivalent fluid bridge of the hydrostatic bearing system is illustrated in Figure 6.
Lubricating oils are injected from the clearance between the piston pin and the cylinder
cover. The fluid resistance of the clearance is denoted by Rc, which is a constant, and Rg
represents the adjustable fluid resistance of the hydrostatic bearing pair.
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Based on the continuity theorem, we obtain the following:

ps

Rg
=

pc

Rc
(23)

where pc = pr − ps represents the pressure drops at the clearance of the piston pin and the
cylinder cover. The pressure drop of the lubricating pair is indicated by ps. Therefore, the
pressure drop ratio of the piston and the whole system can be expressed as follows:

α =
ps

pr
=

Rs

Rc + Rs
(24)
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This is also called the pressure drop coefficient. Rc is the fluid resistance between the
clearance of the piston pin and the cylinder cover. It is expressed as follows:

Rc =
12µl

πd1h3
c
=

96µl

πd1(d2 − d1)
3 (25)

where d1 and d2 are the diameters of the piston pin and its mating hole, respectively. The
axial length of the revolute joint is l, and the clearance between the piston pin and the
matching hole of the cylinder cover is denoted by (d2 − d1)/2. The fluid resistance between
the spherical surface of the piston and cylinder cover is denoted by Rs, which is expressed
as follows:

Rs =
3µ
[
tan2 θ2 − tan2 θ1 + 2 ln tan θ2

tan θ1

]
πh3 (26)

Substituting Equations (25) and (26) into Equation (24), we obtain the following:

α =
Rs

Rc + Rs
=

1

1 + 12µl
πd1h3

c
× πh3

3µ
[
tan2 θ2−tan2 θ1+2 ln tan θ2

tan θ1

] (27)

If we set KBC = 12l
d1h3

c
and KBS = 1

3
[
tan2 θ2−tan2 θ1+2 ln tan θ2

tan θ1

] , then Equation (27) can be

expressed as follows:

α =
1

1 + KBCKBSh3 (28)

The KBC and KBS are structural parameters of the revolute joint and bearing pair, and
both relate to their own structure and geometry properties. Equation (28) is also called a
characteristic equation, which reflects the bearing characteristics of the entire hydrostatic
bearing system.

The effects of KBC and KBS on the bearing characteristics are illustrated in Figures 7 and 8.
The piston pin, diameter d1, is 5 mm and its length, l, is 5 mm as well.
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In Figure 7, the clearance of the revolute joint, hc, varies from 0.02 mm to 0.1 mm,
with an interval of 0.02 mm. The structural angles θ1 and θ2 are 15◦ and 75◦, respectively.
From Figure 7, we can observe that the pressure drop decreases with various speeds,
when the lubricating film thickness increases. When the lubricating film thickness is
smaller than 0.02 mm, or thicker than 0.12 mm, its variation has little impact on the
pressure drop coefficient. When hc is equal to 0.02 mm, the pressure drop coefficient is
more sensitive to the lubricating film thickness, especially when the thickness varies from
0.02 mm to 0.08 mm. This means that the bearing film stiffness is higher in this range.
When hc increases from 0.02 to 0.1, the pressure drop graph becomes more and more
flat, and the sensitivity of the pressure drop coefficient on the lubricating film thickness
decreases gradually. This means that the lubricating film stiffness decreases as hc increases.
Obviously, a higher bearing stiffness can be obtained when using a smaller clearance hc,
but the lubricating film thickness must locate within an appropriate range.

The effects of KBS on the bearing characteristics are demonstrated in Figure 8. The ef-
fects of θ1 and θ2 are illustrated in Figure 8a,b, respectively. We can observe that, similarly
to Figure 7, when the lubricating film thickness is smaller than 0.02 or thicker than 0.12,
the pressure drop coefficient decrease very slowly.

In Figure 8a, θ2 is 60◦ and θ1 has 5◦, 15◦ and 25◦ values. When θ1 increases from 5◦ to
25◦, the pressure drop coefficient cure moves left, meaning that α becomes more sensitive to
h and higher lubricating film stiffness values are realizable. In Figure 8b, θ1 is equal to 10◦,
while θ2 increases from 60◦ to 80◦. The pressure drop coefficient curve moves to the right
when θ2 increases, which is totally different compared to θ1. Obviously, the lubricating
film stiffness decreases with θ2. Furthermore, when comparing Figure 8a,b, we find that θ2
has a larger effect on the pressure drop coefficient than θ1.

3.4. Lubricating Film Stiffness Analysis

Lubricating film stiffness is defined as follows:

J = −dF
dh

(29)

where F denotes the bearing force, which is defined by Equation (21), and h indicates the
lubricating film thickness. Therefore, the lubricating film stiffness represents the bearing
force change rate with different film thicknesses. Substituting Equations (21), (24) and (28)
into Equation (29), leads to the following:

J =
3KBCKBS prSeh2

(1 + KBCKBSh3)
2 (30)
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From Equation (30), we can observe that the stiffness of the lubricating film is not only
affected by the structural parameters KBC and KBS, but it is also affected by the hydrostatic
pressure pr, effective bearing area Se and thickness of lubricating film h. The extremes of
the film thickness, h, can be obtained when ∂J/∂h = 0 and the maximum lubricating film
thickness is as follows:

hmax = (2kBCkBS)
− 1

3 (31)

Substituting Equation (31) into Equations (28) and (30), we can obtain the maximum
pressure drop coefficient α = 2/3 and the maximum bearing stiffness as follows:

Jmax =
42/3

3
prSe(KBCKBS)

2
3 (32)

Then, a dimensionless stiffness coefficient, δ, can be determined. The ratio between
Equations (30) and (32) is as follows:

δ =
J

Jmax
=

9
42/3

(KBCKBS)
2/3h2

(1 + KBCKBSh3)
2 (33)

The effects of KBC and KBS on the dimensionless stiffness coefficients of the lubricating
film are illustrated in Figures 9 and 10. Both the diameter and the length of the piston pin
are 5 mm.
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From Figures 9 and 10, we can observe that the dimensionless stiffness coefficient
increases with the lubricating film thickness, h, firstly, and arrives at a maximum value
of one. Then, it decreases from this maximum value, with different variation tendencies.
Figure 9 demonstrates that a smaller piston pin clearance makes the maximum stiffness
occur at a smaller film thickness. As demonstrated in Figure 10a, when the angle θ2 is
a constant, a larger θ1 will make the stiffness curve move left. Conversely, when θ1 is
a constant and θ2 is increased, the curves of the dimensionless stiffness coefficients will
move to the right. This means that the maximum stiffness occurs when the lubricating film
is thicker.
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The structural parameters KBC and KBS will increase when increases θ1, decreases hc
and θ2. Therefore, it can be concluded that when KBC and KBS increase, the maximum
value of these curves will move to the left, which makes the film thickness of the maximum
stiffness smaller, and, finally, impacts the hydrostatic bearing performance.

3.5. Leakage Analysis

A proper fit clearance should exist between spherical pistons and cylinder bodies. Con-
sequently, leakage will inevitably exist through the clearance. In this section, the leakage
properties of lubricating surfaces will be investigated and discussed.

The leakage characteristics of the lubricating surface are illustrated by Equation (19),
which demonstrates that leakage is directly proportional to lubricating pressure ps, eccen-
tricity e3, and inversely proportional to the dynamic viscosity coefficient µ. Furthermore,
it is also related to the structural parameters θ1 and θ2.

The results shown in Figure 11 are used to investigate the effect of eccentricity e on
leakage. Here, the dynamic viscosity is selected as 0.01 Pa·s, and θ1 and θ2 are 15◦ and 75◦,
respectively. Three different lubricating pressures are selected at 5 MPa, 10 MPa, and 15
MPa. From Figure 11, we can observe that leakage increases sharply with eccentricity e.
Furthermore, the higher the lubricating pressure, the larger the leakage. When eccentricity
is smaller than 0.08 mm, the changes in leakage are slight. When e exceeds 0.08, the leakage
change rate grows rapidly. Therefore, a proper lubricating clearance is essential at different
working conditions.
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The effects of lubricating pressure on leakage performance are illustrated in Figure 12.
The dynamic viscosity coefficient µ and eccentricity e are 0.01 Pa·s and 0.05 mm, respectively.
From Figure 12, we can observe that the leakage increases linearly with lubricating pressure.
However, the different structural parameters θ1 and θ2 will have multiple effects on their
leakage characteristics.
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The effects of θ1 are demonstrated in Figure 12a, where θ2 is 60◦ and θ1 is 5◦, 15◦,
and 25◦. When θ1 increases, from 5◦ to 25◦, the corresponding leakage increases gradually.
Obviously, a smaller θ1 is helpful to prevent leakage of the lubricating pair. The impacts
of θ2 are illustrated in Figure 12b, when θ1 is 15◦, while θ2 is 60◦, 70◦ and 80◦, respec-
tively. Distinct from the θ1 dependence, the increase in θ2 will prohibit leakage effectively.
Furthermore, the effects of θ2 on leakage are stronger than θ1.

Therefore, an effective way to prohibit leakage from lubricating pairs is to decrease θ1
and increase θ2, with a larger θ2 being more helpful than a smaller θ1.

3.6. Effect of Temperature on Leakage Properties

Lubricating medium temperatures will inevitably increase when the spherical pump
is running. On the one hand, the friction of the lubricating pair generates part of the heat
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flow. Leakage of the lubricating medium will also cause temperature increases, and a rise
in temperature will further decrease the lubricant viscosity.

The viscosity of the lubricating medium is its sensitivity to temperature. Both theo-
retical and experimental studies are conducted to investigate their relation [34,35]. In this
study, the utilized viscosity–temperature equation is expressed as follows [36]:

µ = µ0eβ(t−t0) (34)

where µ0 represents the initial viscosity, β denotes the viscosity–temperature coefficient,
and t0 is the initial temperature.

Substituting Equation (34) into Equation (18), we can obtain the relationship between
temperature and leakage, as follows:

Q =
psπe3

3µ0eβ(t−t0)
[
2 ln tan θ2

tan θ1
+ tan2 θ2 − tan2 θ1

] (35)

The leakage characteristics under different temperatures are illustrated in Figure 13.
The initial temperature t0 is 20 ◦C; viscosity-temperature coefficient β is 1/20 ◦C−1; the lu-
bricating pressure ps is 15 MPa; and the eccentricity is 0.05 mm. The structural parameters
θ1 and θ2 are 15◦ and 60◦, respectively.

From Figure 13, we can observe that the leakage curves of the lubricating pair increase
nonlinearly with temperature. Leakage increases sharply with temperature, when the
temperatures are below 80 ◦C. At temperatures higher than 80 ◦C, both the leakages curves
are at approximately 0.12 L/min. This is because the viscosity of the lubrication decreases
to almost 0 Pa·s when the temperature is higher than 80 ◦C. The initial dynamic viscosity
also has an impact on the leakage performance, namely, the higher the initial dynamic
viscosity, the larger the amount of leakage.
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3.7. Flow Rate Characteristics of Leakage Medium

Transparent leakage of the bearing film can be expressed as follows:

Q = Vf rS f r = Vf r2πR sin θh (36)

where Vfr is the flow rate of a specific surface, which is perpendicular to the piston axis,
and the specific surface is constituted by the clearance between the piston and the cylinder
cover. The area of the specific surface is denoted by Sfr, which is equal to 2πRsinθh.
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Substituting Equation (18) and h = ecosθ into Equation (36), the flow rate of the surfaces
with different θ angles can be obtained from the following:

Vf r =
e2 ps

3µR sin 2θ
[
2 ln tan θ2

tan θ1
+ tan2 θ2 − tan2 θ1

] (37)

The flow rates of the leakage media are displayed in Figure 14. The structural angles θ1
and θ2 are 15◦ and 75◦, respectively, the piston radius is 20 mm, and the dynamic viscosity
µ and eccentricity e are 0.01 Pa·s and 0.05 mm, respectively. The pressure drop, ps, is 8 MPa,
9 MPa, and 10 MPa. The effects of angle θ on the flow rate are similar to a quadratic curve.
The lowest flow rate occurs when θ is 45◦, and the highest flow rate takes place when θ
is 15◦ and 75◦ for this specific structure. The flow rate decreases when θ < 45◦, while it
increases when 45◦ < θ < 75◦.
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4. Conclusions

The hydrostatic bearing characteristics of a spherical piston pair are studied theo-
retically in this paper. A piston–cylinder hydrostatic bearing model is first established.
The smallest hydrostatic pressure is needed when the ratio of the piston pin-to-piston radius
equals 0.5. The pressure drop coefficient decreases with lubricating film thickness. A smaller
revolute joint clearance and ending angle can make the pressure drop coefficient decrease
more sharply, while the film beginning angle has an inverse effect on the pressure drop
coefficient. The appropriate clearance ranges from 0.04 to 0.12 mm and it is beneficial to im-
proving the performance of the spherical bearing. The maximum film stiffness occurs when
the pressure drop coefficient α is 2/3. A smaller revolute joint clearance and film ending
angle can make the maximum stiffness occur when the lubricating oil film is thinner. Both a
smaller beginning angle and a larger ending angle can prohibit leakage in the lubricating
media. Leakage increases sharply with temperature, when the temperature is below 80 ◦C,
and it is around 0.12 L/min when the operating temperature is higher than 80 ◦C.

Though this study is conducted to investigate the hydrostatic bearing characteristics
of the spherical pump, these related results and mechanisms can also be utilized to design
and improve other kinds of annular orifice damper spherical hydraulic bearing systems.
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Nomenclature

a, b integral constants
d1 piston pin diameter
d2 cylinder hole diameter
e eccentricity
fr, fθ , fϕ body force in three coordinate directions
F bearing force
h clearance between the piston and the internal surface of the cylinder body
hc (d2 − d1)/2 revolute joint clearance
hmax maximum lubricating film thickness
J lubricating film stiffness
Jmax maximum lubricating film stiffness
KBC, KBS structural parameters
l axial length of revolute joint
Q lubricating fluid flow
p pressure of lubrication fluid
Pc Pr − Ps revolute joint pressure drop
Pr injected lubricating fluid pressure
ps lubricating pair pressure drop
R piston radius
Rc revolute joint fluid resistance
Rs bearing pair fluid resistance
Se effective bearing area
S f r 2πRh sin θ specific surface area
t temperature
ur, uθ , uϕ fluid velocities in three coordinate directions
Vf r specific surface flow rate
α Ps/Pr hydrostatic bearing pressure drop ratio
δ J/Jmax dimensionless stiffness coefficient
ρ density of lubrication fluid
θ1 film (piston) beginning angle
θ2 film (piston) ending angle
µ dynamic viscosity coefficient
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