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Abstract: Drainage pipe blockage resulting from crystals is one of the causes for cracking and
leakage of tunnel lining. Therefore, effective prevention from drainage pipe blockage caused by
crystals is crucial to ensure the safety and stability of lining structures during the operation of tunnel
drainage system. Based on a large number of indoor model tests and numerical simulation analyses,
binding energy between four materials and the calcium carbonate aqueous solution (“solid + liquid”
system) and that between the four materials and the two typical growth crystals of calcium carbonate
(“solid + solid” system) were studied. The research results indicated that: (1) The four materials all
had an adsorption effect on the calcium carbonate aqueous solution system, and the PA6 had the
greatest adsorption effect while the PP had the smallest adsorption effect; (2) There was spontaneous
adsorption between the PVC or PA6 and the two typical growth crystals of calcium carbonate and
no adsorption between the PP or SiC and the two typical growth crystals of calcium carbonate
unless external energy was in place; (3) The PP and SiC can be used as the materials for drainage
pipe flocking, but it shall be ensured that the fluffy material has a good geometrical property. The
prevention technology for crystallization that causes drainage pipe blockage fills the gap in the
research of drainage pipe blockage caused by crystals, which can reduce the maintenance cost for the
operation of the tunnel drainage system and ensure safe and normal operation of the tunnel.

Keywords: molecular dynamics; binding energy; crystallization prevention; flocking for resisting
blockage; drainage pipe

1. Introduction

With the operation of tunnel projects, tunnel defects gradually emerge, among which
drainage pipe blockage caused by crystals is a major factor affecting the service life of a
tunnel. Carbonates formed by the inter-reaction of various ions of groundwater calcify into
crystals over time, and these crystals accumulate in drainage pipes and cause blockage
(Figure 1). Improper treatment of the crystals can affect the smooth operation of a tunnel
drainage system and further lead to the cracking and leakage of the tunnel lining (Figure 2).
Even worse, it may affect traffic safety and cause imponderable losses.

There are two kinds of causes for the blockage of tunnel drainage pipes. One is the
environmental factor [1–3]: the concentration of ions such as calcium and magnesium in
groundwater, the concentration of carbon dioxide in the air, and pH value of groundwater;
the other is the construction factor [2,4]: concrete composition ratio, the form of the
drainage system, etc. At present, research on the prevention technology of drainage pipe
blockage caused by crystals is at the initial stage. The attachment of calcium carbonate
crystals can be reduced through hydrophobic treatment on concrete base surfaces and PVC
pipe walls with protective coating [5,6]; generation of crystals can be effectively lowered
by optimizing the concrete materials and the concrete composition ratio, reducing the
contact between groundwater and concrete, preventing CO2 from entering the tunnel
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drainage pipe, as well as adding appropriate fly ash to shotcrete [2,4]. Drainage pipe
crystals mainly include insoluble calcite crystals, and the PEG-b-PAA-b-PS, poly(ethylene
glycol)-block-poly(acrylic acid)-block-poly(styrene) can prevent the phase transition from
vaterite to calcite [7]; in the presence of biopolymer, the relative content of vaterite increases
with the application of ultrasonic treatment [8]; ultrasonic treatment makes the gathered
calcium carbonate crystals more fragile [9]; RS1600, a green corrosion inhibitor, makes the
crystal structure of calcium carbonate change from calcite to vaterite [10]; the cleaning
solvent of organic acid reagents of single molecule carboxylic acids with a concentration of
2000 ppm and a dichromate index of 17.71% and that of polymerized carboxylic acids can
effectively remove the karst crystal of a drainage pipe system while ensuring environmental
protection [11]. Through a large number of 1:1 indoor model tests and numerical simulation
analyses, Liu Shiyang, et al. [12–16] studied the feasibility and reliability of drainage
pipe flocking for resisting blockage from a macro perspective, and some good flocking
parameters were obtained. The real solution to the attachment of crystals of drainage
pipes depends on the micro binding energy between the crystals and the drainage pipe.
The presence of Fe2+ and Mg2+ can inhibit the growth of CaCO3, and the greater the
concentration of Fe2+ or Mg2+ is, the stronger the inhibitory effect [17] will be. High voltage
electric field can hinder the synthesis of calcium ions and carbonate ions and reduce the
binding action of calcium ions or carbonate ions with the calcite growth crystal surface,
and it also promotes the dissolution of scale [18].
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From the above analysis, we can see that at present, many researches on the prevention
technology of drainage pipe blockage caused by crystals are at a macro level, and there
are few researches at a micro level. Therefore, based on the above indoor model tests
and numerical simulation analyses, binding energy between the materials and crystals
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was analyzed by the molecular dynamics software to find the best flocking materials for
drainage pipes to resist blockage, which can provide a theoretical basis for the mechanism
of resisting blockage by drainage pipe flocking.

2. Methods
2.1. Molecular Dynamics Software

Molecular Dynamics (MD) simulation has a history of about 50 years, whose success
depends on the selection of an appropriate force field and a correct calculation method.
The widely used MD simulation is becoming more and more important with the rapid
development of computers. There are some commercial molecular dynamics computing
software designed for the MD simulation, represented by the Materials Studio software of
Accelary, which is a molecular dynamics simulation software featuring powerful functions,
easy usage and clear images.

MD simulation considers the system to be studied as a collection of a large number
of interacting particles whose motions follow the classical equation of motion (Newto-
nian equation, Hamiltonian equation or Lagrangian equation). By analyzing the force
of each particle, equations of motion of various particles that constitute the system were
numerically solved directly to obtain theses particles’ coordinates and momentum at every
moment. Then, the microscopic state consisting of the coordinates and momentum was av-
eraged against time to calculate the macroscopic properties such as multisystem pressures,
energy and temperatures.

2.2. Model Building

From a micro level, different materials produce different binding energy with the
groundwater solution system or the crystals’ microscopic crystal surface. The stronger the
binding energy is, the stronger the adsorption between the materials and the ions or the
crystals’ crystal surface in the solution will be. Thus, the anti-crystallization effect of fluffy
materials was analyzed based on the intensity of binding energy. The characteristics of
fluffy materials (Figure 3) and drainage pipe materials are shown in Table 1 below. The
“solid–solid” model and the “solid–liquid” model were constructed with the amorphous
cell of Materials Studio 8.0. The “solid–solid” model mainly included the double-layer
model of different materials and the crystal surface of calcium carbonate crystals, and the
“solid–liquid” model mainly included the double-layer model of different materials and
calcium carbonate aqueous solution.

Coatings 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

PVC 1.38 g/cm³ VCM (C2H3Cl)n 

  

 
Figure 3. Three types of fluffy materials. 

According to the Inorganic Crystal Structure Database (ICSD), calcite belongs to the 
R-3cH space group, with the spatial parameters of a = b = 4.983 Å, c = 17.078 Å, α = 90°, β 
= 90°, γ = 120° (Figure 4). The study in [19] shows that the growth faces of calcite were (1 
−1 0) and (1 0 4) crystal surfaces. The former was positively charged, while the latter was 
not charged. To obtain the binding energy between the materials and the calcite crystals, 
the models between different materials and the (1 −1 0) and (1 0 4) crystal surfaces were 
built respectively in the “solid–solid” model. The “solid–liquid” model mainly included 
the double-layer model of different materials and calcium carbonate aqueous solution. 
Given the low solubility of calcium carbonate, the calcium carbonate aqueous solution 
was formed with 350 water molecules, 3Ca2+ and 3CO32− (Figure 5), and the solution vol-
ume was 21.74 × 21.74 × 19.34 Å3. 

 
  

(a)  (b)  (c)  

Figure 4. Details of the calcium carbonate calcite crystals: (a) calcite cell configuration; (b) (1 −1 0) 
crystal surface; (c) (1 0 4) crystal surface. 

Figure 3. Three types of fluffy materials.



Coatings 2021, 11, 853 4 of 11

Table 1. The characteristics of fluffy materials and drainage pipe materials.

Material
Category Density Chemical

Composition
Chemical
Formula Structural Formula Schematic Diagram

M1 1.13 g/cm3 PA6 (C6H11NO)n
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not charged. To obtain the binding energy between the materials and the calcite crystals, 
the models between different materials and the (1 −1 0) and (1 0 4) crystal surfaces were 
built respectively in the “solid–solid” model. The “solid–liquid” model mainly included 
the double-layer model of different materials and calcium carbonate aqueous solution. 
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crystal surface; (c) (1 0 4) crystal surface. 

According to the Inorganic Crystal Structure Database (ICSD), calcite belongs to the
R-3cH space group, with the spatial parameters of a = b = 4.983 Å, c = 17.078 Å, α = 90◦,
β = 90◦, γ = 120◦ (Figure 4). The study in [19] shows that the growth faces of calcite were
(1 −1 0) and (1 0 4) crystal surfaces. The former was positively charged, while the latter was
not charged. To obtain the binding energy between the materials and the calcite crystals,
the models between different materials and the (1 −1 0) and (1 0 4) crystal surfaces were
built respectively in the “solid–solid” model. The “solid–liquid” model mainly included
the double-layer model of different materials and calcium carbonate aqueous solution.
Given the low solubility of calcium carbonate, the calcium carbonate aqueous solution was
formed with 350 water molecules, 3Ca2+ and 3CO3

2− (Figure 5), and the solution volume
was 21.74 × 21.74 × 19.34 Å3.

Coatings 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

PVC 1.38 g/cm³ VCM (C2H3Cl)n 

  

. 

Figure 3. Three types of fluffy materials. 

According to the Inorganic Crystal Structure Database (ICSD), calcite belongs to the 
R-3cH space group, with the spatial parameters of a = b = 4.983 Å, c = 17.078 Å, α = 90°, β 
= 90°, γ = 120° (Figure 4). The study in [19] shows that the growth faces of calcite were (1 
−1 0) and (1 0 4) crystal surfaces. The former was positively charged, while the latter was 
not charged. To obtain the binding energy between the materials and the calcite crystals, 
the models between different materials and the (1 −1 0) and (1 0 4) crystal surfaces were 
built respectively in the “solid–solid” model. The “solid–liquid” model mainly included 
the double-layer model of different materials and calcium carbonate aqueous solution. 
Given the low solubility of calcium carbonate, the calcium carbonate aqueous solution 
was formed with 350 water molecules, 3Ca2+ and 3CO32− (Figure 5), and the solution vol-
ume was 21.74 × 21.74 × 19.34 Å3. 

 
  

(a)  (b)  (c)  

Figure 4. Details of the calcium carbonate calcite crystals: (a) calcite cell configuration; (b) (1 −1 0) 
crystal surface; (c) (1 0 4) crystal surface. 
Figure 4. Details of the calcium carbonate calcite crystals: (a) calcite cell configuration; (b) (1 −1 0)
crystal surface; (c) (1 0 4) crystal surface.



Coatings 2021, 11, 853 5 of 11Coatings 2021, 11, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 5. Calcium carbonate aqueous solution. 

The supercell models of (1 −1 0) and (1 0 4) crystal surfaces were built respectively 
through the command of Build→Symmetry→Supercell with a size of 21.74 Å × 21.74 Å × 
17.60 Å; the polymer cells of the materials were built through the command of Modules
→Amorphous cell→Calculation with a size of 21.74 Å × 21.74 Å × 19.34 Å. PVC is amor-
phous polymer, PA6, PP and SiC are crystalline polymer. PVC, PA6 and PP all construct 
amorphous polymer chain unit cells through single chain molecules, while SiC unit cells 
are obtained by expanding the unit cell structure of the software. First, geometric and 
energy optimization of all cells were performed. Then, the built upper and lower models 
were used to build the “solid + solid” model and the “solid + liquid” model through the 
command of Build→Build layers in MS. The volume of the “solid + solid” model and that 
of the “solid + liquid” model were both 21.74 × 21.74 × 60 Å3, where the upper layer was 
calcium carbonate aqueous solution (supercells of (1 −1 0) or (1 0 4) crystal surfaces) and 
the lower layer was polymer. A 5 Å vacuum layer is set between the upper and lower 
layers as the contact surface of the two materials, and a 20 Å vacuum layer is set at the top 
of the upper layer as the interface. The combination model of the materials and the super-
cells of (1 −1 0) or (1 0 4) crystal surfaces is shown in Figures 6 and 7, and the combination 
model of the materials and the calcium carbonate aqueous solution is shown in Figure 8. 

    
(a) (b) (c) (d) 

Figure 6. Combination model of the materials and the supercells of (1 −1 0) crystal surface. (a) PA6-(1 −1 0); (b) PP-(1 −1 0); 
(c) SiC—(1 −1 0); (d) PVC-(1 −1 0). 

Figure 5. Calcium carbonate aqueous solution.

The supercell models of (1 −1 0) and (1 0 4) crystal surfaces were built respectively
through the command of Build→Symmetry→Supercell with a size of 21.74 Å × 21.74
Å × 17.60 Å; the polymer cells of the materials were built through the command of
Modules→Amorphous cell→Calculation with a size of 21.74 Å × 21.74 Å × 19.34 Å. PVC
is amorphous polymer, PA6, PP and SiC are crystalline polymer. PVC, PA6 and PP all
construct amorphous polymer chain unit cells through single chain molecules, while SiC
unit cells are obtained by expanding the unit cell structure of the software. First, geometric
and energy optimization of all cells were performed. Then, the built upper and lower
models were used to build the “solid + solid” model and the “solid + liquid” model through
the command of Build→Build layers in MS. The volume of the “solid + solid” model and
that of the “solid + liquid” model were both 21.74 × 21.74 × 60 Å3, where the upper layer
was calcium carbonate aqueous solution (supercells of (1 −1 0) or (1 0 4) crystal surfaces)
and the lower layer was polymer. A 5 Å vacuum layer is set between the upper and
lower layers as the contact surface of the two materials, and a 20 Å vacuum layer is set at
the top of the upper layer as the interface. The combination model of the materials and
the supercells of (1 −1 0) or (1 0 4) crystal surfaces is shown in Figures 6 and 7, and the
combination model of the materials and the calcium carbonate aqueous solution is shown
in Figure 8.
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2.3. Parameter Setting

The MD simulation was performed by the Forcite module in Materials Studio. First,
the positions were assigned, and all atomic coordinates of the material layer were fixed
through the universal COMPASS force field of high precision. The NVT was adopted
because the system pressure was not a key factor. The 100 ps MD simulation under the
NVT and velocity scale was first conducted to allow the system to reach an equilibrium
state. Then, the MD simulation was performed under the NVT and Andersen thermostatic
heat bath, with a time step of 1 fs, a simulation time of 200 ps, the system track being
recorded every 1000 steps, a simulation temperature of 298 K, and a cutoff radius of 12.5 Å.

3. Results and Discussion
3.1. System Equilibrium

The equilibrium of the system was determined by the temperature and energy. The
accuracy of the simulation was characterized by the ratio of energy convergence parameter
(∆Econverge), the total energy fluctuation value rms (Et), and the kinetic energy fluctuation
value rms (Ek), as shown in Formulas (1) and (2) where E(0) and the E(i) were the initial
total energy and the total energy when the iteration reached the ith step respectively, and
Nnm was the times of simulation. When ∆Econverge ≤ 0.001, R ≤ 0.001, the calculation
results were reliable. After calculation, the ∆Econverge and R of the simulation system at
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each temperature conformed to the above value range, indicating that the system reached
equilibrium and the simulated calculation results were reliable.

∆Ecoverge =
1

Nnm
∑

i

∣∣∣∣E(0)− E(i)
E(0)

∣∣∣∣ (1)

R =
rms(Et)

rms(Ek)
(2)

Figure 9 shows the energy output curve of the equilibrium process, and Figure 10
shows the temperature output curve of the equilibrium process. From Figure 9, we can
see that the potential energy, kinetic energy, non-bond energy and total energy flattened
over time, indicating that the various energy of the system reached the equilibrium. From
Figure 10, we can see that the temperature fluctuated 10% around 298 K, indicating that
the temperature of the system also reached the equilibrium.
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“solid-solid” model.
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3.2. Binding Energy Analysis

Interaction between the materials and the crystallized ion solution (two typical growth
crystal surfaces of calcium carbonate) was simulated by the molecular dynamics software.
If the interaction was very strong, the crystallized ion aqueous solution (two typical growth
crystal surfaces of calcium carbonate) would easily attach to the material layer, which
meant that the contact area between the pipe wall and the fluffy material was prone
to crystallization.

When using the double-layer model for simulation, the data of the fully balanced
double-layer structure was collected at an appropriate temperature and a proper ensemble
to obtain a series of equilibrium configurations. Then each possible equilibrium configura-
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tion was treated as follows: (1) Restore the lower fixed atoms to allow them to move freely,
copy three backups, and calculate the total energy (Etotal) of the system with backup 1; (2)
Keep the lower layer of the backup 2 only, delete the upper layer, and calculate the energy
(Elower) of the lower layer; (3) Keep the upper layer of the backup 3 only, delete the lower
layer, calculate the energy (Eupper) of the upper layer, and finally calculate the interaction
energy by Formula (3). To calculate the adsorption energy of each material layer, let the
interaction energy of the system be ∆E, and the binding energy (Ebinding) be the opposite
number of the interaction energy ∆E (Formula (4)). The details are as follows:

∆E = Etotal −
(
Eupper + Elower

)
(3)

Ebinding = −∆E (4)

where Etotal was the total energy of the system, Elower was the single-point energy of the
material layer, Eupper was the single-point energy of the crystallized ion aqueous solution
system (two typical growth crystal surfaces of calcium carbonate) after interaction. Through
simulation calculation, the energy value of the system after the interaction between the
“solid + solid” model and the “solid + liquid” model is shown in Table 2, and the changing
trend of the binding energy with the materials is shown in Figures 11 and 12.

Table 2. Energy value of the system after interaction between the “solid-solid” model and the “solid-liquid” model
(unit: kcal/mol).

Model System Etotal Elower Eupper ∆E Ebinding

solid-solid

CaCO3-PVC 1 −1 0 −20,132.466 −574.596 −18,487.159 −1070.711 1070.711
1 0 4 −38,045.005 −542.662 −36,704.997 −797.346 797.346

CaCO3-PA6 1 −1 0 −21,054.710 −937.917 −18,467.027 −1649.766 1649.766
1 0 4 −38,758.331 −928.115 −36,671.616 −1158.600 1158.600

CaCO3-PP 1 −1 0 −17,540.010 676.839 −18,487.308 270.459 −270.459
1 0 4 −35,527.521 616.249 −36,683.798 540.028 −540.028

CaCO3-SiC 1 −1 0 −117,279.169 −107,275.987 −18,473.126 8469.944 −8469.944
1 0 4 −133,290.641 −107,264.983 −36,691.537 10,665.879 −10,665.879

solid-liquid

Solution-PVC −4703.853 −577.787 −4028.226 −97.840 97.840
Solution-PA6 −3849.500 269.641 −3992.464 −126.677 126.677
Solution-PP −3470.688 625.414 −4043.291 −52.811 52.811
Solution-SiC −111,111.148 −107,276.559 −3757.73 −76.859 76.859

Coatings 2021, 11, x FOR PEER REVIEW 9 of 10 
 

 

 
Figure 11. The “solid-liquid” binding energy. 

 
Figure 12. The “solid-and solid” binding energy. 

Through the above analysis, given the binding energy between the four materials 
and the crystallized ion aqueous solution, we can select the PP with low binding energy 
as the materials for drainage pipes; given the binding energy between the four materials 
and the two typical growth crystals of calcium carbonate, we can select the PP and SiC as 
the materials for drainage pipes. From the analysis of MD simulation results, we specu-
lated that SiC had the best anti-crystallization effect in drainage pipe flocking, however, 
the result of the actual indoor macroscopic test [15] was contrary. Thus, the geometric 
property of the fluffy material (Figure 3) played a major role in the anti-crystallization 
effect of drainage pipes flocking. Therefore, for better anti-crystallization effect, the PP 
and SiC can be used as the materials for flocking drainage pipes, but the fluffy material 
shall have a good geometrical property (smooth surface and straight in the lengthwise 
direction) so as to maximize the anti-crystallization effect of the drainage pipe flocking. 

4. Conclusions 
In this paper, the binding energies of PA6, PVC, SiC, PP and calcium carbonate aque-

ous solution and calcium carbonate were studied by molecular dynamics numerical sim-
ulation method. 
(1) PA6, PVC, SiC and PP all have adsorption effect on calcium carbonate solution, and 

the order of binding energy is PA6 > PVC > SiC > PP. 
(2) The results show that PVC, PA6 and CaCO3 can spontaneously adsorb on each other, 

while PP and SiC can only adsorb on each other with the help of external energy. The 
energy absorbed by (1 0 4) crystal face is greater than that absorbed by (1 −1 0) crystal 
face. 

(3) The follow-up research can start from the energy of the solution system and the crys-
tal itself and find the technology to make the energy of the system or crystal in a low 
state, so that the crystal and the pipe are not combined. 

(4) From the point of view of anti-crystallization effect, while considering the binding 
energy between materials, it is also necessary to ensure the excellent geometric char-
acteristics of pile (smooth surface and straight length direction), so as to maximize 
the anti-crystallization effect of flocking drainage pipe. In addition to the binding 

0 
20 
40 
60 
80 

100 
120 
140 

PVC PA6 PP SiCBi
nd

in
g 

en
er

gy
（

kc
al

/m
ol
）

Material category

Figure 11. The “solid-liquid” binding energy.



Coatings 2021, 11, 853 9 of 11

Coatings 2021, 11, x FOR PEER REVIEW 9 of 10 
 

 

 
Figure 11. The “solid-liquid” binding energy. 

 
Figure 12. The “solid-and solid” binding energy. 

Through the above analysis, given the binding energy between the four materials 
and the crystallized ion aqueous solution, we can select the PP with low binding energy 
as the materials for drainage pipes; given the binding energy between the four materials 
and the two typical growth crystals of calcium carbonate, we can select the PP and SiC as 
the materials for drainage pipes. From the analysis of MD simulation results, we specu-
lated that SiC had the best anti-crystallization effect in drainage pipe flocking, however, 
the result of the actual indoor macroscopic test [15] was contrary. Thus, the geometric 
property of the fluffy material (Figure 3) played a major role in the anti-crystallization 
effect of drainage pipes flocking. Therefore, for better anti-crystallization effect, the PP 
and SiC can be used as the materials for flocking drainage pipes, but the fluffy material 
shall have a good geometrical property (smooth surface and straight in the lengthwise 
direction) so as to maximize the anti-crystallization effect of the drainage pipe flocking. 

4. Conclusions 
In this paper, the binding energies of PA6, PVC, SiC, PP and calcium carbonate aque-

ous solution and calcium carbonate were studied by molecular dynamics numerical sim-
ulation method. 
(1) PA6, PVC, SiC and PP all have adsorption effect on calcium carbonate solution, and 

the order of binding energy is PA6 > PVC > SiC > PP. 
(2) The results show that PVC, PA6 and CaCO3 can spontaneously adsorb on each other, 

while PP and SiC can only adsorb on each other with the help of external energy. The 
energy absorbed by (1 0 4) crystal face is greater than that absorbed by (1 −1 0) crystal 
face. 

(3) The follow-up research can start from the energy of the solution system and the crys-
tal itself and find the technology to make the energy of the system or crystal in a low 
state, so that the crystal and the pipe are not combined. 

(4) From the point of view of anti-crystallization effect, while considering the binding 
energy between materials, it is also necessary to ensure the excellent geometric char-
acteristics of pile (smooth surface and straight length direction), so as to maximize 
the anti-crystallization effect of flocking drainage pipe. In addition to the binding 

0 
20 
40 
60 
80 

100 
120 
140 

PVC PA6 PP SiCBi
nd

in
g 

en
er

gy
（

kc
al

/m
ol
）

Material category

Figure 12. The “solid-and solid” binding energy.

The interaction energy was negative, suggesting that the adsorption of the crystal-
lized ion aqueous solution (two typical growth crystal surfaces of calcium carbonate) on
each material surface was a spontaneous process, and a relatively stable system could be
formed [20]. As it can be seen from Table 2 and Figure 8, the interaction energy between
the four materials and the calcium carbonate aqueous solution was all negative in the
“solid + liquid” model, and the binding energy was all positive, indicating that all the four
materials had an adsorption effect on the calcium carbonate aqueous solution, and the PA6
had the greatest adsorption effect while the PP had the smallest adsorption effect, with
the former being about 2.5 times of the latter. As it can be seen from Table 2 and Figure 9,
the interaction energy between the materials of PVC or PA6 and the two typical growth
crystals of calcium carbonate was all negative, and the binding energy was all positive,
indicating that there was spontaneous adsorption between PVC or PA6 and the two typical
growth crystals of calcium carbonate, and the binding energy between either of the two
materials and (1 −1 0) crystal surface was greater than that between (1 0 4) crystal surface;
the interaction energy between the materials of PP or SiC and the two typical growth
crystals of calcium carbonate was all positive, and the binding energy was all negative,
indicating that the adsorption between the PP or SiC and the two typical growth crystals of
calcium carbonate was impossible unless there was external energy, and the adsorption of
(1 0 4) crystal surface was greater than that of (1 −1 0) crystal surface.

Through the above analysis, given the binding energy between the four materials and
the crystallized ion aqueous solution, we can select the PP with low binding energy as the
materials for drainage pipes; given the binding energy between the four materials and
the two typical growth crystals of calcium carbonate, we can select the PP and SiC as the
materials for drainage pipes. From the analysis of MD simulation results, we speculated
that SiC had the best anti-crystallization effect in drainage pipe flocking, however, the
result of the actual indoor macroscopic test [15] was contrary. Thus, the geometric property
of the fluffy material (Figure 3) played a major role in the anti-crystallization effect of
drainage pipes flocking. Therefore, for better anti-crystallization effect, the PP and SiC can
be used as the materials for flocking drainage pipes, but the fluffy material shall have a
good geometrical property (smooth surface and straight in the lengthwise direction) so as
to maximize the anti-crystallization effect of the drainage pipe flocking.

4. Conclusions

In this paper, the binding energies of PA6, PVC, SiC, PP and calcium carbonate
aqueous solution and calcium carbonate were studied by molecular dynamics numerical
simulation method.

(1) PA6, PVC, SiC and PP all have adsorption effect on calcium carbonate solution, and
the order of binding energy is PA6 > PVC > SiC > PP.
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(2) The results show that PVC, PA6 and CaCO3 can spontaneously adsorb on each other,
while PP and SiC can only adsorb on each other with the help of external energy.
The energy absorbed by (1 0 4) crystal face is greater than that absorbed by (1 −1 0)
crystal face.

(3) The follow-up research can start from the energy of the solution system and the crystal
itself and find the technology to make the energy of the system or crystal in a low
state, so that the crystal and the pipe are not combined.

(4) From the point of view of anti-crystallization effect, while considering the binding
energy between materials, it is also necessary to ensure the excellent geometric
characteristics of pile (smooth surface and straight length direction), so as to maximize
the anti-crystallization effect of flocking drainage pipe. In addition to the binding
energy, the molecular weight and production process of polymer should also be
considered in the follow-up study.
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