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Abstract: In this study, amino group surface-functionalized porous silicon adsorbent was success-
fully prepared for the first time using diamond wire saw silicon powder (DWSSP) as raw material
through copper-assisted chemical etching (Cu-ACE) and organic functional group grafting. Amino-
functionalized porous silicon adsorbent (TEPA-GTS-NPSi) can be used for removing As(V) from
water. The properties and mechanism of the new adsorbent were characterized by infrared spec-
troscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (FE-SEM),
Brunauer–Emmett–Teller analysis (BET), and thermogravimetric analysis (TGA). The concentration of
metal ions in the solution was determined by inductively coupled plasma spectrometry. Meanwhile,
the effects of initial pH, adsorption time, initial concentration and adsorbent dosage on the removal
of As(V) in an aqueous solution were studied by intermittent adsorption experiments. The results
showed that the adsorption equilibrium could be reached rapidly after 30 min soaking. Under the
optimized pH of 7, the maximum adsorption capacity was 13.2 mg/g, and the minimum adsorption
limit was 3 mg/L. The adsorbent shows good adsorption performance after five successive regener-
ated cycles. Based on the density functional theory (DFT) analysis results, the adsorption mechanism
is attributed to hydrogen bond interaction between the NH2 group and As(V) ions.

Keywords: silicon cutting powder; copper-assisted chemical etching; surface modification; waste
recycling; arsenic removal

1. Introduction

Solar energy has become one of the most important clean energy sources in recent
years. As we know, the silicon solar cell, one of the most important photovoltaic devices, is
widely acclaimed for its advantages, such as easy installation, low maintenance cost and
strong adaptability [1]. As a result, silicon ingots are the main raw material of the solar
energy industry [2]. Metallurgical grade silicon (MG-Si, <99%, 2 N) is purified into solar
grade silicon (SoG-Si, >99.9999%, 6 N) ingots by a high consumption process. During the
slicing process, about 35% of the silicon ingot becomes cutting silicon powder [3]. With
the innovations in slicing technology, however, it is roughly estimated that more than
160,000 tons of diamond wire saw silicon powder (DWSSP) will be discarded in 2019 alone,
as shown in Figure S1. If a large amount of micron and sub-micron cutting powder is
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directly discharged, it will not only cause the waste of resources but also further increase
pollution of the environment. Therefore, the value-added recovery of cutting waste will
bring considerable environmental and economic benefits [4–6].

Arsenic is widely found in nature, and arsenic pollution mainly comes from the
exploitation, smelting and extensive use of arsenic compounds, such as the production
and use of arsenic-containing pesticides, and many industries, all of which led to arsenic
contamination in the environment [7]. If the human body is chronically exposed to ar-
senic, it can lead to a range of chronic diseases and cancer [8]. The abundant existing
species of arsenic in pollutants are inorganic and organic arsenic, and the toxicity of the
inorganic form is worse than that of the organic form. The main existing forms of inorganic
arsenic are As(III) and As(V). In the process of treating wastewater polluted by arsenic, the
oxidation of As(III) into As(V) is mostly adopted for subsequent treatment [9]. To date,
diverse treatment technologies, such as chemical precipitation [10], ion exchange [11] and
electrocoagulation [12], as well as ultrafiltration (UF) [13], nanofiltration (NF) and reverse
osmosis (RO) [14], have been used for removal of arsenic. However, these technologies
have disadvantages, such as high energy costs and excessive use of toxic substances, and
they can also easily cause secondary pollution; hence, they have certain limitations in
practical applications. Adsorption technology has been widely studied because of its
advantages of high efficiency, flexibility, and simple operation [15–17]. Therefore, this is
an environmentally friendly method for removing high concentrations of arsenic. Among
various adsorbents, silica gel or magnetic nanoparticles were used as the substrate and
modified by organic functional groups as adsorbents of arsenic [18,19]. Porous silicon can
be used for modification of organic functional molecules due to its large specific surface
area and more active groups (Si–OH) on the surface [20–22], which can also be used as
a potential adsorbent substrate material. According to a research report by Dariusz M.
Jarzabek, et al., the friction performance of the silicon surface was greatly improved when
the porous silicon was exposed to an aqueous solution of alkali metal ions [23]. On the other
hand, the organic modification of the hydrogen-terminated silicon surface summarized by
Danial D. M. Wayner et al. also provides more possibilities for the application of modified
porous silicon [24].

Herein, we focus on the resource recycling and the removal of arsenic in aqueous solu-
tion based on porous silicon derived from the DWSSP combined with copper nanoparticle-
assisted chemical etching [21,22], and modification of 3-GTS and TEPA. The effects of
initial pH value, initial concentration of As(V), contact time and amount of adsorbent on
the adsorption property of the resulting organic-inorganic hybrid were carefully investi-
gated. Moreover, the uptake performance for arsenic of TEPA-GTS-NPSi was appraised by
isothermal adsorption, thermodynamics, and kinetics studies. To further clarify the arsenic
adsorption process, the experimental data of kinetics were fitted by using a pseudo-first-
order model and a pseudo-second-order model. Finally, the adsorption mechanism was
further confirmed by DFT analysis. This work not only solves the problem of silicon waste
recovery in the photovoltaic industry but also provides a potentially feasible strategy for
As(V) adsorption in aqueous solution.

2. Materials and Methods
2.1. Chemicals and Reagent

Diamond-wire saw cutting silicon powder was provided by LONGi Silicon Mate-
rial Co. Ltd. (Chuxiong, China). (3-glycidyloxypropyl) trimethoxy-silane (3-GTS, 99.9%)
and tetraethylenepentamine (TEPA, 99.9%) were purchased from the Aladdin Chemistry
Co. Ltd., Shanghai, China. Arsenic stock solution (1000 mg/L) was purchased from
the National Research Center for Standard Materials (NRCSM, Beijing, China). Addi-
tionally, copper nitrate (Cu(NO3)2, 99.9%), hydrochloric acid (HCl, 99.9%), sulfuric acid
(H2SO4, 99.8%) nitric acid (HNO3, 99.8%), hydrofluoric acid (HF, 40%), hydrogen perox-
ide (H2O2, 30%), toluene (C7H8, 99.5%), potassium chloride (KCl, 99.9%), and ethanol
absolute (C2H6O) were obtained from Sailboat Chemical Reagent Technology Co., Ltd.



Coatings 2021, 11, 850 3 of 15

(Tianjin, China). The reagents and solvents used are of analytical grade and need no further
purification unless otherwise specified.

2.2. Preparation of Nanoporous Silicon (NPSi)

The silicon raw material was pre-washed with ammonia, hydrogen peroxide and deion-
ized water (volume ratio 2:2:5) to remove surface organic impurities, and then washed with
hydrochloric acid, hydrogen peroxide and deionized water (volume ratio 2:2:5) to remove
oxides. Finally, a 5% HF solution was used for washing to obtain purified silicon powder [25].

The copper nanoparticles were chemically deposited on the silicon surface for 1 min
and then placed in a mixed solution of HF (40%) and H2O2 (5 mM) for chemical etching [22].
After 1 h reaction, the etched silicon powder was filtered and cleaned with 30% nitric acid
to remove residual nano-Cu particles. After filtration, the porous silicon powder was
washed with ethanol and deionized water repeatedly until the pH was neutral. Finally, the
filtered porous silicon powder was dried under vacuum at 60 ◦C for 12 h.

To increase the active group on the surface of porous silicon powder, the dried silicon
powder was stirred for 3 h in a solution with the H2SO4/H2O2 volume ratio of 3:1 [26].
After activation, it was filtered and washed repeatedly with ethanol and deionized water
until the pH was neutral. Finally, the filtered porous silicon powder was dried under
vacuum at 60 ◦C for 12 h.

2.3. Synthesis of TEPA-GTS-NPSi

The preparation roadmap of TEPA-GTS-NPSi is shown in Scheme 1.
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Scheme 1. The synthesis process of TEPA-GTS-NPSi.

First, (3-glycidyloxypropyl) trimethoxy-silane (3-GTS) (5 mL), NPSi (2 g) and anhy-
drous toluene (30 mL) were mixed and stirred for reflux at 60 ◦C for 24 h. After being
filtered, this was washed with ethanol 5 times and dried under vacuum at 60 ◦C for
12 h [27]. The products obtained in the first step are denoted as GTS-NPSi. Secondly,
GTS-NPSi (1.5 g), TEPA (tetraethylenepentamine) and anhydrous toluene (30 mL) were
mixed and stirred for reflux at 60 ◦C for 24 h [28]. The products obtained in the second step
are denoted as TEPA-GTS-NPSi.

2.4. Characterization of Materials

FT-IR (Nicoletis10) measurements were used to investigate the functional groups on
the surface of the adsorbent. The FTIR spectrophotometer (Nicoletis10, Thermo Fisher
Scientific, Waltham, MA, USA) had a wave number range from 4000 to 400 cm−1. The
element composition and the existing form of the element were determined by X-ray
photoelectron spectroscopy (XPS, K-Alpha+, Thermo Fisher Scientific, Waltham, MA, USA)
with a µ-spot monochromatic AlKα source (AlKα, pass energy = 50.0 eV (wide scan) and
30 eV (narrow scan), Voltage = 10 kV, Current = 20 mA). The specific surface area and pore
size of the TEPA-GTS-NPSi were determined utilizing a N2 adsorption/desorption specific
surface area meter (Quadrasorb-evo, Quantachrome Corporation, Boynton Beach, FL,
USA). TGA (NETZSCH, Selbu, Germany) were used to investigate the number of organic
functional groups. The morphology of silicon powder was characterized by FE-SEM (Nova
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NanoSEM 450, 10 kV, FEI, Hillsboro, OR, USA). ICP-OES (Leeman prodigy 7, Teledyne
Leeman Labs, Inc., Hudson, NH, USA) was used to measure the concentration of metal
ions in the adsorbed solution.

2.5. Batch Adsorption Studies

The effect of pH on the adsorption capacity was investigated with 20 mL of 100 mg/L
As(V) solutions in the pH range of 1–8 at 25 ◦C. The effect of time on the adsorption
capacity was analyzed at pH = 7, As(V) concentration of 100 mg/L and 25 ◦C for different
adsorption times (0.5–120 min). The effect of initial As(V) concentration on the adsorption
capacity was researched at pH = 7 and 25 ◦C for 2 h with different initial concentrations
(10–150 mg/L). The effect of dosage on the adsorption capacity was investigated with
20 mL of 20 mg/L As(V) solutions at 25 ◦C for 2 h. The dosage range of adsorbent was
10–35 mg. The removal efficiency (R) and the adsorption capacity (qe) were calculated by
the following Equations (1) and (2), respectively:

qe =
(C0 − Ce)V

m
(1)

R =

(
1 − Ce

C0

)
×100% (2)

where C0 and Ce are initial and equilibrium concentration of As(V) in aqueous solution
(mg/L), respectively. V is the volume of solution, and m is the mass of absorbent.

To study the recycling properties of adsorbents, 1 mol/L of HCl solution was used
as the desorption agent. After the adsorption, the adsorbent was desorbed in desorption
agent for 3 h to study the cyclic usability of the adsorbent. Then, the adsorbent was washed
with distilled water several times and vacuum dried at 25 ◦C for 24 h for the next round of
adsorption. The above procedures were repeated five times.

3. Results and Discussion
3.1. Characterization of the Amino-Functionalized Nanoporous Silicon

The morphology and microstructure of the prepared porous silicon and organic
functionalized porous silicon were characterized by SEM, as shown in Figure 1. As seen
in Figure 1a, the raw material of DWSSP is mainly in the form of debris, with relatively
flat particle surface and no obvious hole structure. Compared with the morphology of
the unetched sample (Figure 1b), the morphology of amino-functionalized nanoporous
silicon is clearly changed, pore structures start to appear on the particle surface, and the
pore structure mainly appears on the particle surface after etching. This may be attributed
to the fact that Cu nanoparticles accelerate the rate of local electrochemical reactions on the
surface of silicon particles in the etching solution system. Meanwhile, the size of silicon
particles decreased, indicating that the nanoporous silicon with pore structure has been
prepared by diamond wire-cut waste.

Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy
(XPS) were used to characterize functional groups on the surface of organic functionalized
porous silicon, and the infrared spectrum of GTS-NPSi and TEPA-GTS-NPSi was obtained
as shown in Figure 2.

The ligands of the two adsorbents are trimethoxy-silane and tetraethylenepentamine,
respectively. Therefore, it was found that the peak at 470 cm−1 is corresponding to the
bending vibration of Si–O–Si, the peak at 803 cm−1 is ascribed to the symmetric stretching
of Si–O–Si, and 1101 cm−1 is corresponding to the stretching vibration of Si–O–Si [29]. The
peaks at 3440 and 1630 cm−1 were corresponding to O–H stretching vibration and deforma-
tion vibration, respectively. Moreover, in the spectrum of GTS-NPSi and TEPA-GTS-NPSi,
the peaks at 2934 and 2834 cm−1 were corresponding to the C–H stretching vibration,
indicating that organic silane was successfully grafted onto porous silicon nanoparticles’
surface [30]. In the spectrum of TEPA-GTS-NPSi, the band at 1384 cm−1 is due to the
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–NH2 and –NH bending vibrations [31]. These indicate that organic functional groups have
successfully grafted on the surface of porous silicon.
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Figure 2. FT-IR spectra of GTS-NPSi and TEPA-NPSi.

To determine the grafting amount of organic functional groups, thermogravimetric
analysis (TGA) was used to verify it. Thermogravimetric diagrams of NPSi, GTS-NPSi and
TEPA-GTS-NPSi are shown in Figure 3. Among them, the mass loss of NPSi, GTS-NPSi and
TEPA-GTS-NPSi was 6.6%, 13.6%, and 20.7%, respectively. Considering the decomposition
of the organic group and evaporation of water, the amounts of grafted GTS and TEPA
groups were 7.0% and 7.1%, respectively.

3.2. Adsorption Performance
3.2.1. Effect of pH on As(V) Adsorption

The effect of initial pH values on the As(V) adsorption capacity of TEPA-GTS-NPSi
is shown in Figure 4. In the experimental pH range of 1.0–8.0, with the increase of pH
value, the adsorption capacity of TEPA-GTS-NPSi shows a trend of first increasing and
then stabilizing with the increase of pH. After pH = 4, the increasing trend weakened and
reached stability near pH = 7. However, the adsorption capacity of the NPSi remains at a
low level in all pH ranges.

The different As(V) species at different pH values are also shown in Figure 4. At the
low pH value, part of As(V) was electrically neutral (H3AsO4). As the pH increased, the
main form of As(V) was H2AsO4

− and HAsO4
2−, At this point, As(V) species are elec-

tronegative; however, the main form of amino in TEPA-GTS-NPSi is –NH3
+(pKa(NH3·H2O)

= 9.3) [29,32], which is electropositive. In the adsorption process, H2AsO4
− and HAsO4

2−
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capture the H+ ion in the –NH3
+; thus, the As(V) species are adsorbed by TEPA-GTS-NPSi

through electrochemical action.
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3.2.2. Effect of the Contact Time and Adsorption Kinetics

Adsorption rate is an important parameter used to characterize the properties of adsor-
bent; fast adsorption is more beneficial to practical application. The effect of the adsorption
time on the As(V) adsorption by TEPA-GTS-NPSi is presented in Figure 5. Obviously, As(V)
adsorption by the adsorbent can be viewed in two stages as follows: a rapid adsorption
stage and slow adsorption stage. The whole adsorption process consists of the first 10 min
rapid phase, and the reaction reaches equilibrium at around 60 min. In the initial rapid
phase, the adsorption rate is very fast, and the adsorption capacity is greatly increased,
which is because adsorbent surfaces are rich in active sites, the mass transfer impetus
caused by the concentration difference and the high chemical potential. After 30 min, the
adsorption tended to be stable and the adsorption of adsorbent reached saturation.
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To evaluate the kinetic mechanism, two different kinetic models were employed to
describe the adsorption process. The pseudo-first-order and pseudo-second-order models
are represented as Equations (3) and (4):

ln(qe − qt)= lnqe − k1t (3)

t
qt

=
1

k2q2
e
+

t
qe

(4)

where the k1 (min−1) is the rate constant of pseudo-first-order, k2 [g/(mg·min)] is the rate
constant of pseudo-second-order, qe (mg/g) and qt (mg/g) are the adsorption capacity at
equilibrium time and adsorption capacity at time (t), respectively.

The results of nonlinear fitting are also shown in Figure 5, and the kinetic constants
and correlation coefficients (R2) were listed in Table 1.

Table 1. Comparison of the pseudo-first and pseudo-second-order constants.

Pseudo-First-Order Model Pseudo-Second-Order Model

k1 = 0.18633 min−1 k2 = 0.01953 g·mg−1·min−1

R2 = 0.9909 R2 = 0.9952

According to the fitting results, the correlation coefficient of the pseudo-second-order
model is significantly higher than that of the pseudo-first-order model (R2 = 0.9909). The
pseudo-second-order model assumed that the determining step of the adsorption rate is a
chemical reaction. This indicates that the adsorption of As(V) on TEPA-GTS-NPSi is mainly
due to the chemical adsorption.

3.2.3. Adsorption Mechanism

To gain further insight into the As(V) adsorption mechanism of TEPA-GTS-NPSi, XPS
analysis of TEPA-GTS-NPSi before and after As(V) adsorption was performed, as shown in
Figure 6. According to the comparison of XPS spectra before and after adsorption, in the
As3d spectra (Figure 6d) after adsorption, a spectrum peak of binding energy of 45.2 eV
was found, which was corresponding to the peak of As3d5/2 [33]. The appearance of this
spectrum peak initially indicates that As(V) was successfully adsorbed on the TEPA-GTS-
NPSi functionalized porous silicon adsorbents. As can be seen from the TEPA-GTS-NPSi
N1s map (Figure 6c), after adsorption, the original –NH2 corresponding to 398.5 eV and
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–NH3
+ corresponding to 400.5 eV were also detected [34]. In addition,–the strong peaks

of NH3
+ and the significantly lower intensity peaks of –NH2 after adsorption can clearly

be seen (Figure 6c); this also shows that in the process of adsorption, TEPA-GTS-NPSi
adsorbent of amino was the main form of –NH3

+. Based on the above results, it is suggested
that the main reason for the adsorption of As5+ by TEPA-GTS-NPSI functionalized porous
silicon under weak acidic conditions is the interaction between –NH3

+ and H2AsO4
− to

achieve the adsorption effect.
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after adsorption; (d) As3d spectra of TEPA-GTS-NPSi after adsorption.

3.2.4. Effect of Initial As(V) Concentration and Adsorption Isotherms

The effect of initial concentration on As(V) removal by TEPA-GTS-NPSi was investi-
gated in Figure 7.
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The equilibrium adsorption capacity increased with the increase of the concentration
of As(V) at first. When the concentration was lower than 100 mg/L, the adsorption capacity
increased with the increase of the concentration, but the trend of increase gradually slowed.
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When the concentration was higher than 100 mg/L, the saturated adsorption capacity
finally reached (13.2 mg/g). This is because when the concentration of As(V) is low,
the functional groups are not fully occupied by As(V), and there are still excess ligand
functional groups that can continue to react with As(V). Therefore, the adsorption capacity
is relatively low. As the initial concentration of As(V) continued to increase, the active site
of TEPA-GTS-NPSi continued to adsorb with As(V) through electrostatic interaction, so
the adsorption capacity increased. By comparing with some previous reports in Table 2,
the TEPA-GTS-NPSi hybrid materials derived from cutting waste show an acceptable
adsorption capacity.

Table 2. As(V) adsorption capacities for different adsorbents.

Adsorbent Adsorption Capacity (mg/g) Reference

Magnetite 17.2 [35]
ZrO2-sawdust 12 [36]

Organic biochar 16.2 [37]
Mt-Arg 16.5 [38]

NPSi 13.2 This work

Moreover, to evaluate the isotherms mechanism, Langmuir and Freundlich isotherm
models were employed to describe the interaction between As(V) and TEPA-GTS-NPSi.
The Langmuir isotherms model can be described by the Equation (5).

qe =
qmax× KL × Ce

1 + KL × Ce
(5)

where qe (mg/g) is the equilibrium absorption capacity, Ce (mg/L) is the concentration at
equilibrium, qm (mg/g) is the maximum adsorption capacity and KL (L/g) is the equilib-
rium constant of the Langmuir isotherms model.

The Freundlich isotherms model can be described by the Equation (6):

qe= KF × C
1
n

e (6)

where Ce (mg/L) is the concentration at equilibrium, KF and n are the constants of Fre-
undlich isotherms models.

The results of nonlinear fitting are also shown in Figure 8, and the fitting parameters
and correlation coefficients were listed in Table 3. Compared with the fitting coefficient (R2)
of the Langmuir and Freundlich adsorption isotherms models, the Langmuir model was
more in line with the adsorption process of TEPA-GTS-NPSi adsorbent on As(V) than the
Freundlich model. Moreover, the maximum adsorption capacity obtained by the Langmuir
isotherms model was 13.87 mg/g, which was close to the experimental adsorption capacity
of 13.2 mg/g. It also indicated that the adsorption of As(V) by TEPA-GTS-NPSi was mostly
monolayer adsorption.

Table 3. Constants of Langmuir and Freundlich isotherms.

Langmuir Adsorption Isotherm Freundlich Adsorption Isotherm

qmax = 13.8754 mg·g−1 KF = 6.7737
KL = 0.2483 L·mg−1 n = 6.7050

R2 = 0.9782 R2 = 0.7613

3.2.5. Effect of Dosage and Adsorption Limit

To study the lower limit of adsorption of TEPA-GTS-NPSi adsorbent for As(V), with
the same amount of As(V), different amounts of adsorbent were used for the experiment.
The result is shown in Figure 8. At the low amount of adsorbent, with the increase of the
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amount of TEPA-GTS-NPSi adsorbent, the adsorption capacity slightly increased, but when
the amount of adsorbent exceeded 25 mg, the adsorption capacity decreased. However, in
the process in which the amount of adsorbent increased, the removal rate increased steadily
and remained stable after the amount of adsorbent exceeded 25 mg. This is because at the
low dosage, As(V) concentration is relatively high, and the concentration results in a high
mass transfer impetus and high chemical potential; as a result, the adsorption quantity
increases slightly. When dosage exceeds 25 mg, the residual concentration of As(V) in the
solution was not enough, and the mass transfer impetus and chemical potential was low;
thus, the adsorbent cannot absorb the remaining As(V). At this point, the concentration of
As(V) in the solution was the lowest adsorption limit of TEPA-GTS-NPSi adsorbent, and
the lower adsorption limit was 3 mg/L.

Coatings 2021, 11, x FOR PEER REVIEW 10 of 15 
 

 

(R2) of the Langmuir and Freundlich adsorption isotherms models, the Langmuir model 
was more in line with the adsorption process of TEPA-GTS-NPSi adsorbent on As(V) than 
the Freundlich model. Moreover, the maximum adsorption capacity obtained by the 
Langmuir isotherms model was 13.87 mg/g, which was close to the experimental 
adsorption capacity of 13.2 mg/g. It also indicated that the adsorption of As(V) by TEPA-
GTS-NPSi was mostly monolayer adsorption. 

 
Figure 8. Effect of dosage on As(V) adsorption. 

Table 3. Constants of Langmuir and Freundlich isotherms. 

Langmuir Adsorption Isotherm Freundlich Adsorption Isotherm 
qmax = 13.8754 mg·g−1 KF = 6.7737 
KL = 0.2483 L·mg−1 n = 6.7050 

R2 = 0.9782 R2 = 0.7613 

3.2.5. Effect of Dosage and Adsorption Limit 
To study the lower limit of adsorption of TEPA-GTS-NPSi adsorbent for As(V), with 

the same amount of As(V), different amounts of adsorbent were used for the experiment. 
The result is shown in Figure 8. At the low amount of adsorbent, with the increase of the 
amount of TEPA-GTS-NPSi adsorbent, the adsorption capacity slightly increased, but 
when the amount of adsorbent exceeded 25 mg, the adsorption capacity decreased. 
However, in the process in which the amount of adsorbent increased, the removal rate 
increased steadily and remained stable after the amount of adsorbent exceeded 25 mg. 
This is because at the low dosage, As(V) concentration is relatively high, and the 
concentration results in a high mass transfer impetus and high chemical potential; as a 
result, the adsorption quantity increases slightly. When dosage exceeds 25 mg, the 
residual concentration of As(V) in the solution was not enough, and the mass transfer 
impetus and chemical potential was low; thus, the adsorbent cannot absorb the remaining 
As(V). At this point, the concentration of As(V) in the solution was the lowest adsorption 
limit of TEPA-GTS-NPSi adsorbent, and the lower adsorption limit was 3 mg/L. 

3.2.6. Regeneration and Reuse of TEPA-GTS-NPSi 
The reusability of adsorbent is the key factor to judge the value of adsorbent. 

Therefore, in this study, the adsorption-desorption in the removal of As(V) was 
investigated. The adsorbents were initially loaded with As(V), then eluted with HNO3 
solution (0.1 mol·L−1), and then repeatedly utilized for As(V) capture. The results of the 
recyclability studies are shown in Figure 9. 

Figure 8. Effect of dosage on As(V) adsorption.

3.2.6. Regeneration and Reuse of TEPA-GTS-NPSi

The reusability of adsorbent is the key factor to judge the value of adsorbent. Therefore,
in this study, the adsorption-desorption in the removal of As(V) was investigated. The
adsorbents were initially loaded with As(V), then eluted with HNO3 solution (0.1 mol·L−1),
and then repeatedly utilized for As(V) capture. The results of the recyclability studies are
shown in Figure 9.
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The adsorption efficiency of TEPA-GTS-NPSi adsorbent was still good after five cycles.
The adsorption efficiency was 95.6% after the first cycle and 91.8% after the fifth cycle. This
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is mainly because some functional groups on the surface were lost or became inactivated in
the circulation. The results indicate that TEPA-GTS-NPSi has good regeneration capability
for As(V) adsorption.

3.2.7. Practical Application of Industrial Wastewater

The application of adsorbent in actual wastewater is the most intuitive way to test the
effect of an adsorbent. Thus, the TEPA-GTS-NPSi adsorbent was used for adsorption in
actual wastewater which was obtained from a factory in Yunnan, China. The results were
shown in Table 4.

Table 4. The comparison of industrial wastewater before and after TEPA-GTS-NPSi treatment.

As Cu Zn

Before (mg/L) 297.6 28.28 17.66
After (mg/L) 272.86 26.36 16.84

Adsorption capacity
(mg/g) 12.37 0.96 0.41

Most industrial wastewater contains As, Cu, and Zn. As can be seen from Figure 4, the
adsorption capacity of TEPA-GTS-NPSI adsorbent for As was 12.37 mg/g, which reached
93.71% of the theoretical maximum adsorption capacity at about pH 7 (13.87 mg/g). The
results show that the adsorption effect of TEPA-GTS-NPSI adsorbent on As is better than
that on copper and zinc, and it has certain practicability in the treatment of industrial
wastewater containing arsenic.

3.2.8. DFT Analysis

The geometric optimizations were conducted by density function theory (DFT) at
B3LYP level with 6-311++G(d, p) basis. All optimization of electronic and geometrical
structures was performed by Gaussian 09 suite of program. According to the result of pH
and XPS, the optimized geometries of TEPA-GTS, H3AsO4 and As-TEPA-GTS are shown
in Figure 10.

It is can be seen that the H3AsO4 group mainly adsorbed by –NH2 group on the
functional molecule after the adsorption process. Table 5 presents the selected structural
parameter of optimized geometries on bond length.

According to the bond length, it is obvious that after the adsorption process, the
bond lengths of N–H and O–H are getting longer; however, the bond length of O–H is
shorter than that of before adsorption. This phenomenon can be explained by the charge
action between TEPA-GTS functional molecule and H3AsO4, resulting in the bond length
changes. Also, the bond length of N1–H6 is 1.64556 Å; this atomic distance indicates a
strong hydrogen bond between them [39].

In addition, the NBO charge distributions are shown in Table 5 and the contour maps
of As-TEPA-GTS are shown in Figure 11.

According to Table 6, the NBO charge of selected atoms has increased after the
adsorption process; this indicates that there is a transfer of charge in these atoms which
causes the adsorption. The electron density spread over N and O–H from Figure 10,
which confirms the strong interaction of TEPA-GTS and H3AsO4 [40]. Also, second-order
perturbation theory analysis was applied to explore the interaction between donor atom
and metal ion, and the corresponding E(2) stabilization energy was employed to measure
the interaction between the donor and acceptor. During the adsorption process, the lone
pair electrons of N are the donor, the antibonding orbital of H6–O5 is the acceptor, and the
stability energy of E(2) of LP (N1)→ BD × (H6−O5) is 40.75 kcal/mol. The results indicate
that the interaction between the N atom and the H–O bond dominated the adsorption. All
the results show that the adsorption mechanism is mainly due to the strong interaction
between the terminal amino group and arsenic species.
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Table 5. Selected structural parameter of optimized geometries on bond length.

TEPA-GTS As-TEPA-GTS

N 1–H 2 1.01573 N 1–H 2 1.01645
N 1–H 3 1.01429 N 1–H 3 1.01570

H3ASO4 N 1–H 6 1.64556

As 4–O 5 1.74407 As 4–O 5 1.70956
O 5–H 6 0.96413 O 5–H 6 1.02435

Coatings 2021, 11, x FOR PEER REVIEW 13 of 15 
 

 

 
Figure 11. Contour mapping of As-TEPA-GTS. 

According to Table 6, the NBO charge of selected atoms has increased after the 
adsorption process; this indicates that there is a transfer of charge in these atoms which 
causes the adsorption. The electron density spread over N and O–H from Figure 10, which 
confirms the strong interaction of TEPA-GTS and H3AsO4 [40]. Also, second-order 
perturbation theory analysis was applied to explore the interaction between donor atom 
and metal ion, and the corresponding E(2) stabilization energy was employed to measure 
the interaction between the donor and acceptor. During the adsorption process, the lone 
pair electrons of N are the donor, the antibonding orbital of H6–O5 is the acceptor, and 
the stability energy of E(2) of LP (N1) → BD × (H6−O5) is 40.75 kcal/mol. The results 
indicate that the interaction between the N atom and the H–O bond dominated the 
adsorption. All the results show that the adsorption mechanism is mainly due to the 
strong interaction between the terminal amino group and arsenic species. 

Table 6. NBO charge distribution of TEPA-GTS, H3AsO4 and As-TEPA-GTS. 

TEPA-GTS and H3ASO4 As-TEPA-GTS 
N 1 −0.83850 N 1 −0.85379 
H 2 0.33584 H 2 0.36266 
H 3 0.34372 H 3 0.36837 
As 4 2.72387 As 4 2.74799 
O 5 −1.03976 O 5 −1.09851 
H 6 0.49508 H 6 0.50843 

4. Conclusions 
A new amino-functional adsorbent was prepared by copper-assisted chemical 

etching of kerf loss silicon waste, and shows effective removal of As(V) from aqueous 
solution. The TEPA-GTS-NPSi adsorbent can quickly reach adsorption equilibrium after 
30 min and the maximum adsorption capacity of As(V) is 13.2 mg/g at room temperature. 
The adsorption kinetics could be well described with the pseudo-second-order kinetic 
model, which indicates the adsorption process was controlled by chemical interactions. 
The adsorption isotherms could be well described with the Langmuir isotherms model, 
which revealed the adsorption process was mono-layer adsorption. TEPA-GTS-NPSi 
could be regenerated with 1 mol/L HCl washing, which resulted in a low adsorption 

Figure 11. Contour mapping of As-TEPA-GTS.



Coatings 2021, 11, 850 13 of 15

Table 6. NBO charge distribution of TEPA-GTS, H3AsO4 and As-TEPA-GTS.

TEPA-GTS and H3ASO4 As-TEPA-GTS

N 1 −0.83850 N 1 −0.85379
H 2 0.33584 H 2 0.36266
H 3 0.34372 H 3 0.36837
As 4 2.72387 As 4 2.74799
O 5 −1.03976 O 5 −1.09851
H 6 0.49508 H 6 0.50843

4. Conclusions

A new amino-functional adsorbent was prepared by copper-assisted chemical etching
of kerf loss silicon waste, and shows effective removal of As(V) from aqueous solution.
The TEPA-GTS-NPSi adsorbent can quickly reach adsorption equilibrium after 30 min
and the maximum adsorption capacity of As(V) is 13.2 mg/g at room temperature. The
adsorption kinetics could be well described with the pseudo-second-order kinetic model,
which indicates the adsorption process was controlled by chemical interactions. The
adsorption isotherms could be well described with the Langmuir isotherms model, which
revealed the adsorption process was mono-layer adsorption. TEPA-GTS-NPSi could be
regenerated with 1 mol/L HCl washing, which resulted in a low adsorption capacity
attenuation after five cycles. The XPS and DFT analysis showed that the mechanism of
As(V) removal by TEPA-GTS-NPSi is mainly due to the strong hydrogen bonding between
the –NH2 group and arsenic species. This work could provide novel insight into new
absorbent fabrication and shows extremely practical significance to recycle kerf-loss silicon.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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11. Kabay, N.; Ipek, İ.Y.; Yilmaz, P.K.; Samatya, S.; Bryjak, M.; Yoshizuka, K.; Tuncel, S.A.; Yükel, Ü.; Yüksel, M. Removal of Boron
and Arsenic from Geothermal Water by Ion-Exchange in Geothermal Water Management; CRC Press: Boca Raton, FL, USA, 2018;
pp. 135–155.
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