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Abstract: Nanoparticles have long been known and their biomedical potent activities have proven
that these can provide an alternative to other drugs. In the current study, copper oxide, nickel oxide
and copper/nickel hybrid NPs were biosynthesized by using Curcuma longa root extracts as a reducing
and capping agent, followed by characterization via UV-spectroscopy, Fourier transformed infrared
spectroscopy (FTIR), energy dispersive X-ray (EDX), powder X-ray diffraction (XRD), scanning
electron microscopy (SEM), transmission electron microscopy (TEM), thermo galvanometric analysis
(TGA), and band gap. FTIR spectroscopy shows the availability of various functional groups and
biomolecules such as carbohydrate, protein, polysaccharides, etc. The EDX peak confirmed that the
elemental nickel and copper were present in large quantity in the analyzed sample. Scanning electron
micrographs showed that the synthesized CuO-NPs and NiO-NPs were polyhedral uniform and
homogeneous in morphology, while the copper/nickel hybrid NPs were well dispersed, spherical
in shape, and uniform in size. TEM micrographs of CuO-NPs had 27.72 nm, NiO had 23.13 nm
and, for their hybrid, the size was 17.38 nm, which was confirmed respectively. The CuO and NiO
NPs possessed spherical- to multi-headed shapes, while their hybrid showed a complete spherical
shape, small size, and polydispersed NPs. The XRD spectra revealed that the average particle size
for CuO, NiO, and hybrid were 29.7 nm, 28 nm and 27 nm, respectively. Maximum anti-diabetic
inhibition of (52.35 ± 0.76: CuO-NPs, 68.1 ± 0.93: NiO-NPs and 74.23 ± 0.42: Cu + Ni hybrids) for
α-amylase and (39.25 ± 0.18 CuO-NPs, 52.35 ± 1.32: NiO-NPs and 62.32 ± 0.48: Cu + Ni hybrids) for
α-glucosidase were calculated, respectively, at 400 µg/mL. The maximum antioxidants capacity was
observed as 65.1 ± 0.83 µgAAE/mg for Cu-Ni hybrids, 58.39 ± 0.62 µgAAE/mg for NiO-NPs, and
52.2 ± 0.31 µgAAE/mg for CuO-NPs, respectively, at 400 µg/mL. The highest antibacterial activity
of biosynthesized NPs was observed against P. aeuroginosa (28 ± 1.22) and P. vulgaris (25 ± 1.73)
for Cu + Ni hybrids, respectively. Furthermore, the antibiotics were coated with NPs, and activity
was noted. Significant anti-leishmanial activity of 60.5 ± 0.53 and 68.4 ± 0.59 for Cu + Ni hybrids;
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53.2 ± 0.48 and 61.2 ± 0.44 for NiO-NPs; 49.1 ± 0.39 and 56.2 ± 0.45 for CuO-NPs at 400 µg/mL
were recorded for promastigote and amastigotes, respectively. The biosynthesized NPs also showed
significant anti-cancerous potential against HepG2 cell lines. It was concluded from the study that
NPs are potential agents to be used as an alternative to antimicrobial agents.

Keywords: Curcuma longa; copper oxide nanoparticles; nickel oxide nanoparticles; urinary tract
infections; green synthesis

1. Introduction

Nanotechnology is now recognized as an established cutting-edge technology with a
wide range of applications in the pharmaceutical and other industries [1]. Many nanoscale
devices have been developed using a number of methods since the dawn of nanotechnol-
ogy. In recent ages, the environmentally friendly ‘green’ production of nanomaterials is
becoming an essential and popular focus for material scientists as a result of widespread
noxious problems associated with chemical and physical techniques. The plant-mediated
synthetic approach, on the other hand, is a valuable technique that can be conveniently
manufactured and engineered [2–5]. Standard approaches to nanoparticle synthesis have a
number of disadvantages, including long-term production, high costs, time consuming
methods, and the use of toxic compounds, in particular. Because of these limitations, the
majority of related research has concentrated on environmentally sustainable and fast
synthesis protocols for nanoparticle processing [6–9]. In recent years, material science
has prioritized the advancement of environmentally friendly methods for synthesizing
nanoscale materials. A green synthetic approach for NPs, especially using various plant
extracts, is a growing trend in green chemistry that is easy, inexpensive, and non-toxic
in this regard [10–12]. Nanoscale technology has since improved the human quality of
living by addressing a variety of issues such as industrial prosperity, climate change, food,
clothes, and healthcare, as well as the treatment of lethal diseases such as cancer, respiratory
infections, and Alzheimer’s disease [13,14].

Over the past ten years, metal oxide NPs have been used most widely for their
myriad of applications in various chemical, physical, and biological fields. Metal oxide
nanoparticles have been the subject of extensive research over the past decade due to their
diverse uses in a variety of scientific fields [15]. Materials like (Cu and Ni) NPs are exciting,
inorganic materials with many advantages. Energy management, textiles, batteries, health
care, catalysis, cosmetics, semiconductors, and chemical sensing are only a few of the
applications for (Cu and Ni) NPs [16–18]. These metallic NPs are non-toxic, biocompatible,
and have a wide range of medicinal uses, including anti-cancer [19], anti-inflammation [20],
antimicrobial selective drug delivery [21], wound healing, and bio-imaging [22,23].

Nanoproducts can be manufactured using a number of approaches (chemical, physical,
and biosynthesis), and have a wide range of properties and applications. Although the
synthesis of plant-based NPs (CuO, NiO and Cu/Ni hybrid) has been documented above,
there is a lack of antimicrobial, antioxidant, anti-leishmanial, and anti-cancer effects among
other biological properties in the literature. Curcuma longa is well known for its medicinal
properties, which include anti-inflammatory, anti-diarrheal, dyspepsia, depression, and
mood disorders [24–27].

Using the aqueous extracts of Curcuma longa root extract, we recorded the plant-based
synthesis of copper oxide, nickel oxide, and copper/nickel hybrid nanoparticles. The
environmentally sustainable synthesis of such metallic NPs has a variety of biomedical
applications. The metabolites in C. longa’s aqueous extract served as oxidizing and reducing
agents, as well as a strong capping agent, in the synthesis of biogenic NPs. Modern
techniques such as FTIR, UV, XRD, SEM, TEM, and TGA analysis were used to characterize
the green synthesized nanoparticles. The NPs were then tested for antimicrobial, anti-
leishmanial, anti-diabetic, antioxidant, and anti-cancer properties.
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2. Materials and Methods
2.1. Plant Collection and Extraction

The roots of C. longa were found and purchased in a local market of Charsadda,
Pakistan, and stored with CL001 tag number at Department of Botany Herbarium, Bacha
Khan University, Pakistan. For extract preparation, the specimen was washed thrice with
sterile water and ground into a fine powder using an electric grinder. Next, 50 g of fine
root powder were mixed to 500 mL dH2O before being heated at 100 ◦C for half an hour,
followed by incubation at room temperature overnight. The concentrate was filtered using
Whatman filter paper. The collected extract was held at 4 ◦C in the refrigerator for further
use in the experiment.

2.2. Synthesis of CuO and NiO NPs

Copper oxide nanoparticles were synthesized using a modified version of a previously
mentioned technique [28]. Exactly 6.0 g of cupric acetate Cu(CH3COO)2 (Sigma–Aldrich,
Saint Louis, MO, USA) was applied to 100 mL extract and held at 60 ◦C for 2 h on a
magnetic stirrer. After the reaction was finished, the mixture was cooled at 25 ◦C before
being centrifuged (HERMLE Z326K, HERMLE Labortechnik GmbH, Wehingen, Germany)
at 10,000 rpm for 10 min. The resulting pellet was washed three times with purified
water before being poured onto a clean Petri plate and dried in the oven at 90 ◦C. To
remove any impurities, the dry material was pounded into a fine powder in a pestle and
mortar and calcined for 2 h at 500 ◦C. The resulting product was stored for physiochemical
characterization. With minor modifications, nickel oxide nanoparticles were synthesized
according to a previously mentioned procedure [29]. Then, 6.0 g of Nickel(II) acetate (Sigma
–Aldrich, Saint Louis, MO, USA) was mixed to 100 mL extract of plant and held at 60 ◦C
for 2 h on a magnetic stirrer and same procedure was repeated as above discussed in the
synthesis of CuO nanoparticles. The resulting NiO nanoparticles were stored at 4 ◦C in a
refrigerator for physiochemical characterization.

2.3. Synthesis of Cu-Ni Hybrids NPs

Hybrid nanoparticles were made using a modified version of a previously mentioned
protocol [30]. Precisely 50 mL of distilled water was combined with 3.0 g of both salt cupric
acetate and Nickel (II) acetate. Both 50 mL aqueous solution of metallic salts were mixed
together and held at 60 ◦C for 2 h on a magnetic stirrer. Following that, 100 mL of extract
was applied to the salts solution dropwise. After the reaction was finished, the mixture was
able to cool at 25 ◦C before being centrifuged at 10,000 rpm for 10 min. The resulting pellet
was washed three times with purified water before being poured onto a clean Petri plate
and dried in the oven at 90 ◦C. To remove any impurities, the dry material was pounded
into a fine powder in a pestle and mortar and calcinated for 2 h at 500 ◦C. The resulted
product was stored for physiochemical characterization.

2.4. Characterizations of Biosynthesized NPs

Advanced characterization techniques have been used for determining the physico-
chemical characteristics of C. longa mediated NPs. UV, FTIR, XRD, SEM, TEM, EDX, and
TGA are the techniques used for the physiochemical characterization of the biosynthesized
NPs. UV spectroscopy (Spectrophotometer UV5, Mettler-Toledo, Colombus, OH, USA)
in the range of 200 to 700 nm was used to examine the reaction between the extract and
metallic salts. The crystalline nature of the biosynthesized NPs were confirmed by PANa-
lyticaX’pert X-ray diffractometer (Malvern Panalytical, San Francisco, CA, USA) in XRD
analysis. The crystal size was calculated by Scherer’s equation [31].

D = k λ/β Cosθ

A 400 cm−1 and 4000 cm−1 spectral range was used to examine the possible involve-
ment of functional groups in the formulation of NPs in FTIR (Shimadzu, Tokyo, Japan)



Coatings 2021, 11, 849 4 of 22

analysis. SEM (JSM-7600F, JOEL, Ltd., Tokyo, Japan) and TEM (JEM-2100F, JEOL Ltd.,
Tokyo, Japan) were used to analyze morphology and physical measurements, while ele-
mental analysis was performed using EDX Spectroscopy (Shimadzu, Tokyo, Japan) [32].
Thermo gravimetric analysis was used to investigate thermal equilibrium/stability us-
ing a Q500 thermo gravimetric analyzer (TGA Thermostep, Eltra Elemental Analyzers,
Haan, Germany).

2.5. Antibacterial Assay of NPs against Bacterial Strains

Previously identified bacterial species (Escherichia coli, Pseudomonas aeruginosa, and
Proteus vulgaris) were collected from the Hayat Abad medical Complex (HMC), Peshawar.
The collected bacterial species were used to determine the antibacterial potential of biosyn-
thesized NPs. Different antibiotic discs were used in the current study according to
CLSI guidelines (CLSI, 2017 and 2020), including imipenem, meropenem, oxacillin, and
ciprofloxacin against test organisms. Agar well diffusion assay [33] was performed to
evaluate the antimicrobial potential of Cu, Ni, and Cu-Ni hybrid nanoparticles against
Proteus vulgaris, Pseudomonas aeruginosa, and Escherichia coli. Next, 0.5 OD MacFarland
microbial suspension were prepared. Then, 50 µL of microbial culture was pipetted out
and dropped on freshly prepared Muller–Hinton agar plates to form a uniform bacterial
lawn by spread plate technique. After that, a sterilized well-borer was used for boring a
well of 6–5 mm, and 10 µL of nanoparticles were pipetted out and poured into each well
in each plate and labeled accordingly. Ciprofloxacin was used as a positive control 177
while deionized water was used as a negative control. The plates were incubated for 24 h
at 37 ◦C and, after incubation, inhibition zones were measured by using a vernier caliper.
The same process was repeated for each nanoparticle.

2.6. Anti-Leishmanial Assay

Using the standard protocol mentioned previously, biogenic NPs were tested for anti-
leishmanial action against both amastigotes and promastigotes [34]. The anti-leishmanial
behavior of biogenic nanoparticles was evaluated using the L. tropica KWH23 strain. The
cultured L. tropica KWH23 strain in the FBS-supplemented MI99 medium, was incubated.
Next, 20 µL of the test sample was poured into a 96-well plate, followed by an additional
180 µL of aliquot from suspension culture (seeding density: 1 × 106 cells/mL), and was
incubated for 3 days at 25 ◦C. Amphotericin B and DMSO (1%) was used as positive and
negative control. After that, 20 µL of MTT solution (4 mg/mL in dH2O) were poured into
each well and the culture plate was incubated for another four hours at room temperature.
The absorbance of the samples was measured at 540 nm using a microplate reader. Percent
inhibition was calculated using the formula

% Inhibition =

[
1 −

{
Absorbance of sample
Absorbance of control

}]
× 100

The sample was analyzed again using different a concentration and the process was re-
peated three times. The IC50 values were revealed by using TableCurve software 2D v5. 01.

2.7. Protein Kinase Inhibition Assay

Protein kinase inhibition assay was used to test the anti-cancer potential of CuO,
NiO, and its hybrid NPs. This is a bioassay for confirming the ability of nanoparticles to
suppress protein kinases. Our procedure differed marginally from that adopted by [35].
Streptomyces 85E was used as a research strain. We made the plates with sterile ISP4
medium and then moved a volume of 100 µL from the Streptomyces 85E culture that had
been refreshed to the plates. Each well (5 mm) was filled with around 5 µL of NPs and
labelled accordingly. Surfactin was used as a positive control, while DMSO was used as a
negative control. Followed by incubation after this, all the plates were set at 28 ◦C for 48 h.
Clear and bald areas were observed around wells, which indicated that phosphorylation,
mycelia, and spore formation had been inhibited. The clear zones displayed the cytotoxic
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potential of NPs and the killing of the test strain, and the clear zones were measured with a
vernier caliper to the nearest mm.

2.8. Cytotoxicity against HepG2 Cell Line

HepG2 cells (ATCC HB-8065) were cultured at 37 ◦C in Dulbecco’s Modified Eagle
Medium (DMEM) containing 10% Fetal Calf Serum (FCS), 100 U/mL penicillin, 2 mM L-
glutamine, 100 µg/mL streptomycin, and 1 mM Na-pyruvate in a 5% humified CO2
atmosphere. The cells were harvested for 1 min at room temperature with 0.5 mM
trypsin/EDTA. The cytotoxic activity of nanoparticles in vitro was investigated using
MTT (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazolium dye.
MTT is reduced in healthy cells to formazan, an insoluble purple substance that can be
measured spectrophotometrically. Exactly 200 µg/mL of the test sample was added to
10,000 cells/well of HepG2, followed by an additional 10 µL MTT dye and then incubated
for 3 h. After that, the cells were incubated for an overnight period. Using a microplate
reader, plates were analyzed at 570 nm (Platos R 496, AMP, Krenngasse, Austria). As a
control, non-treated HepG2 cells were used. As a negative control, DMSO was used. The
following formula was used to quantify percent viability in comparison to the NTC study:

% Viability =
Absorbance of sample − Absorbance of sample control

Absorbance of NTC − Absorbance of media
× 100.

Optical density of treated samples and NTC was measured at 570 nm. Abs of sample
control and Abs of blank represent the background optical density; the former was mea-
sured in test sample/extracts only while the latter was measured in media only samples.

2.9. Anti-Diabetic Assay

The anti-diabetic efficacy of the biogenic NPs was calculated using alpha amylase and
glucosidase inhibition assays.

2.9.1. α-amylase Inhibition Assay

We used the most appropriate protocol with few small modifications for the assess-
ment of alpha amylase inhibition potential on biogenic NPs [36]. This assay was carried
out in a 96-well microplate. Next, 15 µL of PBS, 25 µL of enzyme, NPs (10 µL), and 40 µL of
starch were poured into each well and incubated at 50 ◦C. Followed by incubation, 20 µL
of HCL and 90 µL I2 were added to each well. We used DMSO as a negative control and
acarbose as a positive control. The sample absorbance potential was measured using a
microplate photometer set to 540 nm. Using the following algorithm, we determined the
percentage inhibition:

% Enzyme inhibition =

(
Abs Sample − Abs negative control
Abs blank − Abs negative control

)
× 100

2.9.2. α-glucosidase Inhibition Assay

The anti-diabetic efficacy of NPs was further assessed using a previously published
-glucosidase inhibition bioassay with minor changes [37,38]. Exactly 50 mL of alpha
glucosidase PBS were combined with 100 mg of bovine serum albumin. A reaction mixture
constituting 10 µL of tested sample, phosphate buffer (490 µL; pH 6.8), and p-nitrophenyl α-
D-glucopyranoside (5 mM; 250 µL) was kept for incubation at 37 ◦C for 5 min. Next, 250 µL
α-glucosidase (0.15 unit/mL) was then introduced to samples, followed by incubation
for 15 min at 37 ◦C. Absorptions were measured using a UV-Vis spectrophotometer at
400 nm after the reaction was stopped by applying a 2 mL Na2CO3 (200 mM) solution.
The p-nitrophenol-released p-nitrophenyl and α-D-glucopyranoside were measured in this
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assay. Acarbose was used as a constructive control in the experiment, which was repeated
three times.

% Enzyme inhibition =

(
Abs Sample − Abs negative control
Abs blank − Abs negative control

)
× 100

2.10. Anti-Alzheimer’s Activity

Inhibition of the enzymes Acetylcholinesterase (AChE) and Butyrylcholinesterase
(BChE) may be a target in Alzheimer’s treatment. The ability of NPs to inhibit AChE (Sigma
“101292679”) and BChE (Sigma “101303874”) was investigated using Elman’s technique
with minor modifications, as previously mentioned [39]. The test sample was applied
in a concentration range of 12.5 µg/mL to 400 µg/mL. Briefly, NPs were dispersed in
phosphate buffer saline (PBS) solution. The final concentration of the enzyme in AChE
was 0.03 U/mL and 0.01 U/mL in BChE. The reaction mixture prepared in distilled
water included DTNB (0.00022M), BTchI (0.0005M), and ATchI (0.0005M), and was stored
at 8 ◦C. Methanol mediated Galanthamine hydrobromide (Sigma; GI660) was taken as
positive control while the reaction mixture deprived of test sample was used as negative
control. The anticholinesterase assay works by hydrolyzing ATchI into AChE and BTchI
into BChE, which results in the formation of the 5-thio-2-nitrobenzoate anion and forms
further complexes with DTNB, resulting in a yellow color. Absorbance was measured
using a UV spectrophotometer set to 412 nm. With a difference in absorption rate over
time, Galantamine and NPs can be used to calculate percent enzyme inhibition and percent
enzyme activity.

2.11. Estimation of Antioxidant Activity
2.11.1. DPPH Antioxidant Assay

The antioxidant function of DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRSA (free
radical scavenging assay) was calculated using the protocol [40], with minor modifications.
Sample extract (20 µL) was combined with DPPH (3.2 mg/100 mL methanol) 180 µL,
and the mixture was incubated at 25 ◦C for 60 min before adding dH2O (160 µL). The
absorbance at 517 nm was measured using an absorbance microplate reader (BioTek ELX800
Absorbance Microplate Reader, BioTek Instruments, Colmar, France). The methanolic
extract and 0.5 mL of DPPH solution were used as standards to map the calibration curve
(R2 = 0.989). The free radical scavenging operation was measured using the following
equation as a percentage of DPPH discoloration:

Free radical scavenging activity(%) = 100 ×
(

1 − Ac
As

)
2.11.2. Total Antioxidant Capacity Determination (TAC)

The same assay as stated by [41] was used to examine overall antioxidant ability by
using a micropipette to pour 100 microliters of NPs into Eppendorf tubing. Then, we fill
Eppendorf tubes with 900 µL TAC, followed by incubation for only two hours at 90 ◦C; the
absorbance of the sample was observed at 630 nm.

2.11.3. Total Reducing Power Determination (TRP)

The same method as described by [42] was used to determine the total reducing power
(TRP). The 100 microliter of test sample was poured into Eppendorf tube, followed by the
addition of PBS and potassium ferric cyanide and incubated for half an hour at 50 ◦C. The
centrifugation was performed and collected supernatant were shifted into a 96-well plate
and observed at an absorbance of 630 nm.

2.11.4. Antioxidant ABTS Assay

The previous technique was used for the evaluation of this assay [41]. Briefly, the
ABTS was made by combining 7 mM ABTS salt with 2.45 mM potassium persulphate in
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an equal proportion and storing the mixture in the dark for 16 h. Before combining with
extracts, the solvent absorbance was measured at 734 nm and calibrated to 0.7. The mixture
was then placed in the dark for another 15 min at room temperature (25 ◦C).

2.12. Biocompatibility Studies

Fresh erythrocytes were used to show the biocompatibility of biogenic metallic
NPs [43]. After the individual’s consent, 1 mL of blood was taken in EDTA tubes from
healthy individuals. To isolate RBCs, the sample was centrifuged and the pellets were re-
trieved after three washes with PBS. PBS-erythrocyte suspension was then made, combined
with NPs, and incubated. The sample was centrifuged after incubation and 200 microliters
of supernatant was shifted into 96-well plate, and the release of hemoglobin was observed
at 450 nm. The formula for calculating percent hemolysis was:

′′(%) Haemolysis =

(
sample Ab − negative control Ab

Positive control Ab − Negative control Ab

)
× 100

3. Results and Discussion
3.1. Biosynthesis of Metallic NPs

Curcuma longa is known as “turmeric” and belongs to family Zingiberaceae [44]. From
previous literature, numerous therapeutic activities have been assigned to C. longa for
a wide variety of diseases and conditions including those of the skin, pulmonary and
gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive
research within the last half-century has proven that most of these activities, once associated
with C. longa, are instead due to curcumin. Curcumin, with a percentage of 10.3% in the
extract, has been shown to exhibit antioxidant, anti-viral, anti-inflammatory, antibacterial,
antifungal, and anti-cancer activities, and thus has a potential against various malignant
diseases, diabetes, allergies and Alzheimer’s. Curcumin is the most important fraction
which is responsible for its biological activity. The phenolic content of C. longa extract
was found to be 11.24 mg GAE/g. Pharmaceutically important phytochemicals including
alkaloids, flavonoids, terpenoids, steroids, saponins, phenols, glucosides, etc., were found
to be present in extracts of C. longa [45]. Metallic nanoparticles were synthesized using
C. longa extract as a capping and reducing agent. When the reaction was carried out
between C. longa and respective salts, the color of the mixture changed from dark brown to
black and dark gray, which confirmed the biosynthesis of CuO-NPs, NiO-NPs, and Cu-Ni
alloy NPs [46–48]. The reaction mixture was centrifuged and stored for physiochemical
characterization [49].

3.2. Optical Band Gap of Nanoparticles

The optical band gap of CuO, NiO, and its hybrid nanoparticles, was determined
using the basic relationship between absorbance and incident photon energy (hν), as shown
in the Figure 1. The band gap of CuO-NPs was calculated as 3.0 eV, while that of NiO-NPs
was determined as 2.6 eV; for hybrid, the band gap calculated was 2.48 eV, respectively.
(Beckman model DB). The smaller band gap results in enhanced photo degradation activity,
in which the electrons are easily excited from the valence to conduction band [19].

3.3. Fourier Transform Infrared Spectrometer (FTIR)

To find out the possible reducing agent responsible for generation of NPs, FTIR
analysis was carried out. In current findings, the FTIR spectra of CuO, NiO and its hybrid
are shown in Figure 2 (IRAffinity-1S). The different absorption bands were observed at 1599,
1408, 1081, 565 for CuO-NPs [50]. The absorption band at 1599 cm−1 is due to the in-plane
CH bending vibration from the phenyl rings while 1408, 1081 and 565 cm−1 represent
the presence of CH3, ref. [51] stretch phosphate originate from phosphodieaster bond of
nucleic acids and Phenyl ring respectively. The NiO-NPs shows different absorption bands
at different wavelength. The absorption band at 1603 and 1587 revealed the symmetric CH3
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bending modes of the methyl groups of proteins. The absorption bands at 1418, 1076 and
596 shows the presence of polysaccharides (pectin) with COO2, C=C and C-OH3 torsion of
methoxy group respectively. The hybrid NPs of both metals shows the presence of different
functional groups at 1604, 1387, 1221, 1028 and 768. These absorption bands show the
presence of CH3, Phosphate II, glycogen and guanine [52]. These functional groups are due
to C-O and C-C stretching and C-O-H deformation motions. From the above spectroscopic
analysis of CuO-NPs and NiO-NPs and its hybrid it is concluded that various functional
groups are present in plant extract of Curcuma longa. These functional groups holding a
promising role in reduction as well as stabilizing the reaction medium.
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due to C-O and C-C stretching and C-O-H deformation motions. From the above spectro-
scopic analysis of CuO-NPs and NiO-NPs and its hybrid it is concluded that various func-
tional groups are present in plant extract of Curcuma longa. These functional groups hold-
ing a promising role in reduction as well as stabilizing the reaction medium. 

Figure 1. Band gap of Curcuma longa synthesized NPs (a) CuO, (b) NiO and (c) Cu/Ni hybrids.

Figure 2. Typical FTIR spectra of CuO, NiO, and Cu/Ni hybrds.
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3.4. Powder XRD Analysis

As shown in Figure 3, the XRD spectra shows an intense peak at 43.30 which, having
plane (111), is crystalline plane for Cu and matched with bulk Cu (Model-D8 Advance,
Germany) [53]. Other low intensity peaks at 2θ values 36.6, 55.5, and 64.5 matched with
planes (002), (110) and (220), respectively. All of these planes are close to JCPDS File
No. 5-0661. The matching plane indicated that the prepared CuO-NPs are highly crystalline
in nature. The size was calculated as 29.7 nm by using the Debye–Scherrer equation. The
same planes of index were also found for NiO-NPs and no such peak was observed due
to impurities. The average particle size of NiO-NPs was 28 nm, calculated by using the
Debye–Scherrer formula. The peak positions at 2θ values for hybrid of both CuO and NiO
NPs were at 31.6, 45.5, and 62, with matching planes (100), (200) and (220), respectively. The
average calculated hybrid nanoparticle size was 27 nm. The comparative size and nature
study revealed that, compared to NiO/CuO nanoparticles, the hybrid of both showed a
small particle size and were monoclinic in nature.

Figure 3. XRD graph of Curcuma longa synthesized: (A) CuO, (B) NiO and (C) Cu + Ni hybrids.

3.5. Thermal Properties

Thermal properties of the biosynthesized nanoparticles were studied using thermal
gravimetric (TGA) analysis in a temperature range from 25 ◦C up to 600 ◦C, as shown
in Figure 4 (TGA-55-TA). The total weight loss of the CuO-NPs was recorded as 63%
until 600 ◦C, while NiO-NPs resulted in only 69% weight loss, and the hybrid NPs total
loss was observed as 59.3%. The initial weight loss up to 150 ◦C is attributed to the
dehydration and loss of moisture content from the samples [54]. Our results thus indicated
that biosynthesized hybrid are thermally more stable than NiO-NPs, and NiO-NPs are
more stable than CuO-NPs.

3.6. Energy Dispersive X-rays (EDX)

The current findings were also tested for the presence of elements in synthesized
Cu/Ni and its hybrid-NPs (JSM 7400F, JEOL Ltd., Tokyo, Japan). The EDX analysis showed
the presence of Cu and Ni in large quantity. The EDX spectroscopy of hybrid (Cu/Ni its
hybrid-NPs) showed the presence of both Cu and Ni. Some other trace elements like iron
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(Fe) and sulfur (S) were also present due to handling during experiment. The presence of
other elements like oxygen, potassium, sodium, and nitrogen were due to plant extract
biomolecules, as shown in Figure 5.

Figure 4. TGA analysis of CuO-NPs, NiO-NPs and Cu/Ni hybrids.

Figure 5. EDX spectra of Curcuma longa mediated NPs (a) CuO-NPs, (b) NiO-NPs and (c) Cu + Ni hybrids.
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3.7. Morphological SEM and TEM Analysis

The morphological study of CuO, NiO, and its hybrid was carried out by scanning
electron microscopy. Micrographs showed that the NPs of CuO and NiO are non-spherical
polyhedral-shaped and polydispersed in reaction medium [55,56]. The morphological
feature of hybrid shows a smooth surface, spherical shape, and small sized particles as
shown in Figure 6 [49]. SEM micrographs of the CuO, NiO, and its hybrid NPs revealed
agglomerated morphology, with the larger mean size of the powdered samples (JSM-7600F,
Japan). The TEM image and electron diffraction pattern of the CuO, NiO, and its hybrid
NPs are presented in Figure 7 (JEM-2100F, JEOL Ltd., Tokyo, Japan). TEM micrographs
showed a spherical or elliptical morphology of the synthesized NPs, with a mean size
of 27.72 for CuO-NPs, while for NiO-NPs the size was 23.13, and for their hybrid, the
calculated size was 17.38, respectively [10,57]. The dimensions of about 50 particles were
calculated for each sample using ImageJ software. The particles size of CuO, NiO and its
hybrid NPs were in agreement with that of XRD analysis.

Figure 6. SEM micrograph of Curcuma longa: (a) CuO, (b) NiO and (c) Cu/Ni hybrids.

3.8. Antibacterial Assay

Antibiotic resistance is a major problem that continues to affect a large portion of
the world [58]. Plant-mediated nanomaterials have proven significant as a result of their
antimicrobial properties [59–61]. Phytochemicals have developed into a unique synthesis
technique for nanoparticles, as they serve both as reducing and capping agents for the
nanoparticles [62]. In this research, we used Curcuma longa extract to produce various
nanoparticles such as CuO, NiO, and Cu/Ni hybrids, and we tested their antibacterial
effectiveness against UTI bacterial strains [63]. In general, all strains tested were sensitive
to all NPs shown in (Table 1 and Figure 8). Inhibition zones measured at 5 mg/mL for CuO,
NiO, and Cu/Ni hybrids were 23 ± 1.53, 19 ± 1.11, and 25 ± 1.47 for E. coli, respectively. All
test samples inhibited P. aeuroginosa and P. vulgaris in a dose-dependent manner; however,
the highest zone of inhibition was observed against P. aeuroginosa (28 ± 1.22) and P. vulgaris
(25 ± 1.73) for Cu/Ni hybrids, respectively. Plant- and bacterial-mediated NPs have good
antimicrobial properties [64,65]. Furthermore, E. coli was the most susceptible strain to
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antibiotic coated NPs, with significant zone of inhibition. However, all of the test bacterial
spp were resistant to non-coated meropenem, imipenem, oxacillin, and Ciprofloxacin. It
was observed that the activity of CuO, NiO, and Cu/Ni hybrids coated with antibiotics
showed an increase in inhibition against Proteus Vulgaris.

Figure 7. TEM micrograph of Curcuma longa: (a) CuO, (b) NiO and (c) Cu/Ni hybrids.

Table 1. Antibacterial activity of Curcuma longa CuO, NiO and Cu/Ni hybrids against UTI isolates.

Bacterial Strains NPs ZOI of NPs Antibiotics CLSI ZOI of Non-coated
Antibiotics

ZOI of
Coated NPs

% Increased
Potency of Coated NPs

Pseudomonas
aurigenosa

CuO 11 ± 0.9

MEM 18 12 ± 1.1 18 ± 1.1 33.3

IPM 22 10 ± 1.0 16 ± 1.2 27.2

OX 17 09 ± 0.8 14 ± 0.5 29.5

CIP 21 13 ± 0.7 19 ± 1.2 3

NiO 20 ± 1.22

MEM 18 12 ± 1.1 24 ± 0.8 66.6

IPM 22 10 ± 1.0 15 ± 1.0 22.7

OX 17 09 ± 0.8 13 ± 0.6 23.6

CIP 21 13 ± 0.7 22 ± 1.1 42.9

Cu + Ni 28 ± 1.22

MEM 18 12 ± 1.1 17 ± 1.3 27.7

IPM 22 10 ± 1.0 13 ± 0.5 13.6

OX 17 09 ± 0.8 12 ± 0.6 17.7

CIP 18 12 ± 1.1 18 ± 1.1 33.3
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Table 1. Cont.

Bacterial Strains NPs ZOI of NPs Antibiotics CLSI ZOI of Non-coated
Antibiotics

ZOI of
Coated NPs

% Increased
Potency of Coated NPs

Proteus Vulgaris

CuO 18 ± 1.68

MEM 18 9 ± 0.5 17 ± 0.8 44.4

IPM 22 11 ± 1.0 14 ± 1.5 13.6

OX 17 8 ± 0.9 12 ± 1.2 23.6

CIP 21 15 ± 1.23 21 ± 1.4 28.6

NiO 23 ± 1.23

MEM 18 9 ± 0.5 20 ± 0.9 61.1

IPM 22 11 ± 1.0 19 ± 1.0 36.4

OX 17 8 ± 0.9 17 ± 1.1 53.0

CIP 21 15 ± 1.23 20 ± 0.8 20.8

Cu + Ni 25 ± 1.73

MEM 18 9 ± 0.5 17 ± 1.3 24.4

IPM 22 11 ± 1.0 18 ± 0.5 31.8

OX 17 8 ± 0.9 14 ± 0.7 35.4

CIP 21 15 ± 1.23 17 ± 0.6 9.6

E. coli

CuO 23 ± 1.53

MEM 18 15 ± 0.7 20 ± 0.3 27.8

IPM 22 13 ± 1.0 17 ± 1.1 18.3

OX 17 10 ± 0.9 15 ± 0.8 29.4

CIP 21 14 ± 1.2 19 ± 0.7 23.8

NiO 19 ± 1.11

MEM 18 15 ± 0.7 18 ± 0.5 16.7

IPM 22 13 ± 1.0 22 ± 1.2 41.0

OX 17 10 ± 0.9 12 ± 0.3 11.8

CIP 21 14 ± 1.2 20 ± 1.1 28.5

Cu + Ni 25 ± 1.47

MEM 18 15 ± 0.7 19 ± 1.4 22.3

IPM 22 13 ± 1.0 16 ± 0.9 13.7

OX 17 10 ± 0.9 13 ± 0.6 17.7

CIP 21 14 ± 1.2 22 ± 1.3 38.0
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3.9. Anti-Leishmanial Assay

Leishmaniasis is a parasitic infection caused primarily by parasites of the genus
Leishmania. It is a potentially fatal, non-contagious disease [66], and causes 50,000 deaths
per year (WHO) [67]. The epidemic carries a high risk of uncontrolled spreading due to a
lack of vectors and inefficient and inexpensive antibiotics. As shown in Figure 9a, dose-
dependent cytotoxicity was observed with mortality rates of 60.5 ± 0.53 and 68.4 ± 0.59
for Cu/Ni hybrids; 53.2 ± 0.48 and 61.2 ± 0.44 for NiO-NPs; 49.1 ± 0.39 and 56.2 ± 0.45
for CuO-NPs at 400 µg/mL for promastigote and amastigotes, respectively. Moreover, the
lowest value of 9.2 ± 0.19 for promastigote and 13.6 ± 0.21 for amastigote was shown for
CuO-NPs. Our results were same with [68].

Figure 9. (a) Anti-leishmanial and (b) Protein kinase inhibition potential of synthesized NPs.

3.10. Protein Kinase Inhibition Assay

Protein kinase inhibitors play an important role in the treatment of cancer. Achiev-
ing inhibitor selectivity remains an important issue for researchers, so the synthesis of
alternative compounds for research in chemical biology or new small molecules as drugs
is still a choice of interest [69,70]. These enzymes phosphorylate serine-threonine and
tyrosine amino acid residues, which have a key function in cellular proliferation, namely,
differentiation and apoptosis [71]. The streptomyces 85E strain was used to examine the
protein kinase inhibition potential of C. longa synthesized NPs. The results are indicated in
Figure 9b. It was observed that Cu + Ni hybrids solution (5 mg/mL) displayed maximum
zone of inhibition (16.37 ± 0.82) and (5.66 ± 0.44) at 0.5 mg/mL, respectively. All metallic
NPs inhibited the streptomyces strain at in a concentration-dependent manner (Figure 9b).
Overall, the results showed that all test samples acquired vital metabolites responsible for
anti-cancerous potentials in C. longa. These results are strongly supported by a previous
report [35,69].

3.11. Anti-Cancer Activity against HepG2 Cell Line

In recent years, plant derived compounds and nanomaterials have been viewed as
powerful and helpful alternative sources for the treatment of hepatocellular carcinoma [72].
The chemo-preventive and less harmful nature of these compounds with effective anti-
cancer potential provides a research hotspot for the treatment of cancer. However, due to
certain issues like inadequate solubility, structural deformation and bioavailability they
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target cancer sites very poorly [73,74]. We explored the potential and cytotoxicity of medi-
ated NPs in C. longa extracts against human hepatocytes (HepG2 cells). Like antimicrobial
activities, Cu/Ni hybrids showed a higher inhibition of 73.18 ± 2.42% toward the fresh
HepG2 cell line owing to its unique morphological properties. IC50 value was calculated
as 129.44 ± 2.29%. Doxorubicin was used as positive control and resulted in 97.38 ± 2.71%
inhibition of HepG2 cells. On the other side, the cytotoxicity of CuO-NPs and NiO-NPs
was 64.10 ± 1.91% and 47.55 ± 1.61%, respectively, and is shown in Table 2 and Figure 10.
DMSO functioned as a negative control [75]. The cytotoxic effect of these materials involves
three key mechanisms, including their dissolution into functional entities, formation of
reactive oxygen species (ROS), and DNA damage [75–77]. Moreover, physical properties,
surface chemistry, and dosage dictates the overall uptake, elimination, and anti-tumor
properties of the test samples [77]. However, most of the available data about in vitro
anti-hepatocarcinoma activity is related to nature and the presence of chemicals in plant
extracts used as successful capping agents. Our findings thus complement and support
previously reported studies [78]. The pronounced antitumor activity against the HepG2
cell line indicates the exciting potential of C. longa, and their extracts mediated oxide
nanoparticles are promising anti-cancer agents.

Table 2. Anti-cancer potential of various synthesized metallic NPs against HepG2 cell line.

S. No Test Samples % Inhibition

1 CuO 64.10 ± 1.91

2 NiO 47.55 ± 1.61

3 Cu + Ni 73.18± 2.42

4 NTC 0.00

5 DMSO 3.71

6 Doxorubicin 97.38 ± 2.71

Figure 10. (A) Doxorubicin as positive control, (B) Hybrid NPs against cell lines, (C) Copper NPs against cell lines, (D) Nickel
NPs against cell lines.
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3.12. Anti-Diabetic Activity

Diabetes mellitus is a metabolic condition predominantly described by persistent
hyperglycemia attributed to decreased insulin output or body cell insensitivity to insulin
already produced [79,80]. The elimination of postprandial hyperglycemia, which can
be accomplished through inhibition of alpha amylase and alpha glucosidase, the two
most common carbohydrate hydrolyzing enzymes in the digestive tract, is one successful
therapeutic technique for treating DM (Diabetes mellitus) [79]. As shown in Figure 11, a sig-
nificant inhibition percentage for α-amylase (CuO-NPs: 52.35 ± 0.76, NiO-NPs: 68.1 ± 0.93
and Cu + Ni hybrids: 74.23 ± 0.42) as well as for α-glucosidase (CuO-NPs: 39.25 ± 0.18,
NiO-NPs: 52.35 ± 1.32 and Cu + Ni hybrids 62.32 ± 0.48) was calculated respectively at
400 µg/mL. The same results were also observed by [81,82].

Figure 11. Percentage of inhibition activity of Curcuma longa synthesized NPs against (A) α–amylase and (B) α–
glucosidase enzymes.

3.13. In Vitro AChE and BChE Inhibition Assays

The diagnosis of Alzheimer’s is a progressive neurodegenerative disorder that results
in 60%–80% of all dementia cases worldwide. The condition is characterized by a slow
regression of cognitive abilities such as memory, space function and visuality, personality,
and vocabulary. The incidence of disease occurrence in the United States alone is alarming
and a person develops Alzheimer’s disease in 65 year of age [83]. The cholinesterase
inhibitors for patients with any level of AD are now available for AD therapy. For efficient
inhibition of cholinesterase enzymes, various synthetic and natural substances have been
published. In the synapses or neuro-muscular junctions of tissues, the enzymes act by cat-
alyzing acetylcholine hydrolysis (neurotransmitter) into choline and acetic acid. Reduced
acetyl choline levels lead to AD development. The inhibition reaction of two enzymes
Acetylcholinesterase (AChE) and butrylcholineterase were tested at varying consisten-
cies of NPs [84]. Surprisingly, both esterases’ inhibition reaction were dose dependent.
NiO-NPs were mostly active at 400 µg/mL, which resulted in 71.49 ± 2.44% inhibition
of AChE and 63.45 ± 1.39% for BChE, followed by Cu + Ni hybrids, which resulted in
67.71 ± 2.92% for AChE and 61.73 ± 2.11% for BChE. A lower inhibition response of AChE
18.43 ± 0.41% and BChE 21.20% ± 0.49 at 25 µg/mL was observed by CuO-NPs. As shown
by the values in Table 3, NPs is found to be highly active against both enzymes. Our
findings are consistent with previous research [85,86].
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Table 3. In vitro AChE and BChE inhibition potential of synthesized metallic NPs.

Enzymes NPs 25 µg/mL 50 µg/mL 100 µg/mL 200 µg/mL 400 µg/mL

AChE

CuO 18.43 ± 0.41 24.92 ± 0.67 32.81 ± 0.61 44.19 ± 1.41 63.39 ± 2.28

NiO 23.20 ± 0.67 33.19 ± 1.13 47.28 ± 1.19 61.29 ± 1.39 71.49 ± 2.44

Cu + Ni 21.82 ± 0.41 27.82 ± 0.44 39.49 ± 0.92 52.29 ± 1.19 67.71 ± 2.92

BChE

CuO 21.20 ± 0.49 29.92 ± 0.49 37.27 ± 0.93 42.22 ± 1.10 53.28 ± 2.19

NiO 27.54 ± 0.39 39.22 ± 0.44 46.44 ± 0.73 58.92 ± 1.28 63.45 ± 1.39

Cu + Ni 24.31 ± 0.43 29.39 ± 0.53 37.28 ± 0.57 46.67 ± 1.22 61.73 ± 2.11

3.14. Antioxidant Assays

Environmental stress is attributed to the change in plant metabolic pathways, which
results in reactive oxygen species (ROS) destroying membrane lipids, plant cells, DNA,
and proteins [87]. Plants produce numerous metabolic compounds such as flavonoids,
terpenoids, and phenolics that act as protective mechanisms, while these phytochemicals
are primarily involved in the stabilization and capping of respective nanoparticles [88,89].
To evaluate the in vitro antioxidant potential of plant-synthesized NPs, four separate assays
were performed: total antioxidant capacity (TAC); total reduction power (TRP); ABTS;
DPPH-free radical scavenging assays (FRSA). The outcomes are summarized in Table 4.
The total antioxidant potential (TAC) was tested using a phosphomolybdenum-based
technique that relies on an antioxidant mediator reducing Mo (VI) to Mo (V), resulting in
the development of a complex of phosphate-molybdate, which is distinguished by its green
color [90]. The highest antioxidants capacity in terms of ascorbic acid equivalents was
observed as 65.1 ± 0.83 µgAAE/mg for Cu + Ni NPs; 58.39 ± 0.62 µgAAE/mg for Ni NPs;
and 52.2 ± 0.31 µgAAE/mg for Cu NPs, respectively, at 400 µg/mL. The complete reducing
power estimate (TRP) assay was used to boost TAC activity. The assay was focused on the
tested sample, converting Fe+3 to Fe+2 ion if it had redox power [91]. The highest TRP was
noted as 56.4 ± 0.83 for Cu + Ni NPs; 51.5 ± 0.71 for Ni NPs; and 43.2 ± 0.49 for Cu NPs,
respectively. ABTS and DPPH free radical scavenging tests were also conducted to provide
evidence for TAC and TRP findings. Furthermore, free scavenging tests were performed
to support TAC and TRP findings. DPPH is a neutral free radical which is reduced in the
form of yellowish picrylhydrazine molecules by accepting hydrogen and/or the electron
in the donor [92,93]. The basis of these spectrophotometric methods is the quenching of
stable color in DPPH and ABTS radicals, showing the antioxidant specimen’s scavenging
capabilities. The analysis showed that all research samples had an outstanding free radical
scavenging activity, as summarized in Table 4. The highest DPPH and ABTS free radical
scavenging activity at 400 µg/mL was noted as 76.3 ± 0.28% and 80.1 ± 0.28 TEAC for Cu
+ Ni NPs, respectively. Obtained results were in correspondence with [63,94].

3.15. In-Vitro Biocompatibility Studies

Nanoparticles have been studied for hemolysis against human red blood cells in order
to assess the effects toxicological potential. Freshly extracted RBCs and various NP formu-
lations (25–400 µg/mL) have been co-incubated in an extracellular buffer solution in the
testing. The theory is based on the romping of RBCs that can be quantified by spectropho-
tometer with hemoglobin releases in the medium at 405 nm. This can only be induced by
the cell rupture potential of the tested specimen. Hemolysis is considered non-hemolytic
by ASTM (American Society of Testing and Materials) standards when 2 to 5% hemolytic
by 2%, and when hemolytic by 5% [94], as seen in Table 5. Except at the greatest stock
concentration, no eminent hemolytic activity was seen at all in NPs showing exceptional
hemocompatibility. For biomedical applications, the biocompatibility of the nanomaterial
(ENMs) developed is an integral prerequisite. Particles showed great hemocompatibility,
so no hemolytic activity was detected, even at the maximum concentration of 400 µg/mL.
The bio-safe character of the particles is thus reaffirmed by our findings and paves the
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way for the long-summary NPs that are sent for treatment. Our findings are in line with
previous studies [95,96].

Table 4. Antioxidant potential of Curcuma longa CuO, NiO and Cu + Ni hybrids.

NPs Conc (µg/mL) TAC (µg AAE/mg) TRP (µg AAE/mg) ABTS (CTEAC) DPPH (%FRSA)

Cu + Ni

400 65.1 ± 0.83 56.41 ± 0.83 80.12 ± 0.28 76.3 ± 0.28

200 34.37 ± 0.27 49.51 ± 0.87 49.63 ± 0.39 42.1 ± 0.71

100 29.86 ± 0.72 32.23 ± 0.26 33.64 ± 0.56 35.69 ± 0.32

50 17.29 ± 0.76 25.76 ± 0.58 29.47 ± 0.26 20.45 ± 0.98

25 12.16 ± 0.25 22.41 ± 0.36 13.39 ± 0.15 16.19 ± 0.48

NiO

400 58.39 ± 0.62 51.52 ± 0.71 73.14 ± 0.38 69.4 ± 0.12

200 33.37 ± 0.27 42.6 ± 0.18 51.63 ± 0.98 31.9 ± 0.73

100 21.47 ± 0.52 34.29 ± 0.67 42.64 ± 0.56 27.25 ± 0.59

50 16.29 ± 0.47 27.16 ± 0.52 34.47 ± 0.16 16.38 ± 0.18

25 11.21 ± 0.73 20.16 ± 0.51 19.39 ± 0.15 12.89 ± 0.64

CuO

400 52.2 ± 0.31 43.23 ± 0.49 68.63 ± o.93 60.53 ± 0.67

200 44.31 ± 0.73 38.71 ± 0.27 52.64 ± 0.63 41.36 ± 0.77

100 33.86 ± 0.81 24.86 ± 0.72 41.33 ± 0.31 33.39 ± 0.16

50 19.73 ± 0.10 14.93 ± 0.61 32.86 ± 0.62 25.52 ± 0.48

25 12.30 ± 0.12 8.21 ± 0.41 19.14 ± 0.51 14.93 ± 0.28

Table 5. Percentage of hemolytic activity of Curcuma longa CuO, NiO and Cu + Ni hybrids.

Conc. (µg/mL)
% Hemolysis of NPs

Cu + Ni Ni Cu

400 3.42 ± 0.19 1.42 ± 0.10 1.53 ± 0.50

200 2.19 ± 0.14 1.50 ± 0.41 1.90 ± 0.13

100 1.10 ± 0.13 O.84 ± 0.50 0.63 ± 0.90

50 0.40 ± 0.10 0.60 ± 0.21 0.20 ± 0.13

4. Conclusions

A facile and nonhazardous synthesis protocol of CuO-NPs, NiO-NPs, and Cu/Ni
hybrids NPs using an aqueous extract of Curcuma longa, a potential reducing and stabi-
lizing source, has been described. The FTIR analysis confirmed the successful capping of
naturally-occurring phytoconstituents of the plant extract such as phenols, polysaccha-
rides, and guanine. The morphological examination using SEM and TEM showed the
mean size of the NPs. The NPs were screened for a variety of biological applications,
including bactericidal activity against urinary tract infection (UTI) isolates, leishmaniasis,
anti-diabetic, antioxidant, anti-cancer, and biocompatibility studies. Our study revealed
that CuO, NiO, and its hybrid NPs were highly active against multidrug-resistant UTI
isolates as compared to conventional antibiotics. Both NPs, particularly hybrid NPs, also
showed significant anti-leishmanial and cytotoxic activities against HepG2 cell lines, re-
spectively. Furthermore, the NPs significantly inhibited α-amylase and α-glucosidase, the
key enzymes involved in the onset of diabetes mellitus (DM). Moreover, the NPs were
found to be excellent antioxidant and anti-Alzheimer’s agents. Last but not least, the
nonhazardous and biocompatible nature makes the Curcuma longa synthesized NPs a green
and inexpensive potential alternative for biomedical and clinical applications.
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