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Abstract: The amorphous hydrogenated (a-C:H) film-coated titanium, using different CH4/H2 and
deposition times, was prepared by the ion beam deposition (IBD) method, which has the advan-
tage of high adhesion because of the graded interface mixes at the atomic level. The chemical
characterizations and corrosion behaviors of a-C:H film were investigated and evaluated by SEM,
AFM, Raman spectroscopy, EPMA, TEM and XPS. An a-C:H film-coated titanium was corroded at
0.8 V, 90 ◦C in a 0.5 mol/L H2SO4 solution for 168 h. The metal ion concentration in the H2SO4

corrosion solution and the potentiodynamic polarization behavior were evaluated. Results indicate
that a higher CH4/H2 of 1:0 and a deposition time of 12 h can result in a minimum ID/IG ratio
of 0.827, Ra of 5.76 nm, metal ion concentration of 0.34 ppm in the corrosion solution and a cor-
rosion current of 0.23 µA/cm2. The current density in this work meets the DOE’s 2020 target of
1 µA/cm2. Electrical conductivity is inversely proportional to the corrosion resistance. The significant
improvement in the corrosion resistance of the a-C:H film was mainly attributed to the increased sp3

element and nanocrystalline TiC phase in the penetration layer. As a result, the a-C:H film-coated
titanium at CH4/H2 = 1:0 with improved anti-corrosion behavior creates a great potential for PEMFC
bipolar plates.

Keywords: a-C:H film; titanium substrate; chemical structure; corrosion behavior

1. Introduction

A fuel cell can be regarded as a kind of equipment, which can directly convert the
chemical energy of a fuel into electrical energy with zero emissions [1]. With good efficiency,
low operating temperature and clean technology, polymer electrolyte membrane fuel cell
(PEMFC) is proposed as one of the most prospective power sources for residential and
commercial applications. As the important component of hydrogen fuel cells, bipolar plates
must be made of permeability materials, be anti-corrosive, electrically conductive between
adjacent cells, have a uniform feed gas diffusion and product removal capacity, be of low
cost and be economically viable to manufacture [2]. Traditional bipolar plates are made of
graphite material. However, the brittleness and high cost of graphite are considered to be
major barriers to its mass production [3]. Instead, metal bipolar plates, such as stainless
steel, titanium and aluminum alloys, are used [4–6]. The conductivity of metallic bipolar
plates is a vital requirement. The low electrochemical impedance of metallic bipolar plates
indicates the high performance of PEMFC. Under the PEMFC acid environment, the metal
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bipolar plate is prone to reaction with electrolyte solution, leading to the dissolution of
metal ions. The dissolved metal ions are absorbed by the polymer electrolyte membrane
and decrease catalytic activity, which can affect the efficiency of PEMFC [7]. In addition,
the lower working potential can easily generate an oxidation film on the surface of metal
bipolar plates at the cathode side [8]. The thin passivation layer offers poor conductivity,
resulting in a lower output power of fuel cells. Thus, some modification of the material
surface has been developed to improve these properties.

The deposition of the DLC film as a protective coating is a promising solution to
protect the metallic bipolar plate from a harsh acid operation condition. There are several
studies about the deposition method of DLC film, such as sputtering deposition, plasma en-
hanced chemical vapor deposition (PECVD), ion beam deposition (IBD), cathodic vacuum
arc deposition (CVA) and other techniques [9]. In the deposition process, impurities present
on the surface of the sample are also coated with the DLC film along with the sample.
When the plasma supply is stopped, the impurities and substrate with different thermal
expansion coefficients return to the original state, resulting in the presence of pinholes in
the DLC film [10]. Due to the processing temperature of IBD, it can be held below 93 ◦C
(200 ◦F) and no such pinholes are produced on the surface. The IBD is a physical thin film
technique that achieves a high degree of precision and uniformity via the simultaneous
bombardment of energetic atomic particles. Therefore, the improved film performance,
such as high interfacial adhesion, high density, smooth surface morphology and low inter-
nal stresses, are obtained by the IBD method. Toro et al. proposed a DLC coating using a
PECVD method as the protective film to improve anti-corrosion properties [11]. Wang et al.
prepared a dense polypyrrole film on SUS316L to resist corrosion by galvanostatic and
cyclic voltammetric methods [12]. Some researchers have developed noble metal film on
titanium bipolar plates by pulsed bias arc ion plating, such as Au and Ag, which have a
prominent corrosion resistance but easily form an oxide layer and are expensive [13,14].
We prepared DLC film on the SUS316L substrate as the protective coating against corrosion
in our previous works, which found that the stainless steel still has intergranular corrosion
under a long-term high temperature and acidic environment [15]. Liu et al. applied the
magnetron sputtering method to deposit CrCuAgN film onto the metallic bipolar plate [16].
However, there is little publication about the DLC film deposition on metallic bipolar plates
using the IBD technique.

In this paper, a-C:H/DLC film was deposited on titanium substrate by the ion beam
deposition method with different gas ratios CH4/H2 and deposition times as bipolar plates
for PEMFC. The chemical characteristics, interfacial contact resistance and electrochem-
ical corrosion behavior of the a-C:H film-coated titanium substrate were evaluated in a
simulated PEMFC environment.

2. Materials and Methods

The IBD method combines the advantages of chemical and thermal processes. A schematic
diagram of DLC film deposition using the IBD method is presented in Figure 1. In the first
step, the hydrocarbon source mixture is ionized by an accelerating voltage [17]. The ionized
hydrocarbon ions are accelerated to form ion beam plasma, such as CH5

+, H+ and CH3
+

ions. In the second stage, the coating atoms form the case layer after penetrating the Ti
surface. Several reactions take place in surface processes, such as adsorption, direct incorpo-
ration of ions, reemission of H, surface etching and sputtering, in the deposition process of
a-C:H coatings [18]. The a-C:H coating properties are improved with the graded interfacial
layer, leading to the improvement of adhesion and reduction of internal stresses [19].
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Figure 1. Deposition schematic diagram of DLC film by IBD method.

The substrate material was titanium cut into dimensions of 100 mm (L) × 100 mm (W)
× 0.1 mm (H). All the samples were polished with waterproof paper (#2000), ultrasonically
cleaned with acetone for 10 min, dried and fixed onto the rotating substrate holder in the
ion implantation system chamber as shown in Figure 1. Before deposition, the chamber was
evacuated to 4 × 10−4 Pa for plasma discharge. After that, a mixture of CH4 and H2 gas
was introduced into the chamber to make the chamber pressure stabilized at 2 × 10−3 Pa.
The deposition time of the film was set to 6 h and 12 h. The current, accelerating voltage
and gas flow were set at 40 mA, 9 kV and 0.5 sccm for all the samples, respectively. Finally,
after deposition, all the titanium substrates coated with DLC films were cooled down inside
the chamber. Table 1 shows the a-C:H films at different conditions.

Table 1. Parameters of different processing conditions.

Substrate Titanium

CH4/H2 1:1 1:0
Deposition time 6 h 12 h 6 h 12 h

The micromorphological characterization and surface roughness of the coatings were
investigated by a HITACHI-TM3000 scanning electron microscope (SEM) (Hitachi Ltd.,
Tokyo, Japan) and an SPM-9500J3 atomic force microscopy (AFM) (Shimadzu Ltd., Kyoto,
Japan). The samples used for the transmission electron microscopy (TEM) (Hitachi Ltd.,
Tokyo, Japan) and the SEM were prepared by a focused ion beam (FIB) with a JIB-4500
Multi Beam System (JEOL Ltd., Akishima-shi, Japan). The chemical composition of the
cross-section was observed by a JXA-8900R electron probe microanalysis (EPMA) (JEOL
Ltd., Akishima-shi, Japan). The DLC film microstructural characterization and element
composition were determined by an NRS-4100 Raman measurement (JASCO Inc., Easton,
PA, USA) with a laser wavelength of 532.0 nm, a HF-3300 TEM and a Physical Electron-
ics (PHI) Quantum 2000 X-ray photoelectron spectroscopy (XPS) (Pleasanton, CA, USA)
equipped with a monochromatic Al Kα X-ray excitation source and an energy of 1486.6 eV.
The working conditions of 12 mA and 13 kV were employed. The base pressure of the
chamber was about 1.33 × 10−7 Pa. All the spectra were collected at 20 eV pass energy to
ensure an energy resolution of 1.0 eV and high sensitivity. The ICR of the DLC films coated
on titanium was measured by a conventional test mentioned in the previous literature [20].

The anti-corrosion property is an important factor for evaluating the performance
of bipolar plates. Thus, the DLC film-coated titanium was corroded by potentiostatic
polarizations in a 0.5 mol/L H2SO4 solution at 90 ◦C for one week. The corrosion mea-
surement is illustrated in Figure 2. The precipitated titanium ions in the H2SO4 solution
were detected by inductively coupled plasma atomic emission spectroscopy (ICPS-7000)
(Shimadzu Ltd., Kyoto, Japan) after the corrosion test. The electrochemical performance of
the a-C:H film deposited on the titanium was investigated in 0.5 mol/L H2SO4 solution
at 90 ◦C by a conventional three-electrode method reported in [21]. The DLC film-coated
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specimen, platinum wire and saturated calomel electrode (SCE) acted as the working
electrode, counter electrode and reference electrode, respectively. The test sample was
exposed to the corrosive solution on one side with an area of 10 × 10 mm2 while the other
side was sealed.
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Figure 2. Schematic diagram of corrosion test.

3. Results and Discussions
3.1. Surface Topography

The surface topography of the uncoated titanium and the DLC film-coated titanium
substrates were observed through AFM and SEM, and the photos are presented in Figure 3,
which shows that the a-C:H coatings are dense and composed of spherical particles on
the entire specimen surface, with diameters of 0.2 µm~1.6 µm. The surface morphology
of a-C:H coatings deposited at CH4/H2 = 1:0 presents a smoother surface and a smaller
granularity than that of a-C:H coatings at CH4/H2 = 1:1, which means that the high CH4
fraction is positive for the smooth surface morphology with nearly no pinholes. According
to Ortiz-Medina [22], the increasing of CH4 would change the surface topography. Titanium
substrate can be protected from the sulfuric acid solution by depositing dense a-C:H
coatings. From the surface microstructure, the high CH4 fraction and long depositing time
are more favorable to the denser a-C:H coatings.

Figure 4 shows the AFM pictures and average roughness values of the DLC film
coated on titanium with random areas of 2 µm × 2 µm. As shown in Figure 4a–e, the un-
dulating hills appear on the surface of the bare specimen and DLC films with a height of
about 158.21 nm, 126.26 nm, 68.48 nm, 91.75 nm and 66.03 nm, respectively. The average
roughness Ra values of the a-C:H coatings at CH4/H2 = 1:0 (7.38 nm and 5.76 nm) are
lower than that of DLC films at CH4/H2 = 1:1 (8.98 nm and 6.95 nm). All of them are
lower than the Ra of the uncoated titanium surface (14.01 nm). This is because during the
deposition process, upon implantation of the hydrocarbon ions, they conveyed substantial
energy to the film for substrate heating. The process of substrate heating provides a denser
and more uniform coating. The undulating hills are more flattened with the increasing
methane fraction, which has a higher sp3 ratio, and an increase in the hydrogen fraction
leads to an increase in the surface roughness; these may be caused by the etching effect [23].
Liang et al. [24] believed that hydrogen etching was a variable that affects the average
roughness. The Ti specimen would be destroyed under the process of deposition. Moreover,
the incident CHx group ions can form sp2 and sp3 hybridizations following the chemical
reaction on the Ti substrate surface. Many sp2 C and sp3 C structures result in the growth
of CHx group ions on the substrate surface. However, the H ions/atoms/molecules that
promoted sp3 hybridization contribute to the growth of the CHx groups on the substrate
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surface. Therefore, the competition between the CHx groups and H ions/atoms/molecules,
as well as the etching and growth effects on the substrate surface must be taken into
consideration. There is an abundance of dangling C bonds on the substrate surface due
to the small amounts of H groups in the ion beam. Incident CHx group ions grow on the
substrate surface because the dangling carbon bond on the surface could not be totally
saturated. Hence, with the CH4 ratio increases, the growth effect dominates the deposition
process, which leads to a smoother specimen. The AFM result corresponded to the SEM
surface analysis.
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Figure 4. Atomic force microscopy images of uncoated titanium surface (a) and DLC film-coated
titanium deposited at CH4/H2 = 1:1 (b); CH4/H2 = 1:1 (c); CH4/H2 = 1:0 (d); CH4/H2 = 1:0 (e),
with the deposition times of 6 h, 12 h, 6 h and 12 h, respectively.

Figure 5 shows the cross-section SEM images of the DLC films with different deposi-
tion conditions, which compactly and densely cover the entire specimen surface. Due to
the permeation layer, the thickness of the fully dense film cannot be clearly defined (which
was described in Section 2). The a-C:H layer of the fully dense film reaches its maximum
thickness of ~1281 nm as shown in Figure 5d. Figure 5a–c illustrates that the average thick-
ness of the fully dense film is ~533.7 nm, 587.1 nm and 693.9 nm, respectively. With a longer
deposition time, the thickness of the fully dense a-C:H layer increases sharply. The titanium
substrate can be better prevented from direct corrosion with a larger density of a-C:H
coating. With the increase in time, the high-energy ion beams bombard the growing film
continuously, thus promoting the DLC atoms penetrating into the specimen with more
energy to increase the thickness of the fully dense film and the permeation layer [22].
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(b) CH4/H2 = 1:1, 12 h; (c) CH4/H2 = 1:0, 6 h; (d) CH4/H2 = 1:0, 12 h.

In Figure 6, the carbon element concentration distribution and cross-section morphol-
ogy of the a-C:H coatings are evaluated by EPMA. The element diffusivity of carbon is
clearly seen by EPMA mapping. During the ion beam bombardment process, the ener-
getic atomic particles interact with film atoms, drive them into the titanium substrate and
produce a graded interface to improve adhesion. Then, the film atoms grow out from
the graded interface to form the dense DLC film. As shown in Figure 6b,d,f,h, the total
thickness of the DLC film, including the dense film and penetration layer, is ~3 µm, 4 µm,
4 µm and 12 µm, respectively. The carbon concentration on the surface of the DLC coating
deposited at CH4/H2 = 1:0 is obviously higher than that of CH4 = 50%. It may be caused
by the reaction between the abundance of the H ions and C–C bonds formed on the surface,
which reduces the film formation rate.
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3.2. Raman Analysis

Three key Raman parameters were used to evaluate the bonding state of the DLC film:
the intensity ratio of D peak to G peak (ID/IG), the full width at half maximum of G peak
(FWHM) and the position of G peak. Figure 7 shows the Raman curves of the a-C:H coatings
deposited at different conditions. The G peak and D peak are identified at approximately
1560 cm−1 and 1360 cm−1, identifying with the graphite band (arising from breathing
modes of sp2 atoms in rings) and the disordered band (arising from bond stretching of
sp2 atoms in rings and chains), respectively [25]. The G peak position and ID/IG are
regarded to have a linear relationship with the graphite crystallite size [26]. FWHM (G) has
a greater sensitivity to structure disorder, which originates from the bond length and bond
angle. For DLC coatings with sp3 content (>20%), a shift of the G peak position to higher
wavenumbers is consistent with an increase in sp3 [27]. A smaller ID/IG and higher FWHM
(G) can result in a higher coating density [28]. As shown in Figure 7, as the ID/IG fraction
decreases, the G peak position shifts toward a higher wavenumber. With increasing
methane fraction and deposition time, the FWHM (G) increases, which indicates the
increasing of the sp3 C–C bond ratio and the density of the DLC coating. Table 2 shows
the detailed Raman parameters. Contrasted with CH4 = 50%, it seems that the effect
of increasing CH4 to the precursor gas has a consistent effect of increasing the sp3 C
fraction, which may be because CH4 promotes the formation of the C–H bond. The a-
C:H film with a low sp3 ratio ordinarily indicates low internal stress. High values of
compressive stress should be prevented in film growth, nevertheless, it is also found that a
moderate compressive stress could be favorable for the anti-corrosion property. Particularly,
compressive residual stress can prevent the propagation of delamination through the film
layer, which leads to the shrinkage of the open corrosion path in the films.

Coatings 2021, 11, x FOR PEER REVIEW 8 of 16 
 

 

Figure 6. EPMA mapping and line scan of carbon element in the DLC coating cross-section depos-

ited at (a) and (b) CH4/H2 = 1:1, 6 h; (c) and (d) CH4/H2 = 1:1, 12 h; (e) and (f) CH4/H2 = 1:0, 6 h; (g) 

and (h) CH4/H2 = 1:0, 12 h. 

3.2. Raman Analysis 

Three key Raman parameters were used to evaluate the bonding state of the DLC 

film: the intensity ratio of D peak to G peak (ID/IG), the full width at half maximum of G 

peak (FWHM) and the position of G peak. Figure 7 shows the Raman curves of the a-C:H 

coatings deposited at different conditions. The G peak and D peak are identified at ap-

proximately 1560 cm−1 and 1360 cm−1, identifying with the graphite band (arising from 

breathing modes of sp2 atoms in rings) and the disordered band (arising from bond 

stretching of sp2 atoms in rings and chains), respectively [25]. The G peak position and 

ID/IG are regarded to have a linear relationship with the graphite crystallite size [26]. 

FWHM (G) has a greater sensitivity to structure disorder, which originates from the bond 

length and bond angle. For DLC coatings with sp3 content (>20%), a shift of the G peak 

position to higher wavenumbers is consistent with an increase in sp3 [27]. A smaller ID/IG 

and higher FWHM (G) can result in a higher coating density [28]. As shown in Figure 7, 

as the ID/IG fraction decreases, the G peak position shifts toward a higher wavenumber. 

With increasing methane fraction and deposition time, the FWHM (G) increases, which 

indicates the increasing of the sp3 C–C bond ratio and the density of the DLC coating. 

Table 2 shows the detailed Raman parameters. Contrasted with CH4 = 50%, it seems that 

the effect of increasing CH4 to the precursor gas has a consistent effect of increasing the 

sp3 C fraction, which may be because CH4 promotes the formation of the C–H bond. The 

a-C:H film with a low sp3 ratio ordinarily indicates low internal stress. High values of 

compressive stress should be prevented in film growth, nevertheless, it is also found that 

a moderate compressive stress could be favorable for the anti-corrosion property. Partic-

ularly, compressive residual stress can prevent the propagation of delamination through 

the film layer, which leads to the shrinkage of the open corrosion path in the films. 

 

Figure 7. Raman spectrum of DLC film-coated titanium with various deposition conditions. 

Table 2. Raman features, i.e., ID/IG ratio, G peak position and FWHM (G) of DLC films. 

 CH4/H2 = 1:1 CH4/H2 = 1:0 

Deposition time 6 h 12 h 6 h 12 h 

ID/IG 0.877 0.853 0.835 0.827 

G peak (cm−1) 1556.59 1557.96 1560.55 1565.77 

FWHM (G) (cm−1) 133.81 134.23 135.31 138.68 

Figure 7. Raman spectrum of DLC film-coated titanium with various deposition conditions.

Table 2. Raman features, i.e., ID/IG ratio, G peak position and FWHM (G) of DLC films.

CH4/H2 = 1:1 CH4/H2 = 1:0

Deposition time 6 h 12 h 6 h 12 h

ID/IG 0.877 0.853 0.835 0.827

G peak (cm−1) 1556.59 1557.96 1560.55 1565.77

FWHM (G) (cm−1) 133.81 134.23 135.31 138.68
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3.3. TEM Analysis

The microstructure of the DLC film-coated titanium was evaluated by TEM. Before the
experiment, FIB-SEM was used to prepare a sample with a thickness of about 0.1 µm for
research. As shown in Figure 8a,b, the schematic diagram and TEM micrographs of the DLC
film deposited on titanium at CH4/H2 = 1:0, 12 h are presented. The local nano-crystals
and selected area electron diffraction pattern (SAED) of the amorphous DLC film are also
shown in Figure 8c–f. From Figure 8c,e, part A, the amorphous phase microstructure of
the pure DLC layer was confirmed by TEM analysis, which is consistent with previous
studies [29,30]. As we can see in the high-resolution TEM images taken with TiC rings
(Figure 8d, part B), a little TiC nanocrystalline (marked by yellow circles) was surrounded
by an amorphous matrix, which suggests that atoms in the DLC have penetrated the metal
substrate. The interplanar spacing can be calculated from the diffraction pattern, where d
values could be calculated by the following formula:

λL = rd (1)

where r is the radius of the diffraction ring, λ is the electron beam wavelength and L is
the distance of the photo graphic plate from the specimen (the product λL = A, called the
camera constant). As shown in Figure 8f, polycrystalline rings of cubic TiC corresponding
to (111), (220) and (222) crystal planes are displayed. The average lattice constant of cubic
TiC acquired from the electron diffraction pattern is 0.250 nm, agreeing well with the
result obtained from the TEM micrograph. As shown in Figure 8f, there are no other
crystalline diffraction characteristics, indicating that only the cubic TiC phase exists in
the DLC coating with an amorphous hydrocarbon matrix [31]. The nanocrystalline TiC
phase has a stable and strong chemical bond energy combining titanium and carbon atoms
together, which can be seen from the penetration layer of the DLC coatings. Because of the
densification and chemical inertness of the DLC coating, it can protect metal substrate from
corrosive solution well.
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Figure 8. Schematic diagram (a) and TEM micrograph (b) of the DLC film deposited on titanium at
CH4/H2 = 1:0, 12 h; the selected area is marked with red square: TEM images and SAED patterns of
(c) and (e) part A; (d) and (f) part B.

3.4. XPS Characterization

To further understand the element composition, the bonding structure of the a-C:H
film using different parameters was analyzed by X-ray photoelectron spectroscopy (XPS).
In order to obtain a reliable conclusion, Ar+ bombardment was used to remove the metal
oxide contamination from the environment [32]. The XPS spectrum of C1s of a-C:H film is
presented in Figure 9 after removing the metal oxide contamination. The binding energy of
C1s can be deconvoluted into three parts. The peak located at 285.1 ± 0.1 eV, 282 ± 0.1 eV
and 289.1 ± 0.1 eV is attributed to C–C, Ti–C and O–C=O, respectively, which are the main
functional groups on the surface of a-C:H coatings [33]. The Ti–C bond is observed in the
XPS spectrum, demonstrating the strong adhesion force between the DLC film and the
substrate. The oxygen percentage of DLC coatings deposited at the condition of CH4 = 50%,
6 h; CH4 = 50%, 12 h; CH4 = 100%, 6 h; and CH4 = 100%, 12 h is ~35.1%, 31.8%, 31.7% and
23.3%, respectively, indicating that it gradually decreases with the deposition time. It is
well known that a-C:H film with less C=O and C–O bonds suggest a denser coating [34].
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Figure 9. C1s XPS spectrum of DLC film deposited on titanium at (a) CH4/H2 = 1:1, 6 h;
(b) CH4/H2 = 1:1, 12 h; (c) CH4/H2 = 1:0, 6 h; (d) CH4/H2 = 1:0, 12 h.

3.5. ICR Test

The key to improving the output power efficiency of PEMFC is ensuring that the
metallic bipolar plate has a high conductivity. Therefore, subtracting the resistance of
the substrate from the resistance of the a-C:H film-coated titanium can obtain the value
of the ICR [35]. Table 3 shows the ICR result of DLC film at 150 N/cm2. The DLC film
deposited at the condition of CH4 = 50% and 6 h shows the lowest resistance of 7 mΩ·cm2.
It meets the Department of Energy’s (DOE) target (10 mΩ·cm2, year 2020). If the CH4 ratio
decreases to 50%, the ICR will increase because of its good conductive performance from
the high content of sp2 C bonds. The ICR identifies with the Raman spectroscopy.

Table 3. ICR of DLC films using different conditions.

CH4/H2 = 1:1 CH4/H2 = 1:0

Deposition time 6 h 12 h 6 h 12 h
ICR (mΩ·cm2) 7 17.3 16.5 22.4

3.6. Corrosion Behavior of DLC Film

Figure 10 presents the surface morphology on the uncoated and DLC film-coated
titanium after the corrosion test. The bare substrate was destroyed; meanwhile, some cracks
appeared on the surface as shown in Figure 10a. The area of localized corrosion becomes
larger as CH4 = 100% decreases to CH4 = 50%. During the 168 h corrosion test in a high
temperature acid solution, there exists pitting corrosion, which has been marked with red
circles. It was caused by the sulfuric acid solution penetrating into the DLC coating and
contacting with the bare Ti substrate. Moreover, the pitting phenomenon also resulted in
the acceleration of corrosion in the local region, while causing the film to peel off.

In Figure 11, the Raman spectrum of a-C:H coatings are shown, in which the films
are treated with different deposition parameters after the potentiostatic corrosion. The G
peak position shifted toward a higher wavenumber and the sp3 C ratio increased compared
with the Raman analysis before the corrosion test. We speculate that a small amount of
the film was peeled off from the surface of the sample. The anti-corrosion behavior of
a-C:H coatings deposited at 12 h with smoother curves is better than that of a-C:H coatings
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deposited at 6 h, according to the Raman spectrum analysis. Moreover, the peak intensity
of a-C:H coatings become stronger at CH4 = 100%.

After the potentiostatic corrosion test for 168 h, the concentration of the dissolved metal
ion in the sulfuric acid corrosion solution was measured by ICP. Table 4 shows the results
of the metal specimen and a-C:H coatings. Contrary to the bare specimen (about 0.58 ppm),
the metal ions dissolved in the liquid have significantly reduced (0.34 ppm~0.49 ppm),
which indicated that the a-C:H coating plays a key role in protecting the titanium substrate.
The hydrogen ions in an acid environment would form a strong corrosion layer to accelerate
the corrosion [36]. It is obvious that the concentration of Ti4+ in a-C:H coatings formed
in a 100% CH4 atmosphere, as 0.34 ppm for 12 h is lower than that of other conditions.
The higher density of a-C:H coatings with CH4 = 100% has an important effect on pre-
venting the corrosive solution from reacting with the metal substrate. Even the DLC film
deposited at CH4/H2 = 1:0, 6 h, is lower than that at CH4/H2 = 1:1, 12 h. The smoother
surface of a-C:H coatings has a higher anti-corrosion ability due to the smaller exposed
area in the corrosive environment. The high oxygen content of a-C:H coatings deposited
at CH4 = 50% can accelerate corrosion in an acid solution as well. The conclusion is in
agreement with the AFM and SEM results.
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Figure 11. Typical Raman spectrum of DLC films deposited on titanium at (a) CH4/H2 = 1:1, 6 h;
(b) CH4/H2 = 1:1, 12 h; (c) CH4/H2 = 1:0, 6 h; (d) CH4/H2 = 1:0, 12 h.

Table 4. Metal ion concentration for the bare and DLC film-coated titanium after 168 h corrosion.

Substrate CH4/H2 = 1:1 CH4/H2 = 1:0

Deposition time 6 h 12 h 6 h 12 h
ICP (ppm) 0.58 0.49 0.43 0.37 0.34

As shown in Figure 12, the polarization curve of Ti substrate and a-C:H coatings in
0.5 mol/L sulfuric acid solution purged with air at 90 ◦C is displayed. The high active
peak of uncoated titanium can be clearly seen due to active dissolution and formation of
non-conductive oxide scale. Compared with metal substrate, DLC films coated on titanium
show a higher corrosion potential and a more stable passivation zone under simulated
fuel cell conditions. Under the condition of gas ratio CH4 = 100% and 12 h, the maximum
corrosion potential of ~0.15 V is obtained, which is much higher than the uncoated substrate
of ~−0.34 V. It is known that a high corrosion potential usually means an excellent anti-
corrosion performance due to the noble electrochemical behavior [37]. Compared with the
bare specimen (where the corrosion electric current density is ~1.8 µA/cm2), the corrosion
current density of DLC film-coated titanium is decreased to the minimum (of ~0.23 µA/cm2,
at the condition of CH4 100% and 12 h) under the actual operation environment where
the cathode potential is about 0.6 V. All the corrosion current densities of the DLC films
coated on titanium meet the DOE’s target (2020) of 1 µA/cm2 (0.5 mol/L sulfuric acid
solution with 5 ppm HF at 70 ◦C). The smaller corrosion current density usually implies a
smaller corrosion rate. The electrochemical performance of different DLC films coated on
titanium is similar on the polarization curves. The DLC films on the substrate can protect
titanium from reacting with the sulfuric acid solution to prevent metal corrosion. DLC film
using the condition of gas ratio CH4 100% and a longer deposition time of 12 h has a
more stable electrochemical property and a better anti-corrosion performance because of
the inherent microstructure characteristic, which can be contrasted by the SEM analysis.
The electrochemical behavior is not carried out in the anode environment because the
corrosion is relatively weak compared with the environment of the cathode [35].
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4. Conclusions

The a-C:H/DLC film on titanium substrate as a protective film was formed using
the IBD method by changing the CH4/H2 ratio and deposition time for PEMFC. The IBD
technique has many advantages, such as lower compressive stress because of the existence
of a graded interfacial, higher film–substrate adhesion and better surface characteristics of
high precision parts. The chemical composition and corrosion property of the DLC coatings
were analyzed. The following conclusions are drawn:

The surface roughness and ID/IG fraction of the a-C:H/DLC coating deposited at
CH4/H2 = 1:0 are lower, while they decrease with the increasing deposition time. The ID/IG
fraction decreases to a minimum of 0.827 at CH4/H2 = 1:0, 12 h, indicating the highest sp3

bond fraction, mainly because the CH4 promotes the formation of the C–H bond. The ICR
reduced to 7 mΩ·cm2 at CH4/H2 = 1:1, 6 h, because of the high sp2 C content. The thickness
of the DLC film decreases with the introduction of hydrogen due to the etching effect of
H ions. The cubic TiC phase found from the penetration layer has a stable and strong
chemical bond energy.

The a-C:H coating deposited at CH4 = 100% is denser than that at CH4 = 50% from
the SEM analysis. With the parameter of CH4 = 100%, 12 h, the a-C:H coating has the
lowest titanium ion concentration of 0.34 ppm with the maximum thickness of about
12 µm, which indicate the best anti-corrosion behavior because the a-C:H coating is dense
from the surface morphology. Compared with the bare specimen, the DLC specimen
reveals the highest corrosion potential of 0.15 V and the lowest corrosion current density
of 0.23 µA/cm2. This higher electrochemical stability implied a better anti-corrosion
property. All the corrosion current densities of the DLC films meet the DOE’s 2020 target
of 1 µA/cm2. The pitting corrosion occurs in the passivation layer because of a self-excited
reaction. Meanwhile, some pores are formed on the surface, which can accelerate the
corrosion rate and cause the film to peel off. However, the nanocrystalline TiC phase in the
penetration layer inhibits this behavior due to the enhanced adhesion.

Therefore, the a-C:H coating deposited on the Ti substrate by the IBD method at
CH4/H2 = 1:0 has the better corrosion inhibition property resistance. As a result, the DLC
coating is helpful to decrease the rate of corrosion and can be considered as a candidate
bipolar plate for PEMFCs.
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